unit 18 genes and genetic engineering

53
Unit 18 Genes and Genetic Engineering Table of Contents Table of Contents 1 Introduction 3 Essential Questions 4 Review 4 Lesson 18.1: DNA: Its Role in Inheritance and Protein Synthesis 5 Objectives 5 Warm-Up 5 Learn about It 6 Key Points 17 Web Links 17 Check Your Understanding 18 Challenge Yourself 19 Lesson 18.2: Genetic Engineering 20 Objectives 20 Warm-Up 20 Learn about It 22 Key Points 26 Web Links 27 Check Your Understanding 27 Challenge Yourself 29 Lesson 18.3: Uses of Genetically Modified Organisms 30 Objectives 30 Warm-Up 30 Learn about It 31 Key Points 35

Upload: others

Post on 02-Apr-2022

1 views

Category:

Documents


0 download

TRANSCRIPT

Unit 18 

Genes and Genetic Engineering

Table of Contents 

Table of Contents 1 

Introduction 3 

Essential Questions 4 

Review 4 

Lesson 18.1: DNA: Its Role in Inheritance and Protein Synthesis 5 Objectives 5 Warm-Up 5 Learn about It 6 Key Points 17 Web Links 17 Check Your Understanding 18 Challenge Yourself 19 

Lesson 18.2: Genetic Engineering 20 Objectives 20 Warm-Up 20 Learn about It 22 Key Points 26 Web Links 27 Check Your Understanding 27 Challenge Yourself 29 

Lesson 18.3: Uses of Genetically Modified Organisms 30 Objectives 30 Warm-Up 30 Learn about It 31 Key Points 35 

 

 

Web Links 35 Check Your Understanding 36 Challenge Yourself 37 

Lesson 18.4: Benefits and Risks of Using GMOs 38 Objectives 38 Warm-Up 38 Learn about It 39 Key Points 43 Web Links 43 Check Your Understanding 44 Challenge Yourself 45 

Laboratory Activity 46 

Performance Task 48 

Self Check 49 

Key Words 50 

Wrap Up 51 

Photo Credits 52 

References 52 

 

Copyright © 2018 Quipper Limited 2 

 

 

EARTH AND LIFE SCIENCE | GRADE 11/12

Unit 18 Genes and Genetic Engineering   

 Have you ever heard of Dolly the sheep or the BT corn and talong? These are just                                 some common terms that you may hear when trying to dig up some products of                             genetic manipulation in organisms. Due to the fast growing population and the ever                         changing environment that becomes less habitable, humans tend to intervene and                     do the processes on their own way.   Several products available in the market are what we termed as genetically                       modified organisms or GMOs. GMOs are products of gene manipulation induced                     by humans in other organisms. Humans tend to control and improve the quality of                           

 

Copyright © 2018 Quipper Limited 3 

 

 

products based on their own preference. Many people are against the process but                         some still favors the presence of these products. In this instance, the field of                           genetic engineering is considered as one of the fast growing field in Science. In this                             unit, the importance of DNA in living organisms and the role of genetic engineering                           in widening our understanding about it will be tackled. Do we really benefit from                           genetic manipulation? Can we really intervene in natural processes that                   happen in the development of other organisms?  

  Essential Questions 

At the end of this unit, you should be able to answer the following questions. 

● How the information in the DNA allows the transfer of genetic information                       and synthesis of proteins; 

● What is genetic engineering;  ● What are the products of genetic engineering; and ● What are the risks and benefits of using GMO products? 

 

  Review 

● Biotechnology is the development of products by modifying living systems                   and organisms. They often involve manipulation of microorganisms to create                   products such as antibiotics, vaccines, and hormones. Traditional               biotechnology includes tissue culture, natural breeding, cultivation methods,               and natural regeneration. 

● Deoxyribonucleic acid (DNA) is a biopolymer comprised of two antiparallel                   complementary strands. It is a double helix with the phosphate-sugar                   backbone and stacks of nitrogenous bases. 

● Nucleotides are monomers of DNA molecules. They contain a phosphate                   group, a nitrogenous base, and a five-carbon sugar. 

● Deoxyribose is a five-carbon sugar in which the 2-hydroxyl group (-OH) is                       reduced to a hydrogen (H). 

    

 

Copyright © 2018 Quipper Limited 4 

 

 

Lesson 18.1: DNA: Its Role in Inheritance and Protein Synthesis  

 

 Objectives In this lesson, you should be able to: 

● discuss the importance of DNA; ● explain the central dogma of cell; and ● explain the importance of proteins in organisms. 

 

Each cell contain genetic materials that are transferred to the daughter cells after a                           single round of cell division. In organismic level, the genetic materials allow the                         individual to exhibit similar traits from the parents. What is the basic unit for                           these genetic materials? Ho do they aid in heredity and trait expression?  

  Warm-Up  Banana DNA Extraction DNA contain the basic information about the identity of an organisms. In this                         activity, DNA will be extracted from the banana using simple chemical present in                         your household.   Materials: 

● large banana ● distilled water ● colorless shampoo or liquid       

soap containing EDTA ● table salt ● isopropyl or rubbing alcohol ● ice ● test tube  ● beaker  

● ziplock bag ● plastic cups ● tape (optional) ● plastic spoons ● measuring spoons  ● measuring cup  ● coffee filter ● medicine dropper ● glass rod 

  

 

Copyright © 2018 Quipper Limited 5 

 

 

Procedure: 1. Mix 1/2 cup of distilled water and one piece of banana in the ziplock bag. Zip                               

the bag and crush the banana. Make sure to completely crush the banana. 2. Pour crush banana mixture in the beaker.  3. In a plastic cup, combine one teaspoon of soap together with the 1/4                         

teaspoon of salt and two tablespoons of distilled water. Stir until everything                       is dissolved.  

4. Afterwards, transfer two tablespoons of the banana mixture to the cup. Stip                       for 10 minutes.  

5. Using the filter paper, filter the solution in a beaker, collect the liquid                         component or the filtrate. 

6. Using a medicine dropper, get some banana filtrate and transfer to the test                         tube with cold alcohol.  

7. Set aside the test tube for 5 minutes. Do not shake.  8. Observe the formation of white material from the solution as a precipitate is                         

DNA. 9. By rotating a glass rod within the test tube, collect the precipitated DNA.  

 Guide Questions: 

1. What is the importance of DNA in an organism? 2. Where do we normally use extracted DNA? 3. Where do we usually extract DNA? 4. What is the general method used to extract the DNA. 

 

 Learn about It 

 The deoxyribonucleic acid or the DNA is the basic hereditary unit in all organisms.                           Every single cell in the body of a living thing has the same set of DNA. These DNA                                   materials are located in the nucleus of the cell and are enclosed in the nuclear                             membrane but small bulk is also present in the mitochondria of the cells.  The DNA is responsible for storing the genetic information information that codes                       for the expression of different traits through the synthesis of proteins. These                       proteins are essential for expressing the tangible trait that can be observed in                         organisms.  

