toward a high quality mev electron source from a wakefield ...pbpl.physics.ucla.edu › uesdm_2012...

30
Toward a high quality MeV electron source from a wakefield accelerator for ultrafast electron diffraction Jérôme FAURE Laboratoire d’Optique Appliquée Ecole Polytechnique Palaiseau, France FemtoElec

Upload: others

Post on 30-Jan-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

  • http://loa.ensta.fr/ UMR 7639

    Toward a high quality MeV electron source from a wakefield accelerator

    for ultrafast electron diffraction

    Jérôme FAURE Laboratoire d’Optique Appliquée Ecole Polytechnique Palaiseau, France

    FemtoElec

  • Collaborators

    Laser wakefield experiments : C. Rechatin, Y. Glinec, A. Norlin, O. Lundh, J. Lim, V. Malka (LOA team) A. Ben Ismail, A. Specka, H. Videau (LLR, Palaiseau, France)

    Simulations / theory A. Lifschitz (LOA, France) E. Lefebvre, X. Davoine (CEA-DAM, France) A. Pukhov (Univ. Dusseldorf, Germany) L. Silva & J. Vieira, R. Fonseca (GolP, Lisbon, Portugal)

    Electron source for UED: 5mJ, 5 fs laser pulse: R. Lopez-Martens and his LOA team B. Beaurepaire (LOA) Z. He, A. Thomas, K. Krushelnick, (University of Michigan)

    FemtoElec

  • Outline

    •  Motivation for using laser wakefield accelerators for UED

    •  Principles of laser wakefield accelerators

    •  State-of-the art: 100 MeV – GeV with few fs duration

    •  For UED experiments: scaling to few MeV femtosecond bunches with kHz laser systems

    •  First experimental results with 100 keV electrons at kHz repetition rate

  • Motivation: need for ultrafast electron bunches, sub-100 fs, 10 fs ?

    Physics •  Structural phase transition and electron-phonon coupling •  Many phonon modes with sub-100 fs period (graphite, graphene) •  Being able to see the onset of a phase transition

    Technology •  Photocathode + static field: > 300 fs & < fC charge

    –  Space charge limit –  Velocity dispersion

    •  Photocathode + RF field: sub-100 fs & pC charge –  RF compression of 100 keV electrons - Van Oudheusden et al., PRL 105, 264801 (2010) –  RF MeV guns - Musumeci et al., Appl. Phys. Lett. 97, 063502 (2010) –  Synchronization and jitter: resolution > 100 fs

    Sciaini and Miller, Rep. Prog. Phys. 74, 096101 (2011)

  • Pros

    •  100 keV/µm accelerating gradient –  MeV electron bunches –  Decreases space charge

    •  Few femtosecond duration •  Accelerating structure is generated

    by the laser pulse –  Perfect synchronization –  No jitter in pump-probe experiment

    Why laser wakefield accelerators ?

    Cons/ open questions

    •  Large energy spread: 1-10% –  Chirped bunches, stretches in time

    •  Stability sufficient for UED ? •  Scaling of current system ?

    –  From 100 MeV to MeV –  From Hz to kHz –  From J laser to mJ laser

    •  Beam quality / coherence sufficient for UED ?

  • Gas jet

    laser

    electrons

    Experimental principle

    Laser 1J, 30 fs, 30 TW

  • F ~ -dIlaser

    F

    Champ E

    Laser vg ~ c

    •  Ponderomotive force pushes electrons:

    •  In a plasma: creates a wakefield

    The ponderomotive force in a plasma

  • Plasma wakefields

    Extreme accelerating fields: 100 GV/m instead of 10 MV/m

    Ez

    Er

    Electron density Pulse

    Use laser-plasma interaction for making particle accelerators

    accelerating

    focusing

    Requirements: I=1018-1019 W/cm2 Laser pulse resonant with wakefield: cτ≈λp/2

    λp≈10 µm

  • Injecting electrons in the wakefield

    Fluid electrons trapped electrons

    Trapped electron: need minimum pz

    For injection: provide pz momentum or dephase electrons

  • •  Wavebreaking (self-injection) •  Faure et al., Nature 2004, Mangles et al. Nature 2004, Geddes et al., Nature 2004

    •  Injection in a density transition •  Bulanov  et  al,  PRE  58  R5257  (1998),  Geddes  et  al,  PRL  100,  215004  (2008),  Faure  et  al.,  PoP  2010  

    •  Ionization induced injection •  McGuffey  et  al.,  Phys.  Rev.  LeE.    104,  025004  (2010)  ;  Pak  et  al.,  PRL  104,  025003  (2010)

    •  Injection by colliding laser pulses •  E. Esarey et al., PRL 79, 2682 (1997), J. Faure et al., Nature 2006

    Injection of quality bunches

    z-ct δne

    Lbunch > λp=10 µm

    Different phases Different electric fields 100 % energy spread

    z-ct δne

    Lbunch < λp

    Electrons « in phase » Monoenergetic acceleration Femtosecond bunch

  • The first laser beam creates the accelerating structure, the second one is used to heat electrons (provide extra pz)

  • Statistics (30 shots):

