1 dopant and self-diffusion in semiconductors: a tutorial eugene haller and hughes silvestri...

41
1 Dopant and Self-Diffusion in Semiconductors: A Tutorial Eugene Haller and Hughes Silvestri MS&E, UCB and LBNL FLCC Tutorial 1/26/04 FLCC

Upload: charles-watts

Post on 20-Jan-2016

217 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 1 Dopant and Self-Diffusion in Semiconductors: A Tutorial Eugene Haller and Hughes Silvestri MS&E, UCB and LBNL FLCC Tutorial 1/26/04 FLCC

1

Dopant and Self-Diffusion in Semiconductors:

A Tutorial

Eugene Haller and Hughes Silvestri

MS&E, UCB and LBNL

FLCC Tutorial

1/26/04

FLCC

Page 2: 1 Dopant and Self-Diffusion in Semiconductors: A Tutorial Eugene Haller and Hughes Silvestri MS&E, UCB and LBNL FLCC Tutorial 1/26/04 FLCC

2

Outline

• Motivation

• Background – Fick’s Laws

– Diffusion Mechanisms

• Experimental Techniques for Solid State Diffusion

• Diffusion with Stable Isotope Structures

• Conclusions

Page 3: 1 Dopant and Self-Diffusion in Semiconductors: A Tutorial Eugene Haller and Hughes Silvestri MS&E, UCB and LBNL FLCC Tutorial 1/26/04 FLCC

3

Motivation

• Why diffusion is important for feature level control of device processing

– Nanometer size feature control: - any extraneous diffusion of dopant atoms may result in device performance degradation

• Source/drain extensions

– Accurate models of diffusion are required for dimensional control on the nanometer scale

Page 4: 1 Dopant and Self-Diffusion in Semiconductors: A Tutorial Eugene Haller and Hughes Silvestri MS&E, UCB and LBNL FLCC Tutorial 1/26/04 FLCC

4

Semiconductor Technology Roadmap

2001 2002 2003 2004 2005 2006 2007

(International Technology Roadmap for Semiconductors, 2001)

Thermal & Thin-film, Doping and Etching Technology Requirements, Near-Term

Page 5: 1 Dopant and Self-Diffusion in Semiconductors: A Tutorial Eugene Haller and Hughes Silvestri MS&E, UCB and LBNL FLCC Tutorial 1/26/04 FLCC

5

Fick’s Laws (1855)

Diffusion equation does not take into account interactions with defects!

CS

t

x

DS

CS

x

only valid for pure interstitial diffusion

JinJout

+GS

-RS

As V AV

RAV kr AV

CAV

t

x

DAV

CAV

x

kr AV k f AS V

GAV k f AS V Example: Vacancy Mechanism

2nd Law

Jin Jout

dx

J DCS

x

Fick’s 1st Law: Flux of atoms

Page 6: 1 Dopant and Self-Diffusion in Semiconductors: A Tutorial Eugene Haller and Hughes Silvestri MS&E, UCB and LBNL FLCC Tutorial 1/26/04 FLCC

6

Analytical Solutions to Fick’s Equations

D = constant

- Finite source of diffusing species:

CS

t

x

DS

CS

x

DS

2CS

x 2

Solution: Gaussian -

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

No

rma

lize

d C

on

cen

tra

tion

Depth

C x,t S

Dte

x 2

4 Dt

- Infinite source of diffusing species:Solution:

Complementary error function -

C x, t Co 12

ez 2

0

y dz

, y

x

2 Dt 0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1N

orm

aliz

ed

Co

nce

ntr

atio

n

Depth

Page 7: 1 Dopant and Self-Diffusion in Semiconductors: A Tutorial Eugene Haller and Hughes Silvestri MS&E, UCB and LBNL FLCC Tutorial 1/26/04 FLCC

7

Solutions to Fick’s Equations (cont.)D = f (C) Diffusion coefficient as a function of concentration

Concentration dependence can generate various profile shapes and penetration depths

Page 8: 1 Dopant and Self-Diffusion in Semiconductors: A Tutorial Eugene Haller and Hughes Silvestri MS&E, UCB and LBNL FLCC Tutorial 1/26/04 FLCC

8

Solid-State Diffusion ProfilesExperimentally determined profiles can be much more complicated - no analytical solution