 

Copyright © 2018 Quipper Limited 6 

 

 

Discovery of the DNA The discovery of the DNA is a story created by several scientists. The following                           discussion focuses on people who made the discovery of DNA possible.  Friedrich Miescher Friedrich Miescher, a Swiss chemist, first identified the existence of a “nuclein”                       inside the nucleus of the human white blood cells in 1869. Instead of just isolating                             and identifying the protein components of white blood cells, he came across a                         substance that had different chemical properties as compared to proteins. This                     substance had a very high phosphorus content and was resistant to protein                       digestion. He referred to this substance as “nuclein.” He knew that the substance                         was a new discovery but the scientific community took 50 years to appreciate his                           work. This “nuclein” is what we now know as DNA.  

 Friedrich Miescher Ostwald Avery  (1844-1895) (1877-1955)

 Oswald Avery Oswald Avery, a Canadian-American physician and medical researcher, identified                 DNA as a “transforming principle.” Together with Colin Macleod and Maclyn                     McCarty, they purified twenty gallons of bacteria to determine why a live harmless                         form of pneumococcus, a bacterium responsible for pneumonia, when mixed with                     a lethal form, was transformed from harmless to deadly.  

 

Copyright © 2018 Quipper Limited 7 

 

 

In 1944, their paper was published in the Journal of Experimental Medicine where                         they explained the nature of DNA as the transforming principle. This research                       paved the way for other discoveries on DNA in the 20th century. 

 Erwin Chargaff Erwin Chargaff, an Austro-Hungarian biochemist, identified that the DNA is                   responsible for heredity. After reading the paper of Avery, Chargaff validated his                       hypothesis on the relationship of DNA and heredity. By analyzing DNA from a wide                           range of species, he summarized his discoveries on the chemistry of nucleic acids in                           1950. His findings were summarized as follows.  

1. In all cellular DNAs, guanine units is equivalent to the number of cytosine                         units, and adenine units is equivalent to the thymine units. In other words,                         the sum of purine units equals the sum of pyrimidine units. 

2. DNA isolated from different tissues of the one species are typically the same. 3. The base composition of DNA from one species remain the same with an                         

organism’s age, nutritional condition, or environment. 4. The base composition of DNA generally varies among species. These major                     

findings are now referred to as Chargaff’s rules.  

 Fig. 3. Chargaff’s rule in base pairing of DNA. 

 Rosalind Franklin Rosalind Franklin, an English chemist and X-ray crystallographer, contributed to the                     understanding of the structure of DNA in 1953. She worked with Maurice Wilkins,                         a scientist at John Randall’s laboratory at King’s College. They were able to capture                           two sets of photographs of DNA fibers.  

 

Copyright © 2018 Quipper Limited 8 

 

 

Using these high-resolution photographs, Franklin         was able to calculate the dimensions of the DNA                 strands and found out that the phosphates were               actually outside the DNA structure. Her discovery             was very close to discovering the structure of the                 DNA but was beaten by Watson’s and Crick’s               research discovery.  James Watson and Francis Crick James Watson, an American molecular biologist           and geneticist and Francis Crick, a British             molecular biologist and neuroscientist, discovered         the double-helix structure of the DNA. Watson             and Crick used the existing X-ray data of the DNA                   to solve the structure of DNA.  

Their paper was published in Nature in April 1953 and were awarded the Nobel                           Prize in Physiology in 1962. Maurice Wilkins was also an awardee in the same year.  

  James Watson Francis Crick  (1928 - present) (1916 - 2004) 

 Structure of the DNA Deoxyribonucleic acid (DNA) contains the genetic information of almost all living                     organisms. The following are the characteristics of the DNA:  

● It consists of nucleotides, which is composed of a five-carbon sugar                     (deoxyribose), a nitrogenous base, and a phosphate group. 

 

Copyright © 2018 Quipper Limited 9 

 

 

● There are four nitrogenous bases in a DNA— adenine (A), thymine (T),                       guanine (G), and cytosine (C). 

● Nucleotides are named based on which nitrogenous base is present.  The DNA contains two strands that are antiparallel in nature, which means they run                           in opposite directions. The two strands are in antiparallel position. This describes                       that the coding strand is running from 5’ to 3’ direction, while the other strand,                             template strand is in 3’ to 5’ direction. This antiparallel orientation of the strands                           can be attributed to the sugar and phosphate molecules that form the                       sugar-phosphate backbone. The central ladders of the DNA are composed of                     nitrogenous bases bonded to one another. In the DNA strands, adenine pairs with                         thymine, and cytosine pairs with guanine. This pairing was described in Chargaff’s                       rule. The sequence of the DNA strand contains codes of information that provide                         instructions for making proteins that are needed by organisms to grow and live.   

 Fig. 1. The double helix structure of the DNA. 

 Genes are short segments of DNA that are considered as the basic units of                           heredity. Every individual has two copies of each gene, one from the father and the                             other from the mother. They are responsible for all the traits that an individual                           inherits from their parents.  

 

Copyright © 2018 Quipper Limited 10 

 

 

The sperm and egg cells carry 23 chromosomes each. When they unite, there will                           be a total of 46 chromosomes. The only thing that makes one unique from others is                               the slight variations in the genes. For example, all have genes for iris colors, but the                               differences in the genes dictate the color of the iris. The DNA plays an important                             role in the synthesis of proteins. Proteins play an important role in the cells’                           functions and structures.  Central Dogma of Molecular Biology The central dogma of molecular biology explains the general process how the                       genetic information contained in the DNA is copied and distributed into next                       generation (daughter) cells, then transcribed into ribonucleic acid, RNA, molecules                   that direct the synthesis of protein molecules. Hence, the flow of genetic                       information starts from DNA replication, followed by transcription (to form                   messenger RNA), and finally, translation that yields proteins.    

 Fig. 2. Schematic diagram of the Central dogma of molecular biology.  

 Replication Replication is the process wherein DNA molecules in mother cells are duplicated                       during cell division and passed on to each daughter cell. Replication happens in a                           semiconservative manner. The synthesis of a new DNA strand is formed from an                         old DNA strand as the template and a new complementary strand. Replication                       involves three major steps:  

● Stage 1: Initiation - The two complementary strands of the DNA are                       unzipped like a zipper. DNA helicase, unzip the double stranded DNA.                     Single-strand binding proteins bind temporarily to each strand to keep                   them separated. During this stage, the DNA is unzipped using the an enzyme,                         DNA helicase. This unwind the double helix strand of the DNA. The                       replication fork is the site within the DNA strand where DNA replication                       occur.  

 

Copyright © 2018 Quipper Limited 11 

 

 

● Stage 2: Elongation - In this stage, each strand becomes a template. The                         DNA polymerase adds new nucleotides to form the new strand                   complemented to the template strand through base pairing rules. Two new                     strands (leading and lagging) are synthesized in opposite directions. They                   continue to be built until they have fully complemented the template strand.                       The two strand can now be identified as the leading and the lagging                         strands. The replication of the leading strand is done continuously and from                       5’ to 3’ manner. On the other hand, due to the opposite orientation of the                             lagging strand, the DNA polymerase requires to dissociate from the                   completed fragment and then reattach to the newly exposed segment.                   Afterwards, the DNA ligase will join the formed fragments in the lagging                       strands. 

