warping the kähler potential of f theory/iib flux ... · warping the kähler potential of...

37
Galileo Galilei DIPARTIMENTO DI FISICA E ASTRONOMIA D A F Luca Martucci Physics and Geomey of F - eory 2015 , Munich, February 23-26 , 2015 Warping the Kähler potential of F- theory/IIB flux compactifications based on: 1411.2623 0902.4031 hep-th/0703129 with P. Koerber University of Padova

Upload: trinhnhi

Post on 26-Apr-2018

221 views

Category:

Documents


3 download

TRANSCRIPT

Galileo Galilei

DIPARTIMENTO DI FISICAE ASTRONOMIA

DAF

a

Luca Martucci

Physics and Geometryof F-theory 2015,

Munich, February 23-26, 2015

Warping the Kähler potential of F-theory/IIB flux compactifications

based on: 1411.26230902.4031hep-th/0703129 with P. Koerber

University of Padova

Wflux

=

Z

X⌦ ^G

3

moduli stabilization

FLUXES7-branes

Flux compactifications and warping

SUSY breaking

warping! X

[Gukov-Vafa-Witten]

[Grana-Polchinski, Gubser, Giddings-Kachru-Polchinski]

ds210 = e2A(y)ds24 + e�2A(y)ds2XD3 +O3-planes

FLUXES

D3 +O3-planes

7-branes

Flux compactifications and warping

X

Wflux

=

Z

X⌦ ^G

3

moduli stabilizationSUSY breakingwarping!

eAmin

<< eAbulk

[Gukov-Vafa-Witten]

[Grana-Polchinski, Gubser, Giddings-Kachru-Polchinski]

[Klebanov-Strassler]

ds210 = e2A(y)ds24 + e�2A(y)ds2X

FLUXES7-branes

Flux compactifications and warping

X

Wflux

=

Z

X⌦ ^G

3

moduli stabilizationSUSY breakingwarping!

eAmin

<< eAbulk

D3—“de Sitter uplift”(not further considered in this talk)

[Gukov-Vafa-Witten]

[Grana-Polchinski, Gubser, Giddings-Kachru-Polchinski]

[KKL(MM)T,…]

ds210 = e2A(y)ds24 + e�2A(y)ds2XD3 +O3-planes

Question addressed here

How does the warping enter the 4D EFT ?

However, the Kähler potential is expected to be modified

K0ks = �2 log

Z

XJ ^ J ^ J

modified?

The superpotential is insensitive to the warping

In particular, how is

see also:

[Grimm-Louis, Jockers-Louis, Denef, Grimm]

[DeWolfe-Giddings, Maharana-Giddings, Koerber-LM, Marchesano-McGuirk-Shiu, LM, …]

[Frey-Torroba-Underwood-Douglas, Chen-Nakayama-Shiu, Frey-Roberts, … ]

Superconformal symmetry

The 10D metric ds210 = e2Ads24 + e�2Ads2X

is invariant under rescaling:

ds2X ! e2!ds2X

ds24 ! e�2!ds24

e2A ! e2!e2A

Superconformal symmetry

The 10D metric ds210 = e2Ads24 + e�2Ads2X

is invariant under rescaling:

ds2X ! e2!ds2X

ds24 ! e�2!ds24

e2A ! e2!e2A

Dynamical ansatz + SUSY 4D local superconformal symmetry

see e.g. [Kallosh-Kofman-Linde-Van Proeyen]

L4D =

Zd4✓N (�, �) = N (�, �)R4 +NIJrµ�

Irµ�J + . . .

Superconformal symmetry

The 10D metric ds210 = e2Ads24 + e�2Ads2X

is invariant under rescaling:

ds2X ! e2!ds2X

ds24 ! e�2!ds24

e2A ! e2!e2A

Dynamical ansatz + SUSY 4D local superconformal symmetry

see e.g. [Kallosh-Kofman-Linde-Van Proeyen]

L4D =

Zd4✓N (�, �) = N (�, �)R4 +NIJrµ�

Irµ�J + . . .

conformal Kähler potential

Superconformal symmetry By dimensional reduction of type IIB action:

N (�, ¯�) =

Z

Xe�4A

dvolX conformal Kähler potential

Superconformal symmetry By dimensional reduction of type IIB action:

N (�, ¯�) =

Z

Xe�4A

dvolX conformal Kähler potential

Complex structure and 7-brane moduli assumed frozen,one can isolate conformal compensator : e2A ! |Y |2e2A

ds2X ! |Y |2ds2X

Y

Z

XdvolX = 1with

Superconformal symmetry By dimensional reduction of type IIB action:

N (�, ¯�) =

Z

Xe�4A

dvolX conformal Kähler potential

Complex structure and 7-brane moduli assumed frozen,one can isolate conformal compensator : e2A ! |Y |2e2A

ds2X ! |Y |2ds2X

Y

Z

XdvolX = 1with

and fix the Einstein frame:

Kähler potential:

N = M2P

K = �3 log

Z

Xe�4A

dvolX

cf. [DeWolfe-Giddings]

Superconformal symmetry By dimensional reduction of type IIB action:

N (�, ¯�) =

Z

Xe�4A

dvolX conformal Kähler potential

rather implicit!

Complex structure and 7-brane moduli assumed frozen,one can isolate conformal compensator : e2A ! |Y |2e2A

ds2X ! |Y |2ds2X

Y

Z

XdvolX = 1with

and fix the Einstein frame:

Kähler potential:

N = M2P

K = �3 log

Z

Xe�4A

dvolX

cf. [DeWolfe-Giddings]

Universal modulus

�e�4A = ⇤Q6 with Q6 = F3 ^H3 +X

I2D3’s

�6I �1

4

X

O2O3’s

�6O + . . .

The warp factor is determined by the equation:

D3-charge density

universal modulus =

Z

XG(y, y0)Q6(y

0)

e�4A(y) = a+ e�4A0(y)

Universal modulus

By definition: Z

Xe�4A0

dvolX = 0

K = �3 log a

�e�4A = ⇤Q6 with Q6 = F3 ^H3 +X

I2D3’s

�6I �1

4

X

O2O3’s

�6O + . . .

The warp factor is determined by the equation:

D3-charge density

universal modulus =

Z

XG(y, y0)Q6(y

0)

e�4A(y) = a+ e�4A0(y)

Universal modulus

simple but still implicit!

By definition: Z

Xe�4A0

dvolX = 0

K = �3 log a

�e�4A = ⇤Q6 with Q6 = F3 ^H3 +X

I2D3’s

�6I �1

4

X

O2O3’s

�6O + . . .

The warp factor is determined by the equation:

D3-charge density

universal modulus =

Z

XG(y, y0)Q6(y

0)

e�4A(y) = a+ e�4A0(y)

Decoding K Sector we focus on:

a

J = va !a

1

3!

Z

XJ ^ J ^ J = 1such that basisH2(M,Z)

h1,1 � 1

harmonic

ZiI I = 1, . . . , nD3

+ axionic partners}good chiral fields

va

D3 positions:

universal modulus:

constrained Kähler moduli :

Decoding K

how to organize them into chiral fields?Question:

Sector we focus on:

a

J = va !a

1

3!

Z

XJ ^ J ^ J = 1such that basisH2(M,Z)

h1,1 � 1

harmonic

ZiI I = 1, . . . , nD3

+ axionic partners}good chiral fields

va

D3 positions:

universal modulus:

constrained Kähler moduli :

Probing the geometry by SUSY D3 instantons

F-terms ⇠ e�SD3X

Euclidean D3-braneinstanton

DSD3 =

1

2

Z

De�4AJ ^ J + . . .

must be holomorphic!

Decoding K Sector we focus on:

a

J = va !a

1

3!

Z

XJ ^ J ^ J = 1such that basisH2(M,Z)

h1,1 � 1

harmonic

ZiI I = 1, . . . , nD3

+ axionic partners}good chiral fields

va

D3 positions:

universal modulus:

constrained Kähler moduli :

Natural choice of chiral fields ,

X

Da

such that:

[Da] = !a

Decoding K Sector we focus on:

a

J = va !a

1

3!

