è0É - jst

8
This paper proposes the walking vibration V-value response spectrum as an evaluation method of the habitability index V-value derived from a Monte-Carlo simulation and shows verifications with actual walking tests. The following conclusions were obtained. 1 Monte-Carlo simulations using stochastic walking force model were carried out. The effects of each parameter were clarified, such as the natural frequency, damping coefficient, and the effective mass of the floor slab, the number of people walking, their average body weight, average pacing rate, and the variation of pacing rate of the people walking, and the walking distance. 2 The mean values and variation coefficients of V-value are expressed by the natural frequency, the effective mass, the damping coefficient of the floor slab, the average weight per walker and the number of people walking. Based on these functions, the walking vibration V-value response spectrum is proposed. 3 The Proposed V-value response spectrums were verified by actual walking tests on seven floor slabs. Keywords : Floor Slab Vibration, Response Spectrum, Stochastic Estimation, Monte-Carlo Simulation, Walk Force, Walking test 1) 2) 3) 2004 4) 2),5) 6),7) 1 0.3 0.5 2 8 V 6,7) 6) 1 V 人の歩行による床振動に関する V 値応答スペクトルの提案と検証 PROPOSAL AND VERIFICATION OF V-VALUE RESPONSE SPECTRUM IN FLOOR SLAB VIBRATIONS DUE TO HUMAN WALK 増田圭司 ,中 山 昌 尚 ** ,小 河 利 行 *** Keiji MASUDA, Masanao NAKAYAMA and Toshiyuki OGAWA ㈱フジタ 技術センター 修士(工学) (東京工業大学大学院 博士後期課程 社会人プログラム) ** 小山工業高等専門学校 建築学科 教授・工博 *** 東京工業大学 大学院理工学研究科 建築学専攻  教授・工博 Technology Development Division, FUJITA Corporation, M. Eng. Prof., Dept. of Arch., National Institute of Technology, Oyama College, Dr. Eng. Prof., Dept. of Arch. and Building Eng., Tokyo Institute of Technology, Dr. Eng. 日本建築学会環境系論文集 第80巻 第717号, 1029-1036, 2015年11月 J. Environ. Eng., AIJ, Vol. 80 No. 717, 1029-1036, Nov., 2015 DOI http://doi.org/10.3130/aije.80.1029 【カテゴリーⅠ】 ─ 1029 ─

Upload: others

Post on 15-Oct-2021

15 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: è0É - JST

V

PROPOSAL AND VERIFICATION OF V-VALUE RESPONSE SPECTRUM IN FLOOR SLAB VIBRATIONS DUE TO HUMAN WALK

Keiji MASUDA, Masanao NAKAYAMA and Toshiyuki OGAWA

This paper proposes the walking vibration V-value response spectrum as an evaluation method of the habitability index V-value derived from a Monte-Carlo simulation and shows verifications with actual walking tests. The following conclusions were obtained. 1 Monte-Carlo simulations using stochastic walking force model were carried out. The effects of each parameter were clarified, such

as the natural frequency, damping coefficient, and the effective mass of the floor slab, the number of people walking, their average body weight, average pacing rate, and the variation of pacing rate of the people walking, and the walking distance.

2 The mean values and variation coefficients of V-value are expressed by the natural frequency, the effective mass, the damping coefficient of the floor slab, the average weight per walker and the number of people walking. Based on these functions, the walking vibration V-value response spectrum is proposed.

3 The Proposed V-value response spectrums were verified by actual walking tests on seven floor slabs.

Keywords : Floor Slab Vibration, Response Spectrum, Stochastic Estimation, Monte-Carlo Simulation, Walk Force, Walking test

1)

2) 3)

2004

4) 2),5)

6),7)

1 0.3 0.5

2 8

V 6,7)

6) 1

V

*

Technology Development Division, FUJITA Corporation, M. Eng.