● Stage 3: Termination - When the two original strands are bound to their                         new complementary strands, DNA replication stops. The two new identical                   DNA molecules are complete then distributed to the daughter cells. 

 At the end of the replication, two DNA molecules are formed. Each with the old,                             original strand and a newly formed complementary strand.   

 Fig. 3. The replication process of the DNA. 

   

 

Copyright © 2018 Quipper Limited 12 

 

 

Transcription Transcription is the process wherein the genetic information in the DNA strand is                         transcribed to the messenger RNA (mRNA). The messenger RNA carries the                     message copied from the DNA to produce proteins. In this process, RNA uses                         complementary coding where the bases are matched up, similar to how DNA forms                         a double helix. The difference between RNA and DNA is that instead of thymine,                           RNA makes use of uracil.   

 Fig. 4. The transcription process of the DNA. 

 

Copyright © 2018 Quipper Limited 13 

 

 

Transcription has three major steps: ● Initiation of transcription – An enzyme called RNA polymerase binds to                     

the promoter region of the DNA. ● Elongation of the RNA transcript – The RNA polymerase moves through                     

the DNA template strand. For each nucleotide in the template, the enzyme                       adds a matching nucleotide in the RNA strand. Because more nucleotides are                       added to the RNA strand, the strand becomes longer. 

● Termination of transcription – The RNA contains a site that binds to a                         protein called rho factor. This protein disrupts the binding of the RNA                       polymerase, template strand, and RNA molecule. It releases the RNA                   molecule and ends the transcription. 

 For higher eukaryotic organisms, the product of transcription does not directly                     proceed to translation. It normally requires post-transcriptional modifications               before leaving the nucleus. It starts with the capping of the 5’ end with guanine                             triphosphate (GTP) and fixing poly-A tail on the 3’ end. This process adds protection                           to the mRNA once it goes out of the nucleus to the cytoplasm for translation.                             Another event that happen in this process is the splicing of mRNA with the use of                               spliceosome that removes the noncoding regions (introns) of the RNA. The                     segment of RNA that remains after splicing is called an exon. This process provides                           the needed sequence that can be translated to the correct protein.   

 Fig. 5. Post-trancriptional modification in mRNA. 

 

 

Copyright © 2018 Quipper Limited 14 

 

 

Translation Translation is the process wherein protein molecules are assembled from the                     information encoded in mRNA. In an mRNA, the instructions in building a protein                         come in groups of three nucleotides called codons. The start codon signals the                         beginning of translation. It is composed of the nucleotide sequence AUG. On the                         other hand, the stop codons signal the end of the translation. These codons can be                             UAA, UAG, or UGA. There are three steps involved in the translation of proteins:   

● Codon recognition: Formation of an initiation complex, consist of mRNA,                   transfer RNA (tRNA), and the ribosomes. The ribosome is an organelle of                       the cell responsible for protein synthesis. It contains two subunits (small and                       large) that sandwich the mRNA during translation. The ribosomal unit has                     two sites to which the tRNA can bind. One site is called peptidyl or P site,                               whereas the other site is called acceptor or A site.The tRNA carries the                         amino acid during translation and transfers it to the ribosomes. It contains a                         set of three nucleotides called the anticodon. These are complementary to                     the mRNA’s codon. The tRNA end has the amino acid that codes for the                           codon of the mRNA based on the genetic code. 

 

 Fig. 6. The protein codon table for protein synthesis.  

 

Copyright © 2018 Quipper Limited 15 

 

 

 ● Peptide bond formation - This process starts with the attachment of the                       

tRNA to the P site. Protein chains in organisms starts with methionine that                         has a codon code of AUG. The tRNA binds to the start codon and starts the                               elongation process of the amino acids for protein synthesis. The tRNA                     recognizes the next codon then brings the second amino acid into the A site                           of the ribosome. Amino acids from both sites are joint through a chemical                         reaction. The translation process advances until the first tRNA is released in                       the exit site or the E site. The ribosome continues to move along the mRNA,                             and new amino acids are added to the growing polypeptide chain. 

● Termination - In translocation or termination, the release factors add water                     molecule to the last amino acid of the chain. This addition breaks the peptide                           bond and separates the chain from the tRNA, releasing the newly formed                       protein. The elongation process stops when the stop codon that does not                       code for an amino acid is recognized. Another helper molecules known as                       release factors fit into the P site to stop the chemical reaction. Action of this                             protein induce the dissociation of the initiation complex back into their own,                       singular forms.  

 

 Fig. 7. Translation process for protein synthesis.  

 

Copyright © 2018 Quipper Limited 16 

 

 

  

 Key Points 

 ● The deoxyribonucleic acid or the DNA is the basic hereditary unit in all                         

organisms. ● DNA is consists of nucleotides, which are composed of a five-carbon sugar                       

(deoxyribose), a nitrogenous base, and a phosphate group. ● There are four nitrogenous bases in a DNA— adenine (A), thymine (T),                       

guanine (G), and cytosine (C). ● Nucleotides are named based on which nitrogenous base is present. ● Genes are short segments of DNA that are considered as the basic units of                           

heredity. ● The central dogma of molecular biology explains the general process how                     

the genetic information contained in the DNA is copied and distributed into                       next generation (daughter) cells, then transcribed into ribonucleic acid, RNA,                   molecules that direct the synthesis of protein molecules. 

○ Replication is the process wherein DNA molecules in mother cells are                     duplicated during cell division and passed on to each daughter cell. 

○ Transcription is the process wherein the genetic information in the                   DNA strand is transcribed to the messenger RNA (mRNA). 

○ Translation is the process wherein protein molecules are assembled                 from the information encoded in mRNA. 

  

 Web Links 

To learn more about DNA, you can check the following web links: 

 

Copyright © 2018 Quipper Limited 17 

 

 

 

● Craving for some interesting facts about the DNA? Visit this website: Facts Legend. 2015. ‘DNA interesting facts.’  https://factslegend.org/25-interesting-dna-facts/ 

 

● Watch the most important process inside our cells - the central dogma. Visit this site: DNA Learning Center. 2012. ‘Central Dogma of the Cell.’ Video. https://youtu.be/9kOGOY7vthk   

 

● Watch a Ted-Ed talk about the discovery of the DNA: TedEx. 2013. ‘How I discovered DNA?.’ Video.  https://youtu.be/RvdxGDJogtA   

 

 Check Your Understanding 

 A. Provide a summary for the important processes in the central dogma of cell.  

 

 Central Dogma of Molecular Biology 

 

Process  Starting material  Important molecule that aid 

the process 

Product 

1. DNA replication 

     

2. transcription       

3. translation       

 

Copyright © 2018 Quipper Limited 18 

 

 

B. Write the word true if the given statement is correct and false if otherwise. 1. Cytosine is always paired with guanine. 2. Thymine is always paired with adenine. 3. The DNA contains the basic unit of heredity which are the proteins. 4. Transcription is the process of translating mRNA to protein.  5. Replication is important in cell division to provide DNA for the two                       

daughter cells.   