B implant and anneal in Si with and without Ge implant

Kennel, H.W.; Cea, S.M.; Lilak, A.D.; Keys, P.H.; Giles, M.D.; Hwang, J.; Sandford, J.S.; Corcoran, S.; Electron Devices Meeting, 2002. IEDM '02, 8-11 Dec. 2002

Page 9: 1 Dopant and Self-Diffusion in Semiconductors: A Tutorial Eugene Haller and Hughes Silvestri MS&E, UCB and LBNL FLCC Tutorial 1/26/04 FLCC

9

Direct Diffusion Mechanisms in Crystalline Solids

Pure interstitial

Direct exchange

Elements in Si: Li, H, 3d transition metals

No experimental evidenceHigh activation energy

(no native defects required)

Page 10: 1 Dopant and Self-Diffusion in Semiconductors: A Tutorial Eugene Haller and Hughes Silvestri MS&E, UCB and LBNL FLCC Tutorial 1/26/04 FLCC

10

Vacancy-assisted Diffusion Mechanisms

As V

AV

Dissociative mechanism

As

Ai V

Vacancy mechanism

(Sb in Si)

(Cu in Ge)

(native defects required)

Page 11: 1 Dopant and Self-Diffusion in Semiconductors: A Tutorial Eugene Haller and Hughes Silvestri MS&E, UCB and LBNL FLCC Tutorial 1/26/04 FLCC

11

Interstitial-assisted Diffusion Mechanisms

Interstitialcy mechanism

Kick-out mechanism

As I

AI

As I

Ai

(P in Si)

(B in Si)

(native defects required)

Page 12: 1 Dopant and Self-Diffusion in Semiconductors: A Tutorial Eugene Haller and Hughes Silvestri MS&E, UCB and LBNL FLCC Tutorial 1/26/04 FLCC

12

Why are Diffusion Mechanisms Important?

• Device processing can create non-equilibrium native defect concentrations– Implantation: excess interstitials

– Oxidation: excess interstitials

– Nitridation: excess vacancies

– High doping: Fermi level shift

Page 13: 1 Dopant and Self-Diffusion in Semiconductors: A Tutorial Eugene Haller and Hughes Silvestri MS&E, UCB and LBNL FLCC Tutorial 1/26/04 FLCC

13

Oxidation Effects on Diffusion

• Oxidation of Si surface causes injection of interstitials into Si bulk

• Increase in interstitial concentration causes enhanced diffusion of B, As, but retarded Sb diffusion

• Nitridation (vacancy injection) causes retarded B, P diffusion, enhanced Sb diffusion

(Fahey, et al., Rev. Mod. Phys. 61 289 (1989).)

Oxidation during device processing can lead to non-equilibrium diffusion

Page 14: 1 Dopant and Self-Diffusion in Semiconductors: A Tutorial Eugene Haller and Hughes Silvestri MS&E, UCB and LBNL FLCC Tutorial 1/26/04 FLCC

14

Implantation Effects on Diffusion• Transient Enhanced Diffusion (TED) - Eaglesham, et al.

• Implantation damage generates excess interstitials– Enhance the diffusion of dopants diffusing via interstitially-

assisted mechanisms– Transient effect - defect concentrations return to equilibrium

values

• TED can be reduced by implantation into an amorphous layer or by carbon incorporation into Si surface layer

– Substitutional carbon acts as an interstitial sink

Eaglesham, et al., Appl. Phys. Lett. 65(18) 2305 (1994).

(Stolk, et al., Appl. Phys. Lett. 66 1371 (1995).)

Page 15: 1 Dopant and Self-Diffusion in Semiconductors: A Tutorial Eugene Haller and Hughes Silvestri MS&E, UCB and LBNL FLCC Tutorial 1/26/04 FLCC

15

Doping Effects on DiffusionHeavily doped semiconductors - extrinsic at diffusion temperatures

– Fermi level moves from mid-gap to near conduction (n-type) or valence (p-type) band.