** Prof., Dept. of Arch., Oyama National College of Technology, Dr. Eng.

*** Prof., Dept. of Arch. and Building Eng., Tokyo Institute of Technology, Dr. Eng.

人の歩行による床振動に関する V 値応答スペクトルの提案と検証PROPOSAL AND VERIFICATION OF V-VALUE RESPONSE SPECTRUM

IN FLOOR SLAB VIBRATIONS DUE TO HUMAN WALK

増 田 圭 司*,中 山 昌 尚**,小 河 利 行***

Keiji MASUDA, Masanao NAKAYAMA and Toshiyuki OGAWA

  *  ㈱フジタ 技術センター 修士(工学)(東京工業大学大学院 博士後期課程 社会人プログラム)

 **  小山工業高等専門学校 建築学科 教授・工博***  東京工業大学 大学院理工学研究科 建築学専攻 

教授・工博

Technology Development Division, FUJITA Corporation, M. Eng.

Prof., Dept. of Arch., National Institute of Technology, Oyama College, Dr. Eng.Prof., Dept. of Arch. and Building Eng., Tokyo Institute of Technology, Dr. Eng.

日本建築学会環境系論文集 第80巻 第717号,1029-1036, 2015年11月J. Environ. Eng., AIJ, Vol. 80 No. 717, 1029-1036, Nov., 2015

DOI http://doi.org/10.3130/aije.80.1029【カテゴリーⅠ】�

─ 1029 ─

Page 2: è0É - JST

7) V 6,7 V

1/3 (0-P) 3 8Hz(cm/s2)

3.15Hz 25Hz 107 3) (V-1090) (%) V

V V

V

V

7)

7.8Hz 4

9

V 2.1

1

1 1SDOF

7)

(1) (3)

202 ( )s i s s i s i iM z h z z q t (1)

0 ( ), ( ), ( ),1

( ) ( ) ( )N

j i j i j iij

q t w F t x (2)

( ), ( ),j i i r j ix v t l (3)

Ms 1 , ,i i iz z zhs 1

s 1 2 Sf )N w(j)i )F(j)i(t) 6,7) ( )x x

(1 sin( / )sx ) vlr i i

(j) N j 1

5Hz 15Hz 1% 5%

9m 18m 2

7

0.02 1 103 1 4 2

6 21.5m

(3) 2,000

(1 2,000 ) iz V

0.1Hz 0.002s V(cm/s2) V VN

sN

MV Vwg

(4)

Ms 1 w 1) g

V VN N

0 2 4 6 8 10-10

-5

0

5

10

sec

cm/s2

time(sec)

L(t)/W

p1

p2

p3

p4p0 pi (Ti, Li /w )

spike

H(j),iW(j),ifw(j),i

T1(j),i T4(j),i L1(j),i L3(j),i

fsMshs

Ms

s2Ms

2hs sMs

j=3j=1 j=2

ls

0

50

100

0 0.5 1 1.5 2

F(kgf)

time (sec)

1 2 3

Ms kg 10,000 fs Hz 5.0 15.0 0.1Hz hs % 1, 2, 3, 5 ls m 9, 12, 15, 18

H(j),i cm 170 0.03 w(j),i kg 60 0.12 (0, 0.06, 0.2) fw(j),i Hz 1.8, 1.9, 2.0 0, 0.02, 0.05, 0.1

N 1, 2, 3, 4, 68 9 10 -

(0-p

) (cm

/s2 )

V

2.2

V6,7) V

2 3 V VN

fs (1 ls=12m hs=2%) 2

fw fw 0 VN

fw 3fw fw 0.1 VN

fs

VN 2

4 fw fw 1ls=12m hs=2% fw=1.9Hz

VN

0.05 0.1

6)

V

5 hs 1

ls=12m fw=1.9Hz fw fw =0.1VN

6 5 hs=2%VN

fs VN fs

1

7 ls 1 hs=2%fw=1.9Hz fw fw =0.1

5 10 150

0.20.40.60.8

11.21.41.6

V(=

V/g·

Ms/

w) hs=1% hs=2% hs=3% hs=5%

5 10 150

0.2

0.4

0.6

0.8

1

VV N

(=V/

V)

