2009: ijmpa 26 29 (2014)1430017 1406€¦ · run-16 resume a low power costs allow run to make up...

59
Erice 2016 Highlights from BNL and RHIC 2016 M. J. Tannenbaum Brookhaven National Laboratory Upton, NY 11973 USA M. J. Tannenbaum 1 For previous years with more details see: 2009: IJMPA 26 (2011)5299 1406.0830 2011-2013: IJMPA 29 (2014)1430017 1406.1100 International School of Subnuclear Physics, “The New Physics Frontiers in the LHC-2 Era” 54th Course-Erice, Sicily, Italy June 15-22, 2016 2014: arXiv1504.02771 2015: arXiv1504.02771

Upload: others

Post on 19-May-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 2009: IJMPA 26 29 (2014)1430017 1406€¦ · Run-16 resume A Low power costs allow run to make up for (most of the) lost time RHIC Run 16 RHIC performance Run 16 Replace quench protection

Erice 2016�

Highlights from BNL and RHIC 2016 �

M. J. Tannenbaum�Brookhaven National Laboratory�

Upton, NY 11973 USA�

M. J. Tannenbaum 1 �

For previous years with more details see:�2009: IJMPA 26 (2011)5299 1406.0830 � 2011-2013: IJMPA 29 (2014)1430017 1406.1100 �

International School of Subnuclear Physics, “The New Physics Frontiers in the LHC-2 Era”

54th Course-Erice, Sicily, Italy June 15-22, 2016�

2014: arXiv1504.02771 �

2015: arXiv1504.02771 �

Page 2: 2009: IJMPA 26 29 (2014)1430017 1406€¦ · Run-16 resume A Low power costs allow run to make up for (most of the) lost time RHIC Run 16 RHIC performance Run 16 Replace quench protection

The Relativistic Heavy Ion Collider (RHIC) at BNL is 1 of the 2 remaining hadron colliders

BNL also has many other facilities�

Erice 2016� M. J. Tannenbaum 2 �

RHIC�

Page 3: 2009: IJMPA 26 29 (2014)1430017 1406€¦ · Run-16 resume A Low power costs allow run to make up for (most of the) lost time RHIC Run 16 RHIC performance Run 16 Replace quench protection

Brookhaven National Laboratory (BNL)�

Erice 2016� M. J. Tannenbaum 3 �

RHIC�

NSLSII�

Cosmotron�AGS�

Page 4: 2009: IJMPA 26 29 (2014)1430017 1406€¦ · Run-16 resume A Low power costs allow run to make up for (most of the) lost time RHIC Run 16 RHIC performance Run 16 Replace quench protection

RHIC with AGS injector�

Erice 2016� M. J. Tannenbaum 4 �

cosmotron

ANDY

Page 5: 2009: IJMPA 26 29 (2014)1430017 1406€¦ · Run-16 resume A Low power costs allow run to make up for (most of the) lost time RHIC Run 16 RHIC performance Run 16 Replace quench protection

RHIC First and only polarized proton collider�

Erice 2016� M. J. Tannenbaum 5 �

����

���

��-/&�(�& #-&�*��*�'#

� ��

����

�����+(�-&)#/#-.

�& #-&�*��*�'#.�,&*��+/�/+-.

�+(�-&3#"��-+/+*��+((&.&+*.��/����

�)�2�����2�����.��!)��

�4�������+(�-&3�/&+*� .���������������#�

�������

����������.�����3� �����+(�-&3�/&+*

�!!0)0(�/&+*�+$�����0(.#.2������+(���-+/+*.����0*!%���������))�)-�"

�2������+(���-+/+*.����0*!%���������))�)-�"

�+(�-&3#"�����+0-!#

�&*�!

�����#��+(�-&)#/#-

�����+(�-&)#/#-

�#-/&!�(����&,+(#

��

�����

�#,(�!#�1&/%�������������������.�������3

�& #-&�*��*�'#.

siberian snake is a magnet that flips the spin of the polarized protons half way around the ring to preserve the polarization by cancelling imperfections�

Page 6: 2009: IJMPA 26 29 (2014)1430017 1406€¦ · Run-16 resume A Low power costs allow run to make up for (most of the) lost time RHIC Run 16 RHIC performance Run 16 Replace quench protection

Two Major Detectors�

Erice 2016� M. J. Tannenbaum 6 �

Page 7: 2009: IJMPA 26 29 (2014)1430017 1406€¦ · Run-16 resume A Low power costs allow run to make up for (most of the) lost time RHIC Run 16 RHIC performance Run 16 Replace quench protection