Z

XJ ^ J ^ J = 1such that basisH2(M,Z)

h1,1 � 1

harmonic

ZiI I = 1, . . . , nD3

+ axionic partners}good chiral fields

va

D3 positions:

universal modulus:

constrained Kähler moduli :

⇢a a = 1, . . . , h1,1

Re⇢a =1

2

Z

Da

e�4AJ ^ J +Ref(Z)

Re⇢a =1

2a Iabcvavb + ha(v) +

1

2

X

I2D3’s

a(ZI , ZI ; v)

a(z, z; v) `potentials’: i@@a = !a

ha(v) ⌘Z

X(a � Re⇣a)Qbg

6

section of O(Da)background D3-charge

Iabc = Da ·Db ·Dce⇢

a 2 O(D)

Decoding K

encode complete information on a and vaRe⇢a

F3 ^H3 �1

4

X

O2O3’s

�6O + . . .

Summarizing so far

Re⇢a =1

2a Iabcvavb + ha(v) +

1

2

X

I2D3’s

a(ZI , ZI ; v)

K = �3 log a

Decoding K

D3-branes contributionfluxes + other D3-charge sources

Summarizing so far

Re⇢a =1

2a Iabcvavb + ha(v) +

1

2

X

I2D3’s

a(ZI , ZI ; v)

K = �3 log a

Decoding K

D3-branes contributionfluxes + other D3-charge sources

In order to find one should find:

not possible in general!

(as in the unwarped approximation)

K(⇢, ⇢, Z, Z)

a(Re⇢, Z, Z)

Supersymmetric D3-brane instanton wrapping :

A by-product D

X

Euclidean D3-braneinstanton

D

Wnp ⇠ exp

h� 1

2

Z

De�4AJ ^ J + . . .

i

[Ganor]

[Baumann-Dymarsky-Klebanov-Maldacena-McAllister]

⇠Y

I2D3’s

⇣D(ZI) exp(�⇢)

Particular limits

Particular limits

Just universal modulus ( )

cf. [Frey-Torroba-Underwood-Douglas]

h1,1 = 1

K = �3 log

�⇢+ ⇢

Particular limits

Just universal modulus ( )

cf. [Frey-Torroba-Underwood-Douglas]

h1,1 = 1

K = �3 log

�⇢+ ⇢

K = �3 log

h⇢+ ⇢�

X

I2D3’s

k(ZI , ¯ZI)

i … plus D3-branes J = i@@k

[DeWolfe-Giddings, Giddings-Maharana, Baumann et al, Chen-Nakayama-Shiu]

cf.

Particular limits

Just universal modulus ( )

cf. [Frey-Torroba-Underwood-Douglas]

h1,1 = 1

K = �3 log

�⇢+ ⇢

K = �3 log

h⇢+ ⇢�

X

I2D3’s

k(ZI , ¯ZI)

i … plus D3-branes J = i@@k

[DeWolfe-Giddings, Giddings-Maharana, Baumann et al, Chen-Nakayama-Shiu]

cf.

Constant warping, no fluxes and weakly fluctuating D3-branes

K = �2 log

�Iabcvavbvc

�va unconstrained

Re⇢a =1

2Iabcvavb �

i

2

X

I2D3’s

!ai|�

iI�

|I

cf. [Graña-Grimm-Jockers-Louis]

Assuming one can approximate

Large moduli limit

Re⇢a � 1

Re⇢a =1

2Iabcvavb

h(v) ⌘Z

X[k(v)� vaRe⇣

a]Qbg6

Qbg6 = F3 ^H3 �

1

4

X

O2O3’s

�6O + . . .

V =1

6Iabcvavbvc va unconstrained

K ' �2 log V +

1

V

hh(v) +

1

2

X

I2D3’s

k(ZI , ¯ZI ; v)i+ . . .

Assuming one can approximate

Large moduli limit

Re⇢a � 1

Re⇢a =1

2Iabcvavb

h(v) ⌘Z

X[k(v)� vaRe⇣

a]Qbg6

Qbg6 = F3 ^H3 �

1

4

X

O2O3’s

�6O + . . .

V =1

6Iabcvavbvc va unconstrained

K ' �2 log V +

1

V

hh(v) +

1

2

X

I2D3’s

k(ZI , ¯ZI ; v)i+ . . .

K0

Assuming one can approximate

Large moduli limit

Re⇢a � 1

Re⇢a =1

2Iabcvavb

h(v) ⌘Z

X[k(v)� vaRe⇣

a]Qbg6

Qbg6 = F3 ^H3 �

1

4

X

O2O3’s

�6O + . . .