1% 2%3%

5%

1%2%

3% 5%

hs

ls fw fw fw

5 10 150

0.20.40.60.8

11.21.41.6

V N(h

s)/V

N (h

s=2%

)

hs=1%/hs=2% hs=2%/hs=2% hs=3%/hs=2% hs=5%/hs=2%

5 10 150

0.20.40.60.8

11.21.41.6

(V/

V:hs

)/(V/V

:hs=

2%)

Eq.(5) Eq.(6)

1%

2%3%

5%

1%2%

3%5%

hs

ls fw fw fw

5 10 150

0.20.40.60.8

11.21.41.6

VV N

(=V/

g·M

s/w

)

l s=9m l s=12m l s=15m l s=18m

5 10 150

0.2

0.4

0.6

0.8

1

VV N

(=V/

V)

ls

hs fw fw fw

5 10 150

0.20.40.60.8

11.21.41.6

VV N

(=V/

g·M

s/w

)

fw=1.8Hzfw=1.9Hzfw=2.0Hz

5 10 150

0.2

0.4

0.6

0.8

1

VV N

(=V/

V)

fw=1.8Hzfw=1.9Hzfw=2.0Hz

fw

ls hs fw fw

5 10 150

0.20.40.60.8

11.21.41.6

VV N

(=V/

g·M

s/w

)

fw=1.8Hzfw=1.9Hzfw=2.0Hz

5 10 150

0.2

0.4

0.6

0.8

1

VV N

(=V/

V)

fw=1.8Hzfw=1.9Hzfw=2.0Hz

Eq.(5)

Eq.(6)

fw

ls hs fw fw

5 10 150

0.20.40.60.8

11.21.41.6

VV

N(=

V/g·

Ms/

w)

=0.00 =0.02 =0.05 =0.10

5 10 150

0.2

0.4

0.6

0.8

1

VV N

(=V/

V)

fw fw fw fw fw fw fw fw

fw fw

ls hs fw

─ 1030 ─ ─ 1031 ─

Page 3: è0É - JST

7) V 6,7 V

1/3 (0-P) 3 8Hz(cm/s2)

3.15Hz 25Hz 107 3) (V-1090) (%) V

V V

V

V

7)

7.8Hz 4

9

V 2.1

1

1 1SDOF

7)

(1) (3)

202 ( )s i s s i s i iM z h z z q t (1)

0 ( ), ( ), ( ),1

( ) ( ) ( )N

j i j i j iij

q t w F t x (2)

( ), ( ),j i i r j ix v t l (3)

Ms 1 , ,i i iz z zhs 1

s 1 2 Sf )N w(j)i )F(j)i(t) 6,7) ( )x x

(1 sin( / )sx ) vlr i i

(j) N j 1

5Hz 15Hz 1% 5%

9m 18m 2

7

0.02 1 103 1 4 2

6 21.5m

(3) 2,000

(1 2,000 ) iz V

0.1Hz 0.002s V(cm/s2) V VN

sN

MV Vwg

(4)

Ms 1 w 1) g

V VN N

0 2 4 6 8 10-10

-5

0

5

10

sec

cm/s2

time(sec)

L(t)/W

p1

p2

p3

p4p0 pi (Ti, Li /w )

spike

H(j),iW(j),ifw(j),i

T1(j),i T4(j),i L1(j),i L3(j),i

fsMshs

Ms

s2Ms

2hs sMs

j=3j=1 j=2

ls

0

50

100

0 0.5 1 1.5 2

F(kgf)

time (sec)

1 2 3

Ms kg 10,000 fs Hz 5.0 15.0 0.1Hz hs % 1, 2, 3, 5 ls m 9, 12, 15, 18

H(j),i cm 170 0.03 w(j),i kg 60 0.12 (0, 0.06, 0.2) fw(j),i Hz 1.8, 1.9, 2.0 0, 0.02, 0.05, 0.1

N 1, 2, 3, 4, 68 9 10 -

(0-p

) (cm

/s2 )