 Challenge Yourself 

 Briefly answer the following questions.  

1. What do you think will happen to the cell if DNA is not present? 2. How do you think DNA mutation happen? 3. Why do DNA sequences of different organisms share high similarities? 4. What is the role of DNA in protein synthesis? 5. What is the role of protein in the expression of different traits in organisms? 

                 

 

Copyright © 2018 Quipper Limited 19 

 

 

Lesson 18.2: Genetic Engineering 

 

 Objectives In this lesson, you should be able to: 

● introduce the concept of genetic engineering; ● describe the history of genetic engineering; and ● enumerate common products of genetic engineering in society. 

 

Nowadays, genetic manipulation is very common to improve the quality of crops in                         agriculture, the physical appearance of livestocks, and even to improve the looks of                         human offspring. How does genetic engineering emerge in the field of Science?                       What is the scope of this particular field?  

  Warm-Up   Polymerase chain reaction or PCR is the process of making several replicates of a                           target gene in the DNA strand. The process is important in genetic engineering as it                             allows us to create copies genes that we want to manipulate. Be familiar with PCR                             using this activity.  A. PCR Simulation  Materials: 

● twizzlers ● gummy bears ● toothpicks ● drawing paper ● pencils 

 Procedure: 

1. Group yourself into three.  2. Using the following materials: twizzlers for the backbone; gummy bears as                     

 

Copyright © 2018 Quipper Limited 20 

 

 

chemical bases (where red is adenine, orange is cytosine, yellow is thymine,                       and green is guanine); and toothpicks for the hydrogen bonds, create a DNA                         strand model that will serve as the template strand.  

3. Once done, prepare a demonstration on how DNA strands are separated                     during and then copied during PCR. Show the process flow using by                       illustrating it in a paper.  

4. Afterwards, present your output to the class to verify if it is correct.   B. Polymerase Chain Reaction Experiment Polymerase chain reaction (PCR) is a common technique in molecular biology and                       biotechnology to amplify a single copy or a few copies of a segment of DNA and                               generate thousands to millions of copies of a particular DNA sequence. PCR is one                           of the most important technique in genetic engineering.   Materials: 

● laptop ● Internet connection  

 

 

● PCR Virtual Laboratory University of Utah. 2015. ‘PCR.’ https://learn.genetics.utah.edu/content/labs/pcr/   

 Procedure: 

1. Open your laptop and go to the browser. 2. Using the provided link above, go to the DNA extraction activity.  3. Perform the experiment by following the instruction in the activity. 4. Answer the guide questions. 

 Guide Questions: 

1. What are the common molecule present in the DNA? 2. What is PCR? 3. Where do we usually use PCR? 4. What is the importance of PCR in genetic engineering? 5. What is the general mechanisms of PCR?

 

 

Copyright © 2018 Quipper Limited 21 

 

 

 Learn about It 

 Genetic engineering is the process of modifying genes in a living organism to                         produce genetically modified organisms (GMOs) also known as transgenic                 organisms. It is a modern type of genetic modification. In this process, the gene of                             interest is physically removed and placed in an organism to be modified.  This method is more rapid and specific than the traditional plant breeding because                         a gene coding a specific trait is transferred to an organism. Genetic engineering is                           an application of biotechnology which uses biological systems, processes, or                   organisms to create products that aims to improve the quality of human life.  Historical Background of Genetic Engineering Genetic engineering has its root way back in the 12 000 BC where humans first tried                               agriculture breeding and domesticated livestocks. Recently, the definition of genetic                   engineering was revised and referred to as the direct transfer of external DNA from                           an organism to another. This process was first performed by Herbert Boyer and                         Stanley Cohen in early 1972.   

  Herbert Boyer Stanley Cohen  (1936 - present) (1922 - present) 

 

 

Copyright © 2018 Quipper Limited 22 

 

 

In 1974, the first genetically modified           mouse was created by Rudolf         Jaenisch. This was followed by the           insertion of the antibiotic resistant         gene in tobacco that produced the           very first genetically engineered plant.         Several advances followed this       milestone in the field of genetic           engineering that aimed to manipulate         and introduce external genes in         organisms to improve its variety and           form wide range of different effects in             the traits of the modified individuals.  The first commercialization of       transgenic products or genetically       modified organisms was done in         1976. One example is the artificial           

production of insulin from bacteria through insertion on genes in bacteria that                       allowed it to produce insulin. The first plant to be commercialize was the virus                           resistant tobacco in China and followed by the tomato. Other products like rice,                         corn, and other livestock were also released as approved by the food and drug                           authority.   

 Fig. 8. Transgenic tobacco. 

 

Copyright © 2018 Quipper Limited 23 

 

 

General Process of Genetic Engineering Genetic engineering is done using copies of the recombinant plasmid— a circular,                       double-stranded DNA molecule, which is isolated and transferred to other                   organisms. There are four general steps in genetic engineering: DNA isolation,                     ligation, transformation, and selection.  

 Fig. 9. General process of genetic engineering in plants.  

 DNA Isolation In DNA Isolation, the plasmid and gene-of-interest are               isolated. For example, Bt corn, a genetically modified               pest-resistant plant, was grown in the Philippines against               Asian corn borer (Ostrinia furnacalis), a major pest of corn.                   The first step in creating a pest-resistant plant is to isolate                     the plasmid of Agrobacterium tumefaciens and the             pest-resistant gene from a bacterium, Bacillus thuringiensis             (Bt). Agrobacterium tumefaciens is a Gram-negative soil             bacterium that causes crown gall disease in plants. Its                 tumor-inducing plasmid (TI plasmid) is often used in genetic                 engineering because of its ability to integrate its DNA into a                     plant’s gene. The pest-resistant gene is obtained from the                 DNA of Bacillus thuringiensis. This bacterium produces a               protein known as the cry1Ab toxin            

Copyright © 2018 Quipper Limited 24 

 

 

that is lethal to the larval stage of lepidopterans (moth family).  Ligation In ligation, the gene is inserted into the               plasmid. The next step of making a             recombinant organisms is connecting the         external gene to the plasmid through the use               of DNA ligase enzyme. This enzyme catalyzes             DNA fragments and permanently join the           nucleotides of the plasmid and the external             gene. The pest-resistant gene obtained from           the DNA of Bacillus thuringiensis is inserted into               the tumor-inducing plasmid.    Transformation In transformation, the recombinant plasmid is           inserted back to the bacterium. Most of the               time, the transformation of the plasmid is             inserted in E. coli as the expression vector. The                 plasmid is inserted to the bacteria through             electrolysis or electric shock that opens the             membrane of the bacteria and allow the entry               of the plasmid. Another alternative is through             the use of heat shock that forms temporary               pores in the cell membrane and allows the               entry of the plasmid containing the exogenous             DNA.   The expression vector in the form of E. coli will                   then be cultured and selected to get cells that perfectly express the target gene. In                             selection, the desired clone is identified. The transformed bacteria contain the                     recombinant plasmid with the gene of interest. These are normally selected using                       special galactose sugar called X-gal. The selected bacterium shall be used to infect                         the cell of corn and integrate the gene into the plant’s DNA. When the genetically                             modified cell divides, each daughter cell obtains the new gene. The transformed                       corn plant is now pest-resistant. The inserted gene in the genetically modified crop                         must result in the production of the toxin that is only lethal to specific target pests.  