V =1

6Iabcvavbvc va unconstrained

⇠ O(V � 23 )

K ' �2 log V +

1

V

hh(v) +

1

2

X

I2D3’s

k(ZI , ¯ZI ; v)i+ . . .

K0

Even though the explicit is not known in general, one can compute the explicit form of the kinetic terms:

Kinetic terms

Gwab ⌘

1

8a2vavb �

1

4a(M�1

w )ab

Lkin = �Gwabrµ⇢

arµ⇢b � 1

2a

X

I

gi|(ZI , ZI)@µZiI@

µZ |I

Mabw ⌘

Z

Xe�4AJ ^ !a ^ !b

K(⇢, ⇢, Z, Z)

Even though the explicit is not known in general, one can compute the explicit form of the kinetic terms:

Kinetic terms

Gwab ⌘

1

8a2vavb �

1

4a(M�1

w )ab

Lkin = �Gwabrµ⇢

arµ⇢b � 1

2a

X

I

gi|(ZI , ZI)@µZiI@

µZ |I

Mabw ⌘

Z

Xe�4AJ ^ !a ^ !b

D3-branes kinetic termsmatches what obtained by probe approximation

K(⇢, ⇢, Z, Z)

Even though the explicit is not known in general, one can compute the explicit form of the kinetic terms:

Kinetic terms

Gwab ⌘

1

8a2vavb �

1

4a(M�1

w )ab

Lkin = �Gwabrµ⇢

arµ⇢b � 1

2a

X

I

gi|(ZI , ZI)@µZiI@

µZ |I

Mabw ⌘

Z

Xe�4AJ ^ !a ^ !b

D3-branes kinetic termsmatches what obtained by probe approximation

K(⇢, ⇢, Z, Z)

warping of Kähler structure moduli space!

(absent if is geometrically formal) Xcf. [Frey-Roberts]

Even though the explicit is not known in general, one can compute the explicit form of the kinetic terms:

Kinetic terms

Gwab ⌘

1

8a2vavb �

1

4a(M�1

w )ab

Lkin = �Gwabrµ⇢

arµ⇢b � 1

2a

X

I

gi|(ZI , ZI)@µZiI@

µZ |I

Mabw ⌘

Z

Xe�4AJ ^ !a ^ !b

D3-branes kinetic termsmatches what obtained by probe approximation

K(⇢, ⇢, Z, Z)

Furthermore:

is no-scale:KABKAKB = 3

K(⇢, ⇢, Z, Z)

warping of Kähler structure moduli space!

(absent if is geometrically formal) Xcf. [Frey-Roberts]

A simple solvable model

O3-compactification on

⌧ = � = e2⇡i3

G3 ⇠ dz1 ^ dz2 ^ dz3 + dz2 ^ dz3 ^ dz1 + dz3 ^ dz1 ^ dz1

1 =z1z1

Im�2 =

z2z2

Im�3 =

z3z3

Im�

4 =Re(z2z3)

Im�5 =

Re(z3z1)

Im�6 =

Re(z1z2)

Im�

6 moduli + D3’s:

K = � log

hT 1T 2T 3

+ 2T 4T 5T 6 � T 1�T 4

�2 � T 2�T 5

�2 � T 3�T 6

�2i

with

⇢a

no warping of moduli space ⇢a

X = ⇥ ⇥z

i = x

i + �y

i

[Kachru-Schulz-Trivedi]

T a ⌘ Re⇢a � 1

2

X

I

a(ZI , ZI)

Summary

- and D7 axions can be easily incorporated (at weak coupling) B2 C2

At large moduli, warping induced corrections to of order O(V � 23 )K

D3’s automatically incorporated

The Kähler structure moduli space gets warped

Very simple (implicit) Kähler potential K = �3 log a+ flux and D3 dependent chiral coordinates for Kähler structure moduli

Future directions

Incorporation of gauge sector and charged matter

Phenomenological implications?

Combined warping and higher order effects?

Incorporation of complex structure and 7-brane moduli

cf. [Grimm-Pugh-Weissenbacher]

cf. [Grimm-Klevers-Poretschkin]

mixing of complex and Kähler structures K

tot

6= Kcs

(U, U) +Kks

(⇢, ⇢, ZI , ZI) [Graña-Grimm-Jockers-Louis]

Complex structure enters the definition of the moduli: ⇢a

Develop efficient computational methods