V

2.2

V6,7) V

2 3 V VN

fs (1 ls=12m hs=2%) 2

fw fw 0 VN

fw 3fw fw 0.1 VN

fs

VN 2

4 fw fw 1ls=12m hs=2% fw=1.9Hz

VN

0.05 0.1

6)

V

5 hs 1

ls=12m fw=1.9Hz fw fw =0.1VN

6 5 hs=2%VN

fs VN fs

1

7 ls 1 hs=2%fw=1.9Hz fw fw =0.1

5 10 150

0.20.40.60.8

11.21.41.6

V(=

V/g·

Ms/

w) hs=1% hs=2% hs=3% hs=5%

5 10 150

0.2

0.4

0.6

0.8

1

VV N

(=V/

V)

1% 2%3%

5%

1%2%

3% 5%

hs

ls fw fw fw

5 10 150

0.20.40.60.8

11.21.41.6

V N(h

s)/V

N (h

s=2%

)

hs=1%/hs=2% hs=2%/hs=2% hs=3%/hs=2% hs=5%/hs=2%

5 10 150

0.20.40.60.8

11.21.41.6

(V/

V:hs

)/(V/V

:hs=

2%)

Eq.(5) Eq.(6)

1%

2%3%

5%

1%2%

3%5%

hs

ls fw fw fw

5 10 150

0.20.40.60.8

11.21.41.6

VV N

(=V/

g·M

s/w

)

l s=9m l s=12m l s=15m l s=18m

5 10 150

0.2

0.4

0.6

0.8

1

VV N

(=V/

V)

ls

hs fw fw fw

5 10 150

0.20.40.60.8

11.21.41.6

VV N

(=V/

g·M

s/w

)

fw=1.8Hzfw=1.9Hzfw=2.0Hz

5 10 150

0.2

0.4

0.6

0.8

1

VV N

(=V/

V)

fw=1.8Hzfw=1.9Hzfw=2.0Hz

fw

ls hs fw fw

5 10 150

0.20.40.60.8

11.21.41.6

VV N

(=V/

g·M

s/w

)

fw=1.8Hzfw=1.9Hzfw=2.0Hz

5 10 150

0.2

0.4

0.6

0.8

1

VV N

(=V/

V)

fw=1.8Hzfw=1.9Hzfw=2.0Hz

Eq.(5)

Eq.(6)

fw

ls hs fw fw

5 10 150

0.20.40.60.8

11.21.41.6

VV

N(=

V/g·

Ms/

w)

=0.00 =0.02 =0.05 =0.10

5 10 150

0.2

0.4

0.6

0.8

1

VV N

(=V/

V)

fw fw fw fw fw fw fw fw

fw fw

ls hs fw

─ 1030 ─ ─ 1031 ─

Page 4: è0É - JST

5Hz 15Hz 9m

8 N VN

98 N=1(1 )

VN fs

9 N

N 10 10 hs=2%hs=5% N = 6 8 9 10

N

(0.5 ) 8, 10)

N 0.5 0.6 N = 6 8

10 N 0.5N 0.6

1

7) N 0.5

V0.6

11 w w 1ls=12m fw =1.9Hz

fw fw =0.1 w w 2.3 V

V

( ) 0.6 0.02 2exp 0.15 ss s

wgV N fM h

(5)

( ) 2

14 0.02 max 1.3 0.1 ,0.5

sf

V ss

V N fh

(6)

w 1kg) g 980cm/s2) Ms 1

5 10 150

0.20.40.60.8

11.21.41.6

VV N

(=V/

g·M

s/w

) w/w = 0.0 w/w = 0.06 w/w = 0.12 w/w = 0.20

5 10 150

0.2

0.4

0.6

0.8

1

VV N

(=V/

V)

w w

ls hs fw fw fw

5 7 9 11 13 150

0.5

1

1.5

2

2.5

fs

VV N

(=V/

g·M

/w)

0%20%40%60%80%100%

50%

10%

90%

V VN hs

57

911

1315

00.511.522.5

0

12

3

4

5

fs (Hz) V VN V VN hs

5 10 150

0.5

1

1.5

2

2.5

VV N

(=V/

g·M

s/w

)

