welcome at risø dtu - monitoring matters · welcome at risø dtu the national laboratory for ......

83
Welcome at Risø DTU The National Laboratory for Sustainable Energy – a part of DTU – the Technical University of Denmark

Upload: domien

Post on 01-Jul-2018

242 views

Category:

Documents


0 download

TRANSCRIPT

Welcome at Risø DTU

The National Laboratory for Sustainable Energy – a part of DTU – the Technical University of Denmark

About me

• Leif Sønderberg Petersen• Senior Advisor• [email protected]

The history of Risø is the history of energy

1956 Risø is founded for the peaceful utilization of nuclear energy

1976 new objective: Nuclear and other forms of energy

Energy crisis in 1973:Focus on security of supply and economy

In the autumn 1984 the Danish Social-Liberal Party made a proposal in the Danish Parliament on removing nuclear power from the future Danish energy planning.

On 29 March 1985 the proposal was passed. 11 years of heated debate on nuclear power was settled

2007: Sustainable energy

• “Warming of the climate system is unequivocal, as is now evident from observations of increases in global average air and ocean temperatures, widespread melting of snow and ice, and rising global average sea level.”

• IPCC, November 2007

North pole melting away is good for shipping

Retraction of the ice opens a new golden route to Asia.

850.000 saved on fuels through the north east passageThe route between Rotterdam and Yokohama is 40 pct. shorter, if the ship goes through the north east passage instead of the Suez channel. A medium sized tanker on 45.000 ton will save fuel for about 850.000 DKK one way.

Palms in your garden

Thailand now – your garden in 50 years?

- And the garden in Thailand in 50 years?

The greenhouse effect

Substantial growth in the CO2 concentrations

Kilde: IPCC

Total greenhouse gasses emissions

0

5

10

15

20

25

30

35

40

45

50

55

60

1970

1980

1990

2000

2004

GtCO2-eq/yr

From 1970 to 2004 the total

Kilde: IPCC 4th assessment report

greenhouse gas emissions have grown by 70 pct

Global antropogenic emissions of greenhouse gasesCO2 is the largest contributorCO2 is the largest contributor

Levels of stabilisation and global mean temperatures

-5

0

5

10

15

20

25

30

35

2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

Wold

CO2 E

miss

ions (

GtC)

E: 850-1130 ppm CO2-eq

D: 710-850 ppm CO2-eqC: 590-710 ppm CO2-eqB: 535-590 ppm CO2-eq

A2: 490-535 ppm CO2-eqA1: 445-490 ppm CO2-eq

Stabilization targets: Post-SRES (max)

Post-SRES (min)

Equil

ibrium

glob

al me

an te

mpera

ture

increa

se ov

er pr

eindu

strial

(°C)

GHG concentration stabilization level (ppmv CO2-eq)

-5

0

5

10

15

20

25

30

35

2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

Wold

CO2 E

miss

ions (

GtC)

E: 850-1130 ppm CO2-eq

D: 710-850 ppm CO2-eqC: 590-710 ppm CO2-eqB: 535-590 ppm CO2-eq

A2: 490-535 ppm CO2-eqA1: 445-490 ppm CO2-eq

Stabilization targets: Post-SRES (max)

Post-SRES (min)

Equil

ibrium

glob

al me

an te

mpera

ture

increa

se ov

er pr

eindu

strial

(°C)

GHG concentration stabilization level (ppmv CO2-eq)

-5

0

5

10

15

20

25

30

35

2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

Wold

CO2 E

miss

ions (

GtC)

E: 850-1130 ppm CO2-eqD: 710-850 ppm CO2-eqC: 590-710 ppm CO2-eqB: 535-590 ppm CO2-eqA2: 490-535 ppm CO2-eqA1: 445-490 ppm CO2-eq

Stabilization targets: Post-SRES (max)

Post-SRES (min)

Equil

ibrium

glob

al me

an te

mpera

ture

increa

se ov

er pr

eindu

strial

(°C)

GHG concentration stabilization level (ppmv CO2-eq)

-5

0

5

10

15

20

25

30

35

2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

Wold

CO2 E

miss

ions (

GtC)

E: 850-1130 ppm CO2-eqD: 710-850 ppm CO2-eqC: 590-710 ppm CO2-eqB: 535-590 ppm CO2-eqA2: 490-535 ppm CO2-eqA1: 445-490 ppm CO2-eq

Stabilization targets: Post-SRES (max)

Post-SRES (min)

Equil

ibrium

glob

al me

an te

mpera

ture

increa

se ov

er pr

eindu

strial

(°C)

GHG concentration stabilization level (ppmv CO2-eq)

Raise in temperature has serious consequenses

Change in the global annual mean temperature

IPCC: Climate change is for real

CO2 equivalents pr capita

Denmark: 11

Nobels peace prize 2007 goes to IPCC and Al Gore

Who should we believe?

Plan B

Danish energy consumption has been stable for 25 years

• Could this be maintained?