 

Copyright © 2018 Quipper Limited 25 

 

 

 Fig. 13. Selection of the transfected E. coli vector in the creation of BT corn.  

 

  

 Key Points 

 ● Genetic engineering is the process of modifying genes in a living organism                       

to produce genetically modified organisms (GMOs) also known as                 transgenic organisms. 

 

Copyright © 2018 Quipper Limited 26 

 

 

● The first ever DNA manipulation experiment was performed by Herbert                   Boyer and Stanley Cohen in early 1972.  

● In 1974, the first genetically modified mouse was created by Rudolf                     Jaenisch.  

● In DNA Isolation, the plasmid and gene-of-interest are isolated. ● In ligation, the gene is inserted into the plasmid.  ● In transformation, the recombinant plasmid is inserted back to the                   

bacterium.   

 Web Links 

To learn more about genetic engineering, you can check the following web links: 

 

● Are you okay eating GMOs? Or is it too bad? Or is it too late? Read this article to know about GMOs in your food.  Rozas-Mendoza, Psyche. 2017. ‘The GMO in your food.’  https://philippinesgraphic.net/the-gmo-in-your-food/ 

 

● Watch a video and learn more about genetic engineering. Eco Wise Videos. 2015. ‘What is Genetic Engineering?’  https://youtu.be/3IsQ92KiBwM   

 

● Can we start designing our own food? Watch this: Morehead planetarium. 2009. ‘Designer foods.’ Video. https://youtu.be/nwQkhTB0M54   

 

 Check Your Understanding 

 A. Provide a summary for the important processes of genetic engineering. 

 

 

Copyright © 2018 Quipper Limited 27 

 

 

 Production of BT corn 

 

Process  Starting material  Essential molecule that aid 

the process 

Product 

1. DNA isolation 

     

2. DNA litigation 

     

3. Transformation 

     

4. Selection process 

     

  B. Write the word true if the given statement is correct and false if otherwise. 1. Genetic engineering requires the introduction of genes from the same                   

modified organisms. 2. Litigation is the process of inserting the exogenous gene to the plasmid.  3. E. coli is a common expression vector for the transformation process. 

 

Copyright © 2018 Quipper Limited 28 

 

 

4. Plasmid is the genetic material of animals that is used for ligation.  5. Electrolysis is one process being used for ligation.  

 

 Challenge Yourself 

 Briefly answer the following questions.  

1. Do you agree to the process of genetic engineering in inducing external                       genes in organisms? 

2. What do you think is the advantage of genetic engineering to the society? 3. What do you think is the disadvantage of genetic engineering to the society? 4. Nowadays, where do we usually apply the principle of genetic engineering? 5. Do you think the Philippines has the potential to excel in this field to develop                             

exported products?   

 

Copyright © 2018 Quipper Limited 29 

 

 

Lesson 18.3: Uses of Genetically Modified Organisms 

 

 Objectives In this lesson, you should be able to: 

● describe genetically modified organisms (GMO);  ● explain the general process of making a GMO; and ● enumerate common GMO products in the market. 

 

Genetically modified organisms or GMO are widely available in the market. Have                       you tried checking the labels of the product that you buy? The method of genetic                             engineering are now being explored to improved the quality of the products that                         we consume. Do you agree to the presence of GMO in the market?   

  Warm-Up   Transgenesis in Fruit Fly  Transgenesis is a common process being conducted in making genetically                   modified organisms. It is the process of introducing an new gene—called a                       transgene—into a living organism so that the organism will exhibit a new property                         and characteristic that can be transmitted to its offspring.   Materials: 

● laptop ● Internet connection  

 

● Making a transgenic fruit fly. HHMI. 2014. ‘Transgenic fruitfly.’ http://media.hhmi.org/biointeractive/vlabs/transgenic_fly 

 Procedure: 

1. Open your laptop and go to the browser. 

 

Copyright © 2018 Quipper Limited 30 

 

 

2. Using the provided link above, go to the DNA extraction activity.  3. Perform the experiment by following the instruction in the activity. 4. Answer the guide questions. 

 Guide Questions: 

1. What is a transgenic organism? 2. What part of the DNA do we normally use for the transgenic organism? Why? 3. What do you think is the advantage of transgenic organism? 4. Do you agree on the ethical consideration of making transgenic organisms?

 

 Learn about It 

 A genetically modified organism or GMO is the product of the introduction of genes                           from one species that is artificially extracted and placed in an unrelated organism.                         The external gene may come from other organisms like bacteria, insects, or animals                         that exhibit the desired trait.   Genetically modified organisms have raised a lot of social, ethical, and even political                         issues. However, the process of making GMOs is still considered a revolutionary                       step in improving the quality of life. Genes of bacteria, plants, and animals are                           being modified to improve the quality of human life. Depending on the gene of                           interest, GMOs have many uses in the fields of agriculture and medicine.  GMOs in Agriculture By modifying the genes of crops and livestock through genetic engineering, the                       plants and animals become more resistant to diseases. Genetically modified crops                     and livestock have improved quality in terms of their use (e.g. as food or feeds) and                               increased productivity. Crops are usually genetically modified to increase their                   resistance to pests and diseases by incorporating genes coding for insect or                       pathogen resistance. Therefore, the use of pesticides is lessened by genetically                     engineering crops.  BT corn BT corn is a pest-resistant plant against corn-infesting larvae. Insect resistance is                       expressed by introducing Bacillus thuringiensis (Bt) toxin in the crops. In maize, the                         cry1Ab gene is inserted against corn borers. The cry1Ab gene encodes for the                         release of toxin in root exudates of maize. This toxin specifically affects                       

 

Copyright © 2018 Quipper Limited 31 

 

 

lepidopterans (the corn borers) in their larval stage. It does not affect other insects                           such as earthworms and nematodes, animals, and even humans.  

 Fig. 14. Corn borer that infect corn in the Philippines. 

 Golden Rice Golden rice is a genetically modified rice that produces beta-carotene. This                     genetically modified rice is created to improve the nutritional value of rice through                         increased vitamin A content. Genes which code for phytoene synthase (psy) from                       Narcissus pseudonarcissus (commonly known as daffodil, a perennial flowering plant                   with bright, yellow flowers) and carotene desaturase from Erwinia uredovora (a                     soil-borne bacterium) are integrated in rice. As a result, yellow                   beta-carotene-bearing rice endosperm is produced from this combination of genes.  

 Fig. 15. Normal and golden rice.  

   

Copyright © 2018 Quipper Limited 32 

 

 

Genetically Modified Animals Unlike in crops, genetically modified animals are much more restricted in terms of                         production and consumption. The aim of GM animals is to improve the yields in                           animal breeding, genetics, and reproduction. AquAdvantage Salmon is the world’s                   first genetically modified animal developed for human consumption. This species of                     salmon has the main characteristics and traits of the Atlantic salmon and Chinook,                         a salmon endemic in the Pacific Ocean. As a result, this species has twice the                             growth rate of the Atlantic salmon where instead of having a harvestable size in                           three years, the AquAdvantage salmon can be harvested in 18 months.  