1 2 3 4 6

5 10 150

0.2

0.4

0.6

0.8

1

VV N

(=V/

V)

N ls hs fw fw fw

5 10 150

1

2

3

4

V N (N

)/VN

(N=1

)

2 /1 3 1 4 1 6 1

5 10 150

0.2

0.4

0.6

0.8

1

(V/

V:N)

/(V/V

:N=1

)

N ls hs fw fw fw

0 2 4 6 8 100

0.5

1

1.5

N

(V/

V:N)

/(V/

V:N=

1)

0 2 4 6 8 100

1

2

3

4

5

N

V N(N

) /V

N (N

=1) y=N 0.6

y=N 0.5

y=N -1/4

y y

y=N -1/3

h=2%

h=5%

N=1~3 N=4,6,8,10 N=6,8,10Wide Long

N=93 3

N=1 3 N=4 10 Wide N=6 10 Long

N ls fw fw fw

(kg) N hs 1fs 1 (Hz)

N=1 10 ls=9 18m1 fw=1.8~2.0Hz

fw fw=0.05 0.1 0 0.2

V 3 6 (5) (6)

(5) (6)V

V

VV V

(5) (6) VN fs

12 VN fs 13VN 1 hs=2%

fs VN

V

3)

. V

3.1

2 V1

V 3.2

3 14 S1 S6B7)

RCALC

15 S31 7.7Hz

3 19.3Hz3

1

1 7Hz 14.6Hz 1.9Hz4 7 2.0% 5.0%

11,500 27,300kg

Y

X

Y

X

-1

-0.5

0

0.5

1

(7.7Hz) (19.3Hz)

(m) (m) (Hz)

(kg)

S1 7) RC 12.5 2.5 7.8 2.5% 11,500 S2 RC RC 12.8 6.4 14.6 3.5% 26,500 S3 13.7 7.2 7.7 5.0% 15,200 S4 ALC + 24.0 12.0 7.0 5.0% 17,400 S5 12.0 9.6 9.0 2.0% 19,700

S6A RC

12.5 10.7 10.0 4.2% 27,300 S6B 12.5 11.4 10.5 5.0% 25,600

12.5

m

2.5mS1

6.4m

12.8

m

S2

7.2m

13.7

m

S3

XY

12.0m

18.0

m6.

0m

12.0m

S4

12.1m

9.6m

S5

XY

12.5m

10.7

m11

.4m

S6A

S6B

─ 1032 ─ ─ 1033 ─

Page 5: è0É - JST

5Hz 15Hz 9m

8 N VN

98 N=1(1 )

VN fs

9 N

N 10 10 hs=2%hs=5% N = 6 8 9 10

N

(0.5 ) 8, 10)

N 0.5 0.6 N = 6 8

10 N 0.5N 0.6

1

7) N 0.5

V0.6

11 w w 1ls=12m fw =1.9Hz

fw fw =0.1 w w 2.3 V

V

( ) 0.6 0.02 2exp 0.15 ss s

wgV N fM h

(5)

( ) 2

14 0.02 max 1.3 0.1 ,0.5

sf

V ss

V N fh

(6)

w 1kg) g 980cm/s2) Ms 1

5 10 150

0.20.40.60.8

11.21.41.6

VV N

(=V/

g·M

s/w

) w/w = 0.0 w/w = 0.06 w/w = 0.12 w/w = 0.20

5 10 150

0.2

0.4

0.6

0.8

1

VV N

(=V/

V)

w w

ls hs fw fw fw

5 7 9 11 13 150

0.5

1

1.5

2

2.5

fs

VV N

(=V/

g·M

/w)

0%20%40%60%80%100%

50%

10%

90%

V VN hs

57

911

1315

00.511.522.5

0

12

3

4

5

fs (Hz) V VN V VN hs

5 10 150

0.5

1

1.5

2

2.5

VV N

(=V/

g·M

s/w

)

1 2 3 4 6

5 10 150

0.2

0.4

0.6

0.8

1

VV N

(=V/

V)