– Fermi level shift changes the formation enthalpy, HF, of the charged native defect

– Increase of CI,V affects Si self-diffusion and dopant diffusion

CV ,Ieq CSi

o expSV ,I

F

kB

exp

HV ,IF

kBT

, H

V F H

V o

F EF EV

Ec

Ev

V--/-

V-/o

V+/++

Vo/+

Io/+

0.11 eV

0.57 eV

0.35 eV

0.13 eV0.05 eV

V states (review by Watkins, 1986)

Page 16: 1 Dopant and Self-Diffusion in Semiconductors: A Tutorial Eugene Haller and Hughes Silvestri MS&E, UCB and LBNL FLCC Tutorial 1/26/04 FLCC

16

Doping Effects on DiffusionFermi level shift lowers the formation enthalpy, HF, of the charged native defect

– Increase of CI,V affects Si self-diffusion and dopant diffusion

CV ,Ieq CSi

o expSV ,I

F

kB

exp

HV ,IF

kBT

, H

V F H

V o

F EF EV

Numerical example: If EF moves up by 100 meV at 1000 °C, the change in the native defect concentration is:

Cexteq

Cinteq

e

H intF H ext

F

kBT

~ 3Native defect concentration is 3 times larger

for a Fermi level shift of only 100 meV

Ec

Ev

V--/-

V-/o

V+/++

Vo/+

Io/+

0.11 eV

0.57 eV

0.35 eV

0.13 eV0.05 eV

EF (int)

EF (ext)100 meV

Page 17: 1 Dopant and Self-Diffusion in Semiconductors: A Tutorial Eugene Haller and Hughes Silvestri MS&E, UCB and LBNL FLCC Tutorial 1/26/04 FLCC

17

Doping Effects on Diffusion

10-19

10-18

10-17

10-16

10-15

10-14

10-13

10-12

0.7 0.72 0.74 0.76 0.78 0.8 0.82 0.84 0.86

D (

cm2s-1

)

1000/T (1000/K)

DSi

(ni)

DSi

(ext)

DAs

(ni)

DAs

(ext)

D ni D ext ni

CAseq

The change in native defect concentration with Fermi level position causes an increase in the self- and dopant diffusion coefficients

Page 18: 1 Dopant and Self-Diffusion in Semiconductors: A Tutorial Eugene Haller and Hughes Silvestri MS&E, UCB and LBNL FLCC Tutorial 1/26/04 FLCC

18

Experimental Techniques for DiffusionCreation of the Source

- Diffusion from surface- Ion implantation- Sputter deposition- Buried layer (grown by MBE)

Annealing

Analysis of the Profile

- Radioactivity (sectioning)- SIMS- Neutron Activation Analysis- Spreading resistance- Electro-Chemical C/Voltage

Modeling of the Profile- Analytical fit- Coupled differential eq.

Page 19: 1 Dopant and Self-Diffusion in Semiconductors: A Tutorial Eugene Haller and Hughes Silvestri MS&E, UCB and LBNL FLCC Tutorial 1/26/04 FLCC

19

Primary Experimental Approaches

• Radiotracer Diffusion– Implantation or diffusion from surface– Mechanical sectioning– Radioactivity analysis

• Stable Isotope Multilayers– Diffusion from buried enriched isotope layer– Secondary Ion Mass Spectrometry (SIMS)– Dopant and self-diffusion

Page 20: 1 Dopant and Self-Diffusion in Semiconductors: A Tutorial Eugene Haller and Hughes Silvestri MS&E, UCB and LBNL FLCC Tutorial 1/26/04 FLCC

20

Radiotracer diffusion• Diffusion using radiotracers was first technique available

to measure self-diffusion– Limited by existence of radioactive isotope

– Limited by isotope half-life (e.g. - 31Si: t1/2 = 2.6 h)

– Limited by sensitivity– Radioactivity measurement

– Width of sections

Application of radio-isotopes to surface

annealing

Mechanical/Chemical sectioning

Measure radioactivity of each section

Depth (m)

Con

cen

trat

ion

(cm

-3)

Generate depth profile

Page 21: 1 Dopant and Self-Diffusion in Semiconductors: A Tutorial Eugene Haller and Hughes Silvestri MS&E, UCB and LBNL FLCC Tutorial 1/26/04 FLCC

21

Diffusion Prior to Stable IsotopesWhat was known about Si, B, P, and As diffusion in Si

Si: self-diffusion: interstitials + vacanciesknown: interstitialcy + vacancy mechanism, QSD ~ 4.7 eVunknown: contributions of native defect charge states

B: interstitial mediated: from oxidation experiments known: diffusion coefficient unknown: interstitialcy or kick-out mechanism

P: interstitial mediated: from oxidation experiments known: diffusion coefficient unknown: mechanism for vacancy contribution