 Fig. 16. Common atlantic salmon product in the market.  

  

GMOs in Medicine Genetic engineering is commonly used to produce biopharmaceutical drugs in the                     field of medicine. Different organisms are manipulated to produce the needed drug                       products. Most of the time, bacteria are being used to produce the needed                         compound that has the potential to be a drug. It is easy to grow the mass                               production is easy due to the asexual nature of their reproduction. The very first                           genetically manipulated drug that was approved to be commercialized in the                     market was insulin. The gene that is responsible for the production of insulin in                           mice is cloned and transferred to bacteria to allow it to produce the same                           compound. In 2000, a total of 100 genetically engineered drugs are available in                         American market. Common products include Remicade, Avastin, and Neulasta.  

 

Copyright © 2018 Quipper Limited 33 

 

 

 Fig. 17. Artificially produced insulin that is enclosed in syringes.  

 GMOs in Environmental Remediation  Bioremediation describes the process that use living organisms to clean and                     restore contaminated terrestrial or aquatic area. This method usually use                   microorganisms like bacteria and yeasts that consume contaminants and use it for                       their cellular metabolic pathways. Bioremediation has certain limitation since the                   organism being use can die due to overexposure to the contaminant because of its                           tolerance limit. Genetic engineering aid in bioremediation by inserting tolerance                   genes to the remediating organism and allow it to have a wider range of tolerance                             to common contaminants in the environment. Scientists usually increase the                   tolerance level of bacteria and yeast to high temperature, acidic environment, low                       oxygen levels, and high nutrient content.   

 Fig. 18. Common yeast that is being used for remediation.  

 

Copyright © 2018 Quipper Limited 34 

 

 

  

 Key Points 

 ● Genetically modified organisms have raised a lot of social, ethical, and                     

even political issues. However, the process of making GMOs is still                     considered a revolutionary step in improving the quality of life.  

● By modifying the genes of crops and livestock through genetic engineering,                     the plants and animals become more resistant to diseases. Genetically                   modified crops and livestock have improved quality in terms of their use. 

● Genetic engineering is commonly used to produce biopharmaceutical drugs                 in the field of medicine. Different organisms are manipulated to produce the                       needed drug products. 

● Genetically modified organisms have posed a lot of political and ethical                     issues especially in the production and consumption of these products.                   Public and private sectors in different parts of the world have expressed their                         opposition to GMOs.  

 

 Web Links 

For further information, you can check the following web links: 

 

● Read on the ruling of the Supreme Court ruling on the GMO.  Dela Cruz, Enrico. 2016. ‘Philippines signs new GMO rules, food industry relieved.’  https://www.reuters.com/article/us-philippines-gmo 

 

Copyright © 2018 Quipper Limited 35 

 

 

 

● PH is top grower of GM crops in SEA.  Perez, Ace. 2017. ‘PH is top grower of GM crops in SEA.’ https://www.sunstar.com.ph/article/143054/   

 

● GMO: greenpeace point of view Greenpeace. 2015. ‘Say NO to GMO.’ http://www.greenpeace.org/seasia/ph/What-we-do/Genetic-Engineering/   

 

 Check Your Understanding 

 A. Complete the figure below to enumerate the common products of genetic                     

engineering in agriculture and medicine.   Common products of genetic engineering in agriculture and medicine 

Agriculture  Medicine 

   

   

   

   

 B. Write the word true if the given statement is correct and false if otherwise. 1. Insulin is one of the first genetically engineered drug available in the market. 2. Philippines prohibit the availability of GMO procust in the country. 3. GMO products can be dangerous to the people consuming the products.                     

GMO medicines can be easily produced through the use of insect as                       expression vector.  

4. Bacteria are is a common option in genetic engineering in order to express                         the target genes.  

 

 

Copyright © 2018 Quipper Limited 36 

 

 

 Challenge Yourself 

 Briefly answer the following questions.  

1. Do you agree that GMOs are beneficial to humans? 2. What is the importance of GMO products in food security? 3. Why do you think GMO plants and animals are not good to consumers? 4. How can GMO products improve the productivity of farmers? 5. What are the common applications of GMO in medicine? 

 

         

 

Copyright © 2018 Quipper Limited 37 

 

 

Lesson 18.4: Benefits and Risks of Using GMOs 

 

 Objectives In this lesson, you should be able to: 

● enumerate the advantage of GMO; and ● enumerate the disadvantages of GMO. 

 

Genetically modified organisms are well distributed in the market. Some products                     were approved by the government for various uses in different fields. What are                         the benefits and risks that we might encounter to GMO products?  

  Warm-Up   BT Corn in the Philippines Be familiar with the current status of the BT corn products in the Philippines. It is                               still available in the market? Are we consuming it without consent?   Materials: 

● laptop ● LCD projector ● BT corn documentation 

 

 

● BT corn in the Philippines. IsaaaVideos. 2012. ‘Asia’s First: BT Corn in the Philippines.’ https://youtu.be/uboDidh0Qwg   

 Procedure: 

1. With the guidance of your teacher, watch the short documentation on BT                       corn in the Philippines.  

2. Complete the given table based on the information provided in the                     document.  

 

Copyright © 2018 Quipper Limited 38 

 

 

The advantages and disadvantages of GMO products like BT corn.  

PROs  CONs 

   

   

   

   

   

 3. Answer the guide questions. 

 Guide Questions: 

1. How important corn products are in the Philippines? 2. What is the conventional method on how farmers control the pest of corn? 3. What is the role of genetic engineering in the problem of pest in corn? 4. What is BT corn? Do you agree on the production of BT corn in the                             

Philippines? 

 

 Learn about It 

 Genetically modified organisms have posed a lot of political and ethical issues                       especially in the production and consumption of these products. Public and private                       sectors in different parts of the world have expressed their opposition to GMOs.                         Critics impose that there might be serious and harmful outcomes from the                       production and consumption of GMOs. They even propose human health and                     environmental risks.   Benefits of Using GMOs GMOs offer many benefits to humanity. Some of these are discussed below.  Increased productivity GMOs enable farmers to have higher crop yields. Since GM crops are modified for a                             specific pest, the use of pesticide specific for that pest is reduced. In the Philippines,                             

 

Copyright © 2018 Quipper Limited 39 

 

 

common examples of this       benefit is the development of the           BT corn and talong. These         modified plants has the capacity         to regulate corn borer even         without the use of commercial         pesticides in the farmland.       However, at present time, the         Supreme Court of the Philippines         is tightly regulating the       distribution of these products in         the market.    