N ls hs fw fw fw

5 10 150

1

2

3

4

V N (N

)/VN

(N=1

)

2 /1 3 1 4 1 6 1

5 10 150

0.2

0.4

0.6

0.8

1

(V/

V:N)

/(V/V

:N=1

)

N ls hs fw fw fw

0 2 4 6 8 100

0.5

1

1.5

N

(V/

V:N)

/(V/

V:N=

1)

0 2 4 6 8 100

1

2

3

4

5

N

V N(N

) /V

N (N

=1) y=N 0.6

y=N 0.5

y=N -1/4

y y

y=N -1/3

h=2%

h=5%

N=1~3 N=4,6,8,10 N=6,8,10Wide Long

N=93 3

N=1 3 N=4 10 Wide N=6 10 Long

N ls fw fw fw

(kg) N hs 1fs 1 (Hz)

N=1 10 ls=9 18m1 fw=1.8~2.0Hz

fw fw=0.05 0.1 0 0.2

V 3 6 (5) (6)

(5) (6)V

V

VV V

(5) (6) VN fs

12 VN fs 13VN 1 hs=2%

fs VN

V

3)

. V

3.1

2 V1

V 3.2

3 14 S1 S6B7)

RCALC

15 S31 7.7Hz

3 19.3Hz3

1

1 7Hz 14.6Hz 1.9Hz4 7 2.0% 5.0%

11,500 27,300kg

Y

X

Y

X

-1

-0.5

0

0.5

1

(7.7Hz) (19.3Hz)

(m) (m) (Hz)

(kg)

S1 7) RC 12.5 2.5 7.8 2.5% 11,500 S2 RC RC 12.8 6.4 14.6 3.5% 26,500 S3 13.7 7.2 7.7 5.0% 15,200 S4 ALC + 24.0 12.0 7.0 5.0% 17,400 S5 12.0 9.6 9.0 2.0% 19,700

S6A RC

12.5 10.7 10.0 4.2% 27,300 S6B 12.5 11.4 10.5 5.0% 25,600

12.5

m

2.5mS1

6.4m

12.8

m

S2

7.2m

13.7

m

S3

XY

12.0m

18.0

m6.

0m

12.0m

S4

12.1m

9.6m

S5

XY

12.5m

10.7

m11

.4m

S6A

S6B

─ 1032 ─ ─ 1033 ─

Page 6: è0É - JST

3.3

5 3

4 1

36 200 163.6 72.2kg

1 0.104 0.175

500Hz S1S4 1000Hz 200Hz PC

1

1/37) V 10 1

1 5 110 10 V 10

100 V VV

3.4

16 1/3S3 1 3

100V

8Hz 1 (7.7Hz)

17 S3 V

V

V

V6) 7)

3.5 V

18 (5) (6) VV V

V

S1 S6B 1 6

V

×

(kg)

S1 1 20 × 10 (5 ) 200 63.6 0.175 2 10 × 10 100 121.1 0.090 6 10 × 10 100 372.3 0.056

S2 1 12 × 10 120 68.4 0.104 2 12 × 10 120 136.8 0.083

S3 1 10 × 10 100 72.2 0.136 3 10 × 10 100 215.5 0.080

S4 1 10 × 10 100 70.6 0.161 2 10 × 10 100 139.0 0.098 6 10 × 10 100 415.0 0.073

S5-X 1 7 × 10 70 67.9 0.163 2 7 × 6 (3 ) 42 135.7 0.132

S5-Y 1 7 × 10 (5 ) 70 67.9 0.163 2 7 × 6 (3 ) 42 135.7 0.106

S6A 1 13 × 10 (5 ) 130 69.2 0.156 2 6 × 6 (3 ) 36 138.3 0.087

S6B 1 13 × 10 (5 ) 130 69.2 0.156 2 6 × 6 (3 ) 36 138.3 0.087

) S5-X S5-Y

0.1

1

10

1 10 100

cm/s2

Hz

0.1

1

10

1 10 100

cm/s2

Hz V

0.3 1 3 10 300

0.2

0.4

0.6

0.8

1

V (cm/s2)