    E = 206 +/- 11 MeV

    charge = 13+/- 4 pC

    dE = 14 +/- 3 MeV

    dE/E = 6%

    J. Faure et al, Nature 444, 737 (2006) C. Rechatin et al, Phys. Rev. Lett 102, 164801 (2009)

    Stable tunable monoenergetic beams

    δE/E = 1.3% but less stable

  • O. Lundh et al., Nat. Phys. 2011

    108 electrons in 1.5 fs rms bunch !! 100 MeV

    Femtosecond electron bunches

  • Scaling to MeV energies

    a0 > (ω0 /ω p )2 /5

    k pR = 2 a0

    τc = 2R / 3

    Laser pulse needs to be Resonant with 3D wakefield R≈λp/2

    Pulse

    R

    λp

    Lu et al., PRSTAB 10, 0613001 (2007)

  • Electron acceleration with kHz, 5 fs, mJ laser system

    Pulse Salle Noire laser: duration 5 fs 1-2 mJ energy Focused down to 1.5 µm I >1018 W/cm2 % rms fluctuations currently upgraded to 5 mJ

    PIC simulations: using experimental laser parameters electronic density ne=6-10×1019 cm-3 Explore self-injection / ionization induced injection

    Chen et al., Laser Physics 21, 198 (2011)

    A. Lifschitz & V. Malka, NJP 14, 053045 (2012)

  • Results of PIC simulations: energy distribution

    Pulse

    0 5 10 150

    1

    2

    3

    4

    5

    E (MeV)

    char

    ge/M

    eV (p

    C)

    ! 100

    Higher quality beam: ionization induced injection N2 plasma, ne=7×1019 cm-3

    sub-fs electron bunch δE/E= 2.5 %

    50 fC

    Lower quality beam: self-injection He plasma, ne= 1020 cm-3 fs electron bunch larger δE/E few pC

  • Ionization induced injection with 5 fs pulse

    Pulse

    I1018 W/cm2 : trapped electrons injection

    Ionization threshold of N5+

    Local injection

    5 fs pulse: few cycles

    Each half cycle: •  ionizes N5+ •  injects a sub-fs bunch The absolute phase (CEP) matters

  • Movie of the process

    Pulse

  • Fine structure of fs electron bunches

    Energy angle correlation

    spatial filtering

  • First experimental results Collab. with Univ. Michigan (A. Thomas, Z. He)

    Pulse What we need: 5 fs, 2-5 mJ, kHz, ne=5-10×1019 cm-3 What we used: 35 fs, 8 mJ, kHz, ne= 1019 cm-3 Pulse was too long for efficiently exciting a wakefield Injection in density downramp

    sample!

    CCD!

    capillary!gas jet!

    solenoid!pinhole!

    CCD!

    laser!

    laser!

    spectrometer!

    lens!

    a)!

    b)!

    FOS!

    capillary!gas jet!

    100 µm gas jet

    100 µm gas jet

  • Injection in density downramp

    pulse

    1 2

    3

    1 2 3

    Effective slow down

    laser is focused at the back of 100 µm gas jet in density downramp

    100 µm gas jet

    Back of the wakefield slows down and can trap slower electrons Electrons are accelerated as they exit the plasma low energy

    λ p ∝1/ ne

  • kHz electron beam: spatial profile

    280 µm FWHM at focus 3 ×104 +/- 7% RMS (5 fC) electrons/bunch in focus From GPT, normalized emittance 2×10-2 mm.mrad  Transverse coherence is 5 nm More stable than previous experiments on bigger lasers

    50 60 70 80 90 100 110 120 130 1400

    0.2

    0.4

    0.6

    0.8

    1

    E (keV)

    dN/d

    E (a

    rb. u

    n.)

    1 0.5 0 0.5 10

    0.2

    0.4

    0.6

    0.8

    1

    x (mm)

    dN/d

    x (a

    rb. u

    n.)5 mm! 500 µm!

    a)! b)! c)!

    d)!

    focused with solenoid after pinhole

    -  experiment -  - GPT

  • kHz electron beam: energy distribution

    50 60 70 80 90 100 110 120 130 1400

    0.2

    0.4

    0.6

    0.8

    1

    E (keV)

    dN/d

    E (a

    rb. u

    n.)

    1 0.5 0 0.5 10

    0.2

    0.4

    0.6

    0.8

    1

    x (mm)

    dN/d

    x (a

    rb. u

    n.)5 mm! 500 µm!

    a)! b)! c)!

    d)!

    - spectrum (all electrons) - spectrum at focus -  - GPT at focus

    δE/E=7.5%

    Z. He et al., submitted to APL

  • First diffraction images on 10 nm Al foil

    5 mm!

    111! 200!

    220! 311!

    a)! b)!

    Some short term improvements: -  Filter low energy electrons for removing halo -  Improve quantum efficiency: toward single shot detection -  Reduce energy spread for thinner rings

    tilted solenoid + spatial chirp in ebeam

    aligned solenoid broader spectrum

  • •  Laser wakefield accelerators with J lasers and controlled injection –  Relativistic electrons 100 MeV, δE/E≈1-10 % –  Femtosecond bunches –  Stability of parameters 5 % level

    •  Scalability to MeV electrons with mJ, 5 fs laser pulse –  PIC simulations: 1-10 MeV, fs electrons with δE/E≈2 %

    •  First proof-of-principle experiment with mJ, kHz laser –  100 keV energy level –  Better stability –  Transverse coherence for diffraction patterns

    •  Perspectives for 2013: –  upgrade our 5 fs, kHz laser system –  perform experiments with 5 fs pulses: MeV bunches, MeV UED –  Postdoc opportunities for 2013

    Conclusions / perspectives

  • EXTRAS

  • Why are N5+N6+ electrons trapped ?

  • 2 m

    Salle Jaune Laser