Improved nutrition Genetically modified crops such as Golden Rice is improved in terms of nutrition                         (high in beta carotene content) to prevent eye-related problems such as blindness                       due to undernutrition. The development of artificially fortified crop products are                     emerging method of solving food security issues in third world countries. This                       allows the higher intake of nutrients from the crops by giving it ways on developing                             its own additional nutrients. Other nutrients that are commonly induced in the                       GMO products are vitamin C, vitamin D, and vitamin B complexes.   Aided disease detection Diseases can be identified because of           protein trackers in bioluminescent       animals. These are the most common           techniques being utilize for the         detection of chronic disease. The         method provide more accurate and         more specific means of diagnosis for           various diseases that usually take time           before the sign and symptoms to           appear. This benefit humans by         having early detection of the disease           and gives more time to prevent the             spreading of worsening of the         condition of the patients.   

 

Copyright © 2018 Quipper Limited 40 

 

 

Risks of Using GMOs GMOs also raised concerns from people because of their possible harm to the                         environment and human health. Some of these are discussed below.  Reduced biodiversity of common insects Pest resistant crops such as BT corn lead to unintended harm to non-crop                         damaging insects such as larvae of monarch butterflies, which are affected by the                         pollen of BT corn. Since GMO crops and animals has higher tolerance to the natural                             pests and harsh environmental conditions, they tend to dominate and                   overpopulate in a certain area. Due to this, the growth of other species of plants                             and animals are inhibited because of tight competition with the GMO. Once this last                           for a long period of time, lowering of population number and extinction might                         happen to other species. This could wipe out normal organisms that are not                         transfected with external genes.   

 Fig. 21. Monarch butterfly that was heavily affected by the production of BT crops. 

 Decreased pesticide effectivity Pest resistant crops seem to reduce the need for pesticide at first, but the need                             might increase later on due to produced allergic reactions. Some people develop an                         allergic response to GM crops after exposure. Cases have been reported in the                         United States of America wherein people who consumed the GMO products                     experienced tightening of the airways and dermatitis after ingestion of the                     products. Presence of some unpredicted allergens in the form of proteins might                       have been overlooked along the process of creating the GMO.  

 

Copyright © 2018 Quipper Limited 41 

 

 

 

  Fig. 22. Common label being used to indicate presence of  

allergens in crop products.   Higher cost for GM seeds Farmers have to buy new seeds every year. The GM seeds are patented products.                           Therefore, farmers cannot use second generation seeds, or such use would lead                       them to Supreme Court with a charge of patent infringement. Monsanto is the                         most famous company that produce seeds of genetically modified crop products                     such as corn and eggplant. The company experience several setbacks as anti-GMO                       product advocates filed petition to ban their products in several countries including                       the Philippines.   

 Fig. 23. Sign being used by anti-GMO activists against Monsanto.  

   

Copyright © 2018 Quipper Limited 42 

 

 

Religious and ethical issues Several religious and ethical issues were raised by different groups around the                       globe regarding the existence of genetic modification of organisms. This goes                     beyond the concept of God being the sole creator of all things present on Earth.                             Activists and ethics experts state that scientists do not have the right to manipulate                           things that were created by God. In the Philippines, the catholic church even                         released an order to their member to avoid consumption and advocacy of GMO                         products.  

  

 Key Points 

 ● The GMOs offer many benefits to humanity such as increased productivity,                     

improved nutrition of food, and aided detection of disease for early                     prevention.  

● GMOs also raised concerns from people because of their possible harm to                       the environment and human health such as reduced biodiversity of                   non-damaging insects, decreased pesticide effectivity, higher cost for               GM seeds, and issues on religious and ethical beliefs.  

 

 Web Links 

For further information, you can check the following web links: 

 

● Know more about the benefits and risks of GMO.  Food Dialogues. 2013. What Are The Benefits Of GMOs, Both Today And In The Future?’  http://www.fooddialogues.com/article/benefits-gmos-today-future/ 

 

Copyright © 2018 Quipper Limited 43 

 

 

 

● Ádvantages and disadvantages of GMO.  Vitanna. 2012. ‘24 Advantages and Disadvantages of GMOs.’ https://vittana.org/24-advantages-and-disadvantages-of-gmos   

 

● Who gets the benefits from GMO? GMO answer. 2010. Órigin of Life: Panspermia.’ https://gmoanswers.com/ask/who-will-benefit-your-genetically 

 

 Check Your Understanding 

 A. In application to your normal life or daily living, complete the table by citing                           

possible benefits and risks that directly affect you if you consume GMO                       products.  

 

Benefits  Risks 

   

   

   

   

 B. Write the word true if the given statement is correct and false if otherwise. 

1. GMO products are good for the population of other organisms. 2. The catholic church stand of view about GMO rooted from the                     

creationism theory of the bible.  3. The Food and Drug Administration id the government agency that                   

approves the release of GMO products in the market.  4. Most of the GMO products are safe and do not produce allergic reaction                         

to consumers.  5. GMO has no the potential to become an invasive species that can cause                         

extinction of other species in an area.  

 

 

Copyright © 2018 Quipper Limited 44 

 

 

 Challenge Yourself 

 Briefly answer the following questions.  

1. What is your opinion about the current ruling of the Supreme Court about                         GMO products? 

2. If GMO will be prohibited in the country, do you think the problem with food                             security can be resolved in natural means? 

3. Why is it important for GMO products to properly indicate labels in the                         packaging? 

4. Do you agree that genetic manipulation of organisms is unethical? 5. If you will be given the chance to modify one organisms for food, what                           

characteristics will you put? Why?        

 

Copyright © 2018 Quipper Limited 45 

 

 

 Laboratory Activity 

Activity 18.1 Bacterial Transformation for Insulin Production 

 Objectives At the end of this laboratory activity, the students should be able to: 

● discuss the process of isolating genes from its source; ● explain the process of DNA ligation; and ● appreciate the process of bacterial transformation.  

 Materials and Equipment 

● pen ● tape ● scissors ● copy of the DNA templates using the provided link 

 

● DNA templates Quipper. 2018. ‘Bacterial Transformation for Insulin Production.’  https://drive.google.com/open?id=1Pr6ovr7avFYVDV3DeJx35HB6S22Lw84d  

 Procedure 

1. Group yourself into two members. 2. From the provided link, prepare the DNA templates for the plasmid sequence                       

and the mammal DNA containing the insulin gene. Cut the sequence into                       strips.  

3. Tape together both ends of the circular plasmid DNA. Make sure that the                         printed portion is exposed outside the circular paper. The initial plasmid                     sequence will be engineered to contain insulin gene. Do the same thing for                         the mammalian DNA sequence.  

4. Find the recognition sites on plasmid sequence and mammalian DNA. In                     actual thing, restriction enzyme search for the specific base pair sequence                     in the sequence and cut this portion. In this experiment, the restriction                       enzyme is your scissors. Look the sequence on both strand of the DNA and                           cut it as shown in the figure.  

 

Copyright © 2018 Quipper Limited 46 

 

 

 The recognition site sequence 

 5. After getting the gene sequence of the insulin from the mammalian                     

sequence and identifying the insertion site in the plasmid using your scissors,                       it is now time to insert the isolated gene in the plasmid using the enzyme                             ligase (represented by tape in the simulation). Rebuild the plasmid by                     inserting the insulin genes using the transparent tape. Make sure that the                       templates fit together.  