1 3

V

1

3

V

V

(0-

p)

(0-

p)

SDOF

V V1

1) SDOF

V

V

2) V

V 0.50.6

3) V1

V

4) V

1)

26 , 2008.1 2) 2010.10 3) 2004.5 4)

18 pp.108-114 2006 5)

74 638pp.435-441 2009.4

6) Vol.57B pp.93-100 2011.3

7)

78 692pp.741-747 2013.10

8) 2015.2 9) V

Ipp.397-398 2013.8

10) 2

B I pp.1097-1098 1992

0.1 1 10 1000.1

1

10

100

V (cm/s2)

V(cm/s2 )

S1

126

0.1 1 10 1000.1

1

10

100

V (cm/s2)

V(cm/s2 )

S2

12

0.1 1 10 1000.1

1

10

100

V (cm/s2)

V(cm/s2 )

S3

13

0.1 1 10 1000.1

1

10

100

V (cm/s2)

V(cm/s2 )

S4

126

0.1 1 10 1000.1

1

10

100

V (cm/s2)

V(cm/s2 )

S5

1 (X) 2 (X) 1 (Y) 2 (Y)

0.1 1 10 1000.1

1

10

100

V (cm/s2)

V(cm/s2 )

S6(A,B)

1 (A) 2 (A) 1 (B) 2 (B)

V

─ 1034 ─ ─ 1035 ─

Page 7: è0É - JST

3.3

5 3

4 1

36 200 163.6 72.2kg

1 0.104 0.175

500Hz S1S4 1000Hz 200Hz PC

1

1/37) V 10 1

1 5 110 10 V 10

100 V VV

3.4

16 1/3S3 1 3

100V

8Hz 1 (7.7Hz)

17 S3 V

V

V

V6) 7)

3.5 V

18 (5) (6) VV V

V

S1 S6B 1 6

V

×

(kg)

S1 1 20 × 10 (5 ) 200 63.6 0.175 2 10 × 10 100 121.1 0.090 6 10 × 10 100 372.3 0.056

S2 1 12 × 10 120 68.4 0.104 2 12 × 10 120 136.8 0.083

S3 1 10 × 10 100 72.2 0.136 3 10 × 10 100 215.5 0.080

S4 1 10 × 10 100 70.6 0.161 2 10 × 10 100 139.0 0.098 6 10 × 10 100 415.0 0.073

S5-X 1 7 × 10 70 67.9 0.163 2 7 × 6 (3 ) 42 135.7 0.132

S5-Y 1 7 × 10 (5 ) 70 67.9 0.163 2 7 × 6 (3 ) 42 135.7 0.106

S6A 1 13 × 10 (5 ) 130 69.2 0.156 2 6 × 6 (3 ) 36 138.3 0.087

S6B 1 13 × 10 (5 ) 130 69.2 0.156 2 6 × 6 (3 ) 36 138.3 0.087

) S5-X S5-Y

0.1

1

10

1 10 100

cm/s2

Hz

0.1

1

10

1 10 100

cm/s2

Hz V

0.3 1 3 10 300

0.2

0.4

0.6

0.8

1

V (cm/s2)

1 3

V

1

3

V

V

(0-

p)

(0-

p)

SDOF

V V1

1) SDOF

V

V

2) V

V 0.50.6

3) V1

V

4) V

1)

26 , 2008.1 2) 2010.10 3) 2004.5 4)

18 pp.108-114 2006 5)

74 638pp.435-441 2009.4

6) Vol.57B pp.93-100 2011.3

7)

78 692pp.741-747 2013.10

8) 2015.2 9) V

Ipp.397-398 2013.8

10) 2

B I pp.1097-1098 1992

0.1 1 10 1000.1

1

10

100

V (cm/s2)

V(cm/s2 )

S1

126

0.1 1 10 1000.1

1

10

100

V (cm/s2)

V(cm/s2 )

S2

12

0.1 1 10 1000.1

1

10

100

V (cm/s2)

V(cm/s2 )

S3

13

0.1 1 10 1000.1

1

10

100

V (cm/s2)