As: interstitial + vacancy mediated: from oxidation + nitridation experiments known: diffusion coefficient unknown: native defect charge states and mechanisms

Page 22: 1 Dopant and Self-Diffusion in Semiconductors: A Tutorial Eugene Haller and Hughes Silvestri MS&E, UCB and LBNL FLCC Tutorial 1/26/04 FLCC

22

Stable Isotope Multilayers• Diffusion using stable isotope structures allows

for simultaneous measurements of self- and dopant diffusion– No half-life issues

– Ion beam sputtering rather than mechanical sectioning

– Mass spectrometry rather than radioactivity measurement

28Si enriched

FZ Si substrate

nat. Si

a-Si cap

1017

1018

1019

1020

1021

1022

0 500 1000 1500

con

cen

tra

tio

n (

cm-3

)

Depth (nm)

Page 23: 1 Dopant and Self-Diffusion in Semiconductors: A Tutorial Eugene Haller and Hughes Silvestri MS&E, UCB and LBNL FLCC Tutorial 1/26/04 FLCC

23

Stable Isotope Multilayers

28Si enriched

FZ Si substrate

nat. Si

a-Si cap

1017

1018

1019

1020

1021

1022

0 500 1000 1500co

nce

ntr

ati

on

(cm

-3)

Depth (nm)

Multilayers of enriched and natural Si enable measurement of dopant diffusion from cap and self-diffusion between layers simultaneously

Secondary Ion Mass Spectrometry (SIMS) yields concentration profiles of Si and dopant

Simultaneous dopant and self-diffusion analysis allows for determination of native defect contributions to diffusion.

Page 24: 1 Dopant and Self-Diffusion in Semiconductors: A Tutorial Eugene Haller and Hughes Silvestri MS&E, UCB and LBNL FLCC Tutorial 1/26/04 FLCC

24

Secondary Ion Mass Spectrometry• Incident ion beam sputters sample surface - Cs+, O+

– Beam energy: ~1 kV

• Secondary ions ejected from surface (~10 eV) are mass analyzed using mass spectrometer– Detection limit: ~1012 - 1016 cm-3

• Depth profile - ion detector counts vs. time – Depth resolution: 2 - 30 nm

Ion gun

Mass spectrometer

Ion detector

Page 25: 1 Dopant and Self-Diffusion in Semiconductors: A Tutorial Eugene Haller and Hughes Silvestri MS&E, UCB and LBNL FLCC Tutorial 1/26/04 FLCC

25

Diffusion Parameters found via Stable Isotope Heterostructures

• Charge states of dopant and native defects involved in diffusion

• Contributions of native defects to self-diffusion

• Enhancement of dopant and self-diffusion under extrinsic conditions

• Mechanisms of diffusion which mediate self- and dopant diffusion

Page 26: 1 Dopant and Self-Diffusion in Semiconductors: A Tutorial Eugene Haller and Hughes Silvestri MS&E, UCB and LBNL FLCC Tutorial 1/26/04 FLCC

26

Si Self-Diffusion• Enriched layer of 28Si epitaxially grown

on natural Si• Diffusion of 30Si monitored via SIMS

from the natural substrate into the enriched cap (depleted of 30Si)

• 855 ºC < T < 1388 ºC– Previous work limited to short

times and high T due to radiotracers• Accurate value of self-diffusion

coefficient over wide temperature range:

(Bracht, et al., PRL 81 1998)

DSi 560 170240 exp

4.76 0.04 eV

kBT

1095 ºC, 54.5 hrs

1153 ºC, 19.5 hrs

Tk

eVD

BSi

04.076.4exp560 240

170

Page 27: 1 Dopant and Self-Diffusion in Semiconductors: A Tutorial Eugene Haller and Hughes Silvestri MS&E, UCB and LBNL FLCC Tutorial 1/26/04 FLCC

27

1017

1018

1019

1020

1021

0 200 400 600 800 1000 1200 1400 1600

co

nce

ntr

ati

on

(cm-3)

Depth (nm)

Si and Dopant DiffusionArsenic doped sample annealed 950 ˚C for 122 hrs

AsV o Ass V

Vacancy mechanismAsI o Ass

Io eInterstitialcy mechanism

ni

extrinsic intrinsic

- Vo

- V-

- V--

Page 28: 1 Dopant and Self-Diffusion in Semiconductors: A Tutorial Eugene Haller and Hughes Silvestri MS&E, UCB and LBNL FLCC Tutorial 1/26/04 FLCC