IEA World Energy Outlook 2008 – the current development

World is still fossil

• 80 % of the global energy consumption is covered by fossil fuels

Action is needed now

• If CO2 should peak before 10-15 years and then begin to fall all good solutions are needed

• Sustainability requires energy efficient technologies and energy savings

Security of supply must not be forgotten

What to do?

• On short term:• More efficient use of fossil fuels• Carbon capture and storage

Fuel cells

Principles behind fuel cells

Electrolysis

Fuel cell

H2

O2-

H2O Electric

al chemistry

current current

SOFC cell

O2

Anode

Cathode

Electrolyte

Oxygen ions, O2-

Oxygen ions, O2-

H2O2- +

2H+

Cell stack

Air

Single cell

Single cell

Air electrode (cathode)ElectrolyteGas electrode (anode)

Cell connector

Natural gas

Current

Household unit

In 5-10 years, the fuel cell unit can replace the oil-fired boiler

Applications

Military (low

noice)

Portable

Transport

NaturgasBrændselscelleanlæg

Luft

Vanddampog CO2

Elektricitet

Varme

Houses - CHP

Solid Oxide Fuel cells, Topsøe partnership

The 30-strong consortium in the demonstration project ECTOS/CUTE – Clean Urban Transport for Europe – with a budget of EUR 100m

BMW H2 ICE car at Munich Airport

Hydrogen FC bus in Reykjavik

The Utsira Hydrogen-Wind demonstration project

Spacecraft have long been fuelled by hydrogen

Hydrogen society

Biomass

Hydrogen

Water

Energy storage

Fuel cell plant

Transport

Housing

Industry

Energy consumption

WaterWind

power

Solar cells

Primaryenergy sources

Hydropower

Hydrogen society of the future

Wind energy

About size

• 500 kW turbine = electricity for 300 households

• Largest to day is 4,5 MW = electricity for 2.700 households

• Extreme power: A wind at 10 meters pr second passes 100 tonnes of air through the rotor each second

Rotor diameter 100 meters area 7.850 square meters

10 heavy lorries through the rotor each second

Vestas V120–4.5 MW

Rotor Diameter 120 mHub Height 90 mWeight 430 tonsStart Wind 4 m/sNominel Wind 12 m/sMax Wind 25 m/sPitch controlledImproved Power Control (Opti-Speed)Gear Two Planetary and one parallel

Photos: ELSAM A/S

Wind Power (Horns Rev, 80 turbines, 160 MW)

Esbjerg

January 2005:1076 GWH ~ 32% of total demand(41 % in western Denmark)

Country % of el. supply

Denmark 20Germany 6Spain 5Netherlands 2India 0.8USA 0.35EU 2.5World 0.5

Test Station for Large Wind Turbines - 2007

Small Wind Turbines at Risø - 1979

Coastal, flat terrain5 test positionsMax. 10 MWMax. height 165 m

A vision – Laser Wind Scanners

The shining plate on the top is a rotating laser that scans the wind 360 degrees

Tip-design

CFD and Detailed design analysis

Links

• www.wasp.dk

• www.waspengineering.dk

• www.windatlas.dk

• www.mesoscale.dk

• www.prediktor.dk

• www.risoe.dk

• www.risoe.dk/vea

• www.risoe.dk/vea-data

Meteorology - Wind Atlases

Shuttle Radar Topography Mission

• Grid point elevations• 3’’ (~90 m) resolution• Vertical accuracy 5-10 m

85 87 89 91 93 95 97 99 01 04 10 15

126 m Ø

12 m Ø

80 m Ø

65 m Ø

?Size of commercial wind turbines at

first market introduction

UpWind project

Larger wind turbines require lighter blades

• Greater knowledge about fibre-reinforced plastic

• Blades from lightweight hemp fibres

Lighter wind turbine blades need new materials

40-metre blade

Own load

80-metre blade

Own load

A blade which is twice as long is exposed to five times the load

Wings like a bird of prey

The bird of prey holds its position in the air by moving the outermost feathers. By giving the blade a similar movable trailing edge the load can be controllet and the turbine will have a longer lifetime

Transport

• Transport consumes about 20 % of the global energy consumption

• In Danmark the figure is 30%

• RE must be introduced in the transport sector, inclusive biofuels

• Long term solutions are electric cars and hydrogen cars

BiomasseBiomass

Bioethanol can be produced from plant residue

Sugar is a raw material for ethanol production

Plant residue consists of 70% sugars

Plants are CO2-neutral:Plant growth:

CO2 + H2O + sunlight (CH2O)n + O2

Decomposition of plants

(CH2O) + O2 Energy + H2O + CO2

Danish bioethanol concept

Raw material: manure

Raw material: straw

BiogasBioethanol

Wet oxidation tank

Fermentation using heat-loving bacteria

Liquid manure tank

Fermentation using enzymes and yeast bacteria

Fertiliser

Ford Focus Flexifuel runs on 85% biofuel

• Risø has bought the first in Denmark

IBUS system

The IBUS system (Integrated Biomass Utilisation System) is a pilot plant established by Elsam in collaboration with Sicco, Risø and KVL. Subsidised by the EU.The aim is cheap second-generation bioethanol (alcohol, ethanol) on the basis of straw, waste and grain. The bioethanol can be used directly as fuel in the transport sector, while the by-products can be fired at Elsam's coal-fired power stations.