V(cm/s2 )

S4

126

0.1 1 10 1000.1

1

10

100

V (cm/s2)

V(cm/s2 )

S5

1 (X) 2 (X) 1 (Y) 2 (Y)

0.1 1 10 1000.1

1

10

100

V (cm/s2)

V(cm/s2 )

S6(A,B)

1 (A) 2 (A) 1 (B) 2 (B)

V

─ 1034 ─ ─ 1035 ─

Page 8: è0É - JST

PROPOSAL AND VERIFICATION OF V-VALUE RESPONSE SPECTRUM IN FLOOR SLAB VIBRATIONS DUE TO HUMAN WALK

Keiji MASUDA*, Masanao NAKAYAMA** and Toshiyuki OGAWA***

*Technology Development Division, FUJITA Corporation, M. Eng.

**Prof., Dept. of Arch., Oyama National College of Technology, Dr. Eng.

***Prof., Dept. of Arch. and Building Eng., Tokyo Institute of Technology, Dr. Eng.

This paper proposes walking vibration V-value response spectrum as an evaluation method of habitability index

V-value by Monte-Carlo simulation and shows verifications of these proposed spectrums by actual walking tests.

Firstly, Monte-Carlo simulation was carried out using SDOF system. The situations assumed in the simulation

were, various people, one person or more than one person, walking straight in the middle of the floor slab from one end

to the other end. The floor slab was modeled as a SDOF system of the first mode. The evaluation point was the center of

the floor slab. The stochastic walking force model proposed by authors was used as walking forces.

The parameters of Monte-Carlo simulation were followings. 1) the number of people walking (1, 2, 3, 4, 6, 8, 9 and

10 people), 2) The walking distance (that is span of floor slab; 9 ,12 ,15, 18m), 3) the natural frequency of the floor slab

(5-15Hz, @0.1Hz), 4) the damping coefficient (1%, 2%, 3%, 5%), 5) the average pacing rate of walking (1.8 Hz, 1.9 Hz,

2.0Hz) 6) the variation coefficient of the pacing rate (0, 0.02, 0.05, 0.1). The analysis was carried out 2000 times for

every case and the representative statistical values of V-value (mean and variation coefficient) were evaluated.

For each parameter the effects on mean and variation coefficient of V-values were estimated from the analytical

results obtained. When harmonic component part of walking pacing rate closed to the natural frequency of floor slab,

resonance phenomena occurs and the mean of V-values increases sharply. But smoothness in this peak of V-value is

seen when considering the variation of pacing rate. The effects of damping coefficient of floor slab and number of people

walking were also indicated. The effect of walking distance was not seen in Monte-Carlo simulation.

Based on this result, the mean and variation coefficient of V-value can be expressed as simple functions of the

natural frequency, the effective mass and damping coefficient of the floor slab, the average weight per person walking

and the number of people walking. These functions were proposed as walking vibration V-value response spectrum

using these expressions.

Walking tests were carried out on seven floor slabs in order to verify this proposed V-value spectrum. One person

or more than one person walked multiple times in actual walking tests, and statistical characteristics of experimental

V-value (mean and variation coefficient) were acquired. Also, kinematic characteristic of the floor slabs such as natural

frequencies and vibration modes were acquired by hammering test conducted at the same time.

The calculation result by proposed walking vibration V-value response spectrum was compared with test results,

and adequacy of proposed formula were verified.

PROPOSAL AND VERIFICATION OF V-VALUE RESPONSE SPECTRUM IN FLOOR SLAB VIBRATIONS DUE TO HUMAN WALK

Keiji MASUDA*, Masanao NAKAYAMA** and Toshiyuki OGAWA***

* Technology Development Division, FUJITA Corporation, M. Eng.** Prof., Dept. of Arch., National Institute of Technology, Oyama College, Dr. Eng.

*** Prof., Dept. of Arch. and Building Eng., Tokyo Institute of Technology, Dr. Eng.

(2015 年 3 月 31 日原稿受理,2015 年 8 月 4 日採用決定)

─ 1036 ─