28

1017

1018

1019

1020

1021

0 200 400 600 800 1000 1200 1400 1600

co

nce

ntr

ati

on

(cm

-3)

Depth (nm)

Si and Dopant Diffusion

AsV o Ass V

Vacancy mechanismAsI o Ass

Io eInterstitialcy mechanism

Arsenic doped sample annealed 950 ˚C for 122 hrs

ni- Vo

- V-

- V--

Page 29: 1 Dopant and Self-Diffusion in Semiconductors: A Tutorial Eugene Haller and Hughes Silvestri MS&E, UCB and LBNL FLCC Tutorial 1/26/04 FLCC

29

1017

1018

1019

1020

1021

0 200 400 600 800 1000 1200 1400 1600

co

nce

ntr

ati

on

(cm

-3)

Depth (nm)

Si and Dopant Diffusion

AsV o Ass V

Vacancy mechanismAsI o Ass

Io eInterstitialcy mechanism

Arsenic doped sample annealed 950 ˚C for 122 hrs

ni- Vo

- V-

- V--

Page 30: 1 Dopant and Self-Diffusion in Semiconductors: A Tutorial Eugene Haller and Hughes Silvestri MS&E, UCB and LBNL FLCC Tutorial 1/26/04 FLCC

30

Native Defect Contributions to Si Diffusion

Diffusion coefficients of individual components add up accurately:

DSi(ni )tot fIo CI

o DIo fI

CI DI

fV CV DV

DSi(ni )

(Bracht, et al., 1998)

(B diffusion) (As diffusion)(As diffusion)

10-19

10-18

10-17

10-16

10-15

10-14

0.7 0.8 0.9

D (

cm2s-1

)

1000/T (1000/K)

DSi

(V-)

DSi

(I+)

DSi

(Io)

DSi

(Io+I++V-)

DSi

(ni)

Page 31: 1 Dopant and Self-Diffusion in Semiconductors: A Tutorial Eugene Haller and Hughes Silvestri MS&E, UCB and LBNL FLCC Tutorial 1/26/04 FLCC

31

GaSb Self-Diffusion using Stable Isotopes“as-grown structure”

Page 32: 1 Dopant and Self-Diffusion in Semiconductors: A Tutorial Eugene Haller and Hughes Silvestri MS&E, UCB and LBNL FLCC Tutorial 1/26/04 FLCC

32

GaSb Self-Diffusion using Stable Isotopes

Annealed 650 °C for 7 hours

1020

1021

1022

1023

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

GaSb Isotope Heterostructure

(annealed at 670 oC for 7 hrs)

Iso

top

e C

on

ce

ntr

ati

on

s (

cm

-3)

Depth (microns)

123 Sb 121 Sb

71 Ga 69 Ga

nat GaSb (cap) 69 Ga121 Sb 71 Ga123 Sb nat GaSb

Page 33: 1 Dopant and Self-Diffusion in Semiconductors: A Tutorial Eugene Haller and Hughes Silvestri MS&E, UCB and LBNL FLCC Tutorial 1/26/04 FLCC

33

GaSb Self-Diffusion using Stable IsotopesSimultaneous isotope diffusion experiments revealed that Ga and Sb

self-diffusion coefficients in GaSb differ by 3 orders of magnitude

Page 34: 1 Dopant and Self-Diffusion in Semiconductors: A Tutorial Eugene Haller and Hughes Silvestri MS&E, UCB and LBNL FLCC Tutorial 1/26/04 FLCC

34

GaAs Self-Diffusion using Stable Isotopes

Temperature dependence of Ga self-diffusion in GaAs under intrinsic (x), p-type Be doping (), and n-type Si doping ().

Ga self-diffusion is retarded under p-type doping and enhanced under n-type doping due to Fermi level effect on Ga self-interstitials

Bracht, et al., Solid State Comm.112 301 (1999)

Page 35: 1 Dopant and Self-Diffusion in Semiconductors: A Tutorial Eugene Haller and Hughes Silvestri MS&E, UCB and LBNL FLCC Tutorial 1/26/04 FLCC

35

Diffusion in AlGaAs/GaAs Isotope Structure

Ga self-diffusion coefficient in AlGaAs found to decrease with increasing Al content.