Bioenergy and bio materials

Project Edison will take electric cars out on the Danish

• Mobile phones and portable computers has lead to better and cheaper batteries

• The electric car fulfills 3 missions: Better local environment, better global environment and less depence of fossil fuels

• EDISON-project: 30 mill in government support over the next 3 years

• Participants: Risø DTU, DTU Elektro, DTU Transport and DTU Informatics), DONG Energy, Østkraft (Bornholm), Siemens, IBM og Eurisco.

Hybride car is refuelled from wind turbines

SYSLAB – Distributed Energy System LaboratoryHigh penetration wind power systems• Distributed control

• Embedded intelligence

• Self-organising • Communication • Flexibility

• FlexHouse• Demand response• Vanadium battery• Hybrid/Electric car

SolcellerSolar cells

Solar cells• Imagine 6 of the most sunny parts of

the world, eg. USA, Africa, Middle East and Australia. Place 100x100 square kilometers solar cells each place, and the wold energy consumption is covered

• If the roads in a country were made of solar cells they would produce more energy than the country needs

• Denmark could be supplied with electricity by covering Langeland with solar cells

Polymer solar cells

Light is directed at a finished solar cell. It consists of nine individual cells of 9 sq. cm connected in series. The active area is 75 sq. cm and typically supplies 3 V when lit with a 100 W halogen lamp. After 14 days, the effect falls by 10%.

Polymer solar cells at Risø

• Is produced in a glove box• Are tested in the Israelic desert• Polymer made of poly lactic acid

extracted of maize. It rottens like food

Polymer solar cells in caps for the Roskilde Festival

Fusion power

The fusion process takes place in plasma

What is plasma?

4th state of matter:Plasma = Ionised gas

Plasma

Gas

Normal atoms

Fusion process

• Ordinary water contains three different kinds of hydrogen: Normal hydrogen, Deuterium and Tritium. The difference is the number of neutrons in the nucleus

• One litre of water contains enough deuterium to produce as much energy as 300 litres of petrol

Magnets can be used to contain plasma

• How does one contain plasma at a temperature of 100,000,000ºC

• Risø conducts research into turbulence in plasma

JET is a joint European fusion project

Joint

European

Torus

JET

ITER – the new worldwide fusion project

Price

: 35

billio

n DKK

• To promote fusion research, the EU has joined forces with Japan, Russia, the USA, China, India and South Korea to build a new fusion experiment called ITER (Latin for ‘the way’). It will take 10 years to build the machine, which will be completed in 2016 in Cadarache in southern France. It is expected to produce a fusion output of 500 MWatt.

Risø DTU

The National Laboratory for Sustainable Energy

Den nukleare fortid er ikke glemt

1956 grundlægges Forsøgsanlæg Risø til den fredelige udnyttelse af kernekraft

Bedre strålebehandling af kræft

• Man skal gå lige til grænsen med doserne, når man bestråler kræftsvulster. Risø har udviklet en helt ny målemetode, der viser præcist, hvor meget stråling en kræftpatient har fået.

• Et dosimeter bestående af et optisk fiberkabel med en krystal i enden føres ind via et kateter gennem en af kroppens naturlige åbninger, for eksempel i næsen.

• Krystallen følger strålingen under behandlingen, og lægen kan se hvor meget knuden har fået totalt.

Luminescens

• Visse grundstoffer lyser når de bliver opvarmet eller belyst i laboratoriet

• Lysets intensitet svarer til den stråling materialet har været udsat for

• Det kaldes luminescens og udnyttes i dosimetri

PET-scanningEn billedundersøgelse, hvor man sender radioaktivt mærkede sporstoffer ind i blodbanen hos en patient for at finde for eksempel en kræftknude. Det mest anvendte sporstof er 18F FDG, druesukker mærket med radioaktivt fluor. Kræftceller har et højere energiforbrug end raske celler, optager de mere af sporstoffet. Metoden er meget følsom og kan opdage selv meget små svulster. PET står for Positron Emission Tomographic.

Hevesy Laboratoriet

Hjertet i Hevesy Laboratoriet er cyklotronen dybt nede i en kælder. Den producerer radioaktivt fluor, som via slanger føres op i laboratorierne hvor forskerne indsætter det i molekyler der kan sprøjtes ind i patienter der skal undersøges i en skanner. De udvikler også nye sporstoffer.

Fluor-18-cholin

• Nyt sporstof til tidlig diagnosticering af prostatakræft og muligvis også hjernetumorer ved hjælp af PET-skanning.

• Stoffet medvirker ved opbygning af cellevægge i nye celler, derfor ophobes det hvor der vokser cancerceller.

• Afprøves nu klinisk i samarbejde med Rigshospitalet, Storstrømmens Sygehus Næstved og Herlev Amtssygehus

Risø DTU

Nationallaboratoriet for Bæredygtig Energi