6. You now have constructed the plasmid vector for the transformation of your                       bacteria to produce insulin. Complete the table by attaching the isolated                     sequence from the activity.    

Observations  Summary of the isolated gene and plasmid vector.  

Parts  Output from the Activity 

Isolated insulin DNA      

Plasmid vector sequence       

Transformed plasmid vector       

 

Copyright © 2018 Quipper Limited 47 

 

 

Guide Questions 1. What is a restriction enzyme? 2. What is a ligase enzyme? 3. What are the importance of these two enzymes in DNA transformation?  4. How does the transformed plasmid can be inserted in the bacteria to allow it                           

to produce insulin? 5. Do you think there will be difference in the insulin produce by the                         

recombinant bacteria and the mammals where the DNA was isolated?  

 Performance Task 

 Regulation of GMO in the Philippines 

 

● SC ruling on BT products in the Philippines LawPhil.net. 2015. ‘BT SC ruling.’  https://www.lawphil.net/judjuris/juri2015/dec2015/pdf/gr_209271_2015.pdf 

 Goal  

● Based on the ruling of the Philippine Supreme Court regarding the regulation                       of the GMO products in the market, your goal is to construct an information                           graphic pubmat. 

 Role  

● You are a student studying Earth and Life Science.  ● You are responsible for creating an infographic public material about the                     

regulations of GMO products in the Philippines.   Audience  

● The output will be presented to the entire class and will be evaluated by your                             teacher.  

 Situation  

● The information graphic public material about GMO regulation in the                   Philippines will be presented in class and shall be graded by the teacher. 

 

 

Copyright © 2018 Quipper Limited 48 

 

 

Product, Performance, and Purpose   ● An information graphic pubmat about GMO regulation in the Philippines                   

printed in A3 size paper.  ● It should clearly contain the rules and regulations, any amendments and                     

cases where these regulations have been applied.  Standards and Criteria Your performance will be graded by the following rubric.   

Criteria  Below Expectations,  0% to 49% 

Needs Improvement 

50% to 74% 

Successful Performance 75% to 99% 

Exemplary Performance 

100% 

Content.  Detailed facts are presented well. Content related to the task. 

Details not presented. Content is not related to the task. 

Details are presented but not organized. There are some content that are not related to task. 

Details are presented in an organized manner.Content are related to the task. 

Details are presented in an organized matter that can be easily understood. Content are related to the task. Additional supporting details are presented. 

Communication Skills. Presentation was done in a clear and logical manner.  

Presentation was not done. 

Presentation was done but in a disorganized and illogical manner. 

Presentation was done smoothly but the concepts are presented in such a way that should be rearranged for better understanding. 

Presentation was done clearly. Concepts were presented in a logical manner and easily understandable by the audience. 

 

 Self Check 

This unit aims to discuss the importance of the DNA in the expression of traits of                               organisms. At the same time, introduce the concept of genetic engineering and cite                         examples of its beneficial and harmful effects. Put a check on each bos if you agree                               on the given statement.   

Check  I can… 

 

Copyright © 2018 Quipper Limited 49 

 

 

   explain how the information in the DNA allows the transfer of genetic                       information and synthesis of proteins. 

   discuss genetic engineering and enumerate its products. 

   enumerate the risks and benefits of using GMO products. 

 

 Key Words 

 Bioremediation  It is the process that use living organisms to clean and                     

restore contaminated terrestrial or aquatic area. 

Central dogma of molecular biology 

It is a general process that describes how the genetic                   information contained in the DNA is copied and               distributed into next generation (daughter) cells, then             transcribed into ribonucleic acid, RNA, molecules that             direct the synthesis of protein molecules. 

DNA  It is the genetic material inside the nucleus of the cell                     and consists of nucleotides, which is composed of a                 five-carbon sugar (deoxyribose), a nitrogenous base, and             a phosphate group. 

DNA Isolation  It is a process where the plasmid and gene-of-interest                 are isolated. 

Genetic engineering 

It is a process of modifying genes in a living organism to                       produce genetically modified organisms (GMOs) also           known as transgenic organisms. 

Genes  These are short segments of DNA that are considered as                   the basic units of heredity. 

Ligation  It is a process where the gene is inserted into the                     plasmid. 

Replication  It is the process wherein DNA molecules in mother cells                   are duplicated during cell division and passed on to each                   daughter cell. 

 

Copyright © 2018 Quipper Limited 50 

 

 

Transformation  It is the process of inserting the recombinant plasmid to                   the expression vector.  

Transcription  It is the process wherein the genetic information in the                   DNA strand is transcribed to the messenger RNA               (mRNA). 

Translation  It is the process wherein protein molecules are               assembled from the information encoded in mRNA. 

 

 Wrap Up 

Genes and Genetic Engineering 

 

 

Copyright © 2018 Quipper Limited 51 

 

 

  Photo Credits   Rosalind Franklin. Rosalind Franklin by MRC Laboratory of Molecular Biology is       

licensed under CC BY-SA 4.0 via Wikimedia Commons.  Francis Crick. Francis_Crick.png by Materialscientist (talk) is licensed under CC BY         

2.5 via Wikimedia Commons.  Herbert Boyer. Herbert Boyer HD2005 at Podium crop by Science History Institute is     

licensed under CC BY-SA 3.0 via Wikimedia Commons.  Rudolf Jaenisch. Jaenisch 2003 by Sam Ogden by Whitehead inst is licensed under           

CC BY-SA 3.0 via Wikimedia Commons.  Fig 8. Nicotiana Tobacco Plants 1909px by Derek Ramsey is licensed under CC         

BY-SA 4.0 via Wikimedia Commons.  Fig 15. Golden Rice by International Rice Research Institute (IRRI) is licensed under         

CC BY 2.0 via Wikimedia Commons.  Fig 20. Microscopic image of yeasts by Molnarova.Lucia is licensed under CC BY-SA         

4.0 via Wikimedia Commons.  

  References 

Aleksandr Ivanovich Oparin. 2003.The Origin of Life. Massachusetts: Courier                 Corporation. 

 George Acquaah. 2012. Principles of Plant Genetics and Breeding, New Jersey: John                       

Wiley & Sons.  Pascale Piguet and Philippe Poindron. 2012. Genetically Modified Organisms and 

Genetic Engineering in Research and Therapy, Vol. 3, Switzerland: Karger Medical and Scientific Publishers. 

  

Copyright © 2018 Quipper Limited 52 

 

 

Rakesh Kumar Rastogi. 2007. Concepts of Biology XII. New Delhi: Rastogi                     Publications. 

 Ronald Ross Watson and Victor R. Preedy. 2015. Genetically Modified Organisms in                       

Food: Production, Safety, Regulation and Public Health, Massachusetts:               Academic Press. 

 Sandra Alters. 2000.Biology: Understanding Life. Massachusetts: Jones & Bartlett                 

Learning.  Shri Hemant Roy. 2005.Comprehensive MCQs in Biology.New Delhi: Golden Bells.                             

 

Copyright © 2018 Quipper Limited 53