Activation energy for Ga self-diffusion - 3.6 ± 0.1 eV

Bracht, et al., Appl. Phys. Lett. 74 49 (1999).

Page 36: 1 Dopant and Self-Diffusion in Semiconductors: A Tutorial Eugene Haller and Hughes Silvestri MS&E, UCB and LBNL FLCC Tutorial 1/26/04 FLCC

36

Diffusion in Ge Stable Isotope StructureAnnealed 586 °C for 55.55 hours

Fuchs, et al., Phys. Rev B 51 1687 (1995)

Ge self-diffusion coefficient determined from 74Ge/70Ge isotope structure

Tk

eVscmD

BGe

05.00.3exp102.1 123

Page 37: 1 Dopant and Self-Diffusion in Semiconductors: A Tutorial Eugene Haller and Hughes Silvestri MS&E, UCB and LBNL FLCC Tutorial 1/26/04 FLCC

37

Diffusion in GaP Stable Isotope Structure

Annealed 1111 °C for 231 min

Ga self-diffusion coefficient in GaP determined from 69GaP/71GaP isotope structure

Tk

eVscmD

BGa

5.4exp0.2 12

Wang, et al., Appl. Phys. Lett. 70 1831 (1997).

Page 38: 1 Dopant and Self-Diffusion in Semiconductors: A Tutorial Eugene Haller and Hughes Silvestri MS&E, UCB and LBNL FLCC Tutorial 1/26/04 FLCC

38

Diffusion in Si1-xGex

• SiGe will be used as “next generation” material for electronic devices– Will face same device diffusion issues as Si

– Currently, limited knowledge of diffusion properties

SiGe HBTs with cut-off frequency of 350 GHzRieh, J.-S.; Jagannathan, B.; Chen, H.; Schonenberg, K.T.; Angell, D.; Chinthakindi, A.; Florkey, J.; Golan, F.; Greenberg, D.; Jeng, S.-J.; Khater, M.; Pagette, F.; Schnabel, C.; Smith, P.; Stricker, A.; Vaed, K.; Volant, R.; Ahlgren, D.; Freeman, G.; Intl. Electron Devices Meeting, 2002. IEDM '02. Digest. International , 8-11 Dec. 2002, Page(s): 771 –774

Page 39: 1 Dopant and Self-Diffusion in Semiconductors: A Tutorial Eugene Haller and Hughes Silvestri MS&E, UCB and LBNL FLCC Tutorial 1/26/04 FLCC

39

Previous Results on Diffusion in Si1-xGex

McVay and DuCharme (1975) 71Ge diffusion in poly-SiGe alloys

Strohm, et al., (2001)71Ge diffusion in SiGe alloys

Page 40: 1 Dopant and Self-Diffusion in Semiconductors: A Tutorial Eugene Haller and Hughes Silvestri MS&E, UCB and LBNL FLCC Tutorial 1/26/04 FLCC

40

Stable Isotope Diffusion in Si1-xGex

1017

1018

1019

1020

1021

1022

0 100 200 300 400 500 600 700 800

Si0.75

Ge0.25

(900C 2days) simulation

30Si Conc.76Ge Conc.

Con

cent

ratio

n (c

m-3)

Depth (nm)

• Use isotope heterostructure technique to study Si and Ge self-diffusion in relaxed Si1-xGex alloys. (0.05 ≤ x ≤ 0.85) – No reported measurements of simultaneous Si

and Ge diffusion in Si1-xGex alloys

Simulation result of simultaneous

Si and Ge self-diffusion

Si substrate

SiGe graded buffer layer

200 nm nat. Si1-xGex

200 nm nat. Si1-xGex

400 nm 28Si1-x70Gex

Fitting of SIMS diffusion profile to simulation result of simultaneous Si and Ge self-diffusion will yield self-diffusion coefficients of Si and Ge

Page 41: 1 Dopant and Self-Diffusion in Semiconductors: A Tutorial Eugene Haller and Hughes Silvestri MS&E, UCB and LBNL FLCC Tutorial 1/26/04 FLCC

41

Conclusions

• Diffusion in semiconductors is increasingly important to device design as feature level size decreases.

• Device processing can lead to non-equilibrium conditions which affect diffusion.

• Diffusion using stable isotopes yields important diffusion parameters which previously could not be determined experimentally.