One new experiment ANDY�

Erice 2016� M. J. Tannenbaum 7 �

Purpose is to measure transverse spin asymmetry of Drell-Yan which is predicted to be negative, opposite in sign to that measured in single pion production in DIS positive increasing with pT Hermes, PRD64,097101�

Page 8: 2009: IJMPA 26 29 (2014)1430017 1406€¦ · Run-16 resume A Low power costs allow run to make up for (most of the) lost time RHIC Run 16 RHIC performance Run 16 Replace quench protection

Erice 2016� M. J. Tannenbaum 8 �

AN =d� L � d� R

d� L + d� R��������� ������������������������������������ ��

������������������� ����������

������� ��������� ������������������������

Single spin transverse asymmetry AN�

Page 9: 2009: IJMPA 26 29 (2014)1430017 1406€¦ · Run-16 resume A Low power costs allow run to make up for (most of the) lost time RHIC Run 16 RHIC performance Run 16 Replace quench protection

Single spin AN measurements�

Erice 2016� M. J. Tannenbaum 9 �

Fx0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

NA

0

0.05

0.1

0.15

0.2

=62.4 GeVs<3.8 � 3.1<0�PHENIX =19.4 GeVs 0�E704

=200 GeVs>=3.3, � <0�STAR =200 GeVs>=3.7, � <0�STAR

+ X0� �p+p

Transverse single spin asymmetry AN �PHENIX PRD90(2014) 012006�Note that E704 is PRL36(1976) 929�

p�+p�jets, �s=500 GeV

-0.01

-0.005

0

0.005

0.01

0.015

0.02

-0.4 -0.2 0 0.2 0.4

�xF(jet)�A N

jet AN (statistical uncertainty)

�AN (systematic uncertainty)

twist-3

AN much smaller in jets �than in single particles�

Old subject, new measurements, no clear understanding�

Page 10: 2009: IJMPA 26 29 (2014)1430017 1406€¦ · Run-16 resume A Low power costs allow run to make up for (most of the) lost time RHIC Run 16 RHIC performance Run 16 Replace quench protection

Erice 2016� M. J. Tannenbaum 10 �

���!�������������

��!�������������$� ���������������"�����������������!����� ������ �������

���������%������������������������������#������������������������� �������������������

�������� ��� ��������������������������������������

�+,�� �

$

Page 11: 2009: IJMPA 26 29 (2014)1430017 1406€¦ · Run-16 resume A Low power costs allow run to make up for (most of the) lost time RHIC Run 16 RHIC performance Run 16 Replace quench protection

Erice 2016� M. J. Tannenbaum 11 �

Page 12: 2009: IJMPA 26 29 (2014)1430017 1406€¦ · Run-16 resume A Low power costs allow run to make up for (most of the) lost time RHIC Run 16 RHIC performance Run 16 Replace quench protection

Erice 2016� M. J. Tannenbaum 12 �

� High luminosity 200 GeV Au-Au run (10 weeks)� Goal: Study heavy flavor flow, especially charmed baryons, parton energy

loss in QGP, quarkonium studies (for NP milestone DM12)� d+Au beam energy scan (5 weeks)� Goal: Study beam energy dependence of small system collectivity and

QGP properties� Proof of Principle test of coherent electron cooling (1 week)

� Run-16 went very well until ���a diode inside a dipole magnet in the bluering malfunctioned on March 18.

� Repair required warm-up of sector 10-11, opening of dipole, replacementof the diode, and cool-down. Run-16 resume��A�����

� Low power costs�allow run ����� �����to ������make up for (most ofthe) lost time

RHIC Run 16��������� ����������������������������������RHIC performance Run 16�

Page 13: 2009: IJMPA 26 29 (2014)1430017 1406€¦ · Run-16 resume A Low power costs allow run to make up for (most of the) lost time RHIC Run 16 RHIC performance Run 16 Replace quench protection

Replace quench protection diode�

Erice 2016� M. J. Tannenbaum 13 �

New quench protection diode�

Page 14: 2009: IJMPA 26 29 (2014)1430017 1406€¦ · Run-16 resume A Low power costs allow run to make up for (most of the) lost time RHIC Run 16 RHIC performance Run 16 Replace quench protection

Erice 2016� M. J. Tannenbaum 14 �

Years Beam Species and Science Goals New Systems

2014Au+Au at 15 GeV Au+Au at 200 GeV 3He+Au at 200 GeV

Heavy flavor flow, energy loss, thermalization, etc. Quarkonium studies QCD critical point search

Electron lenses 56 MHz SRF STAR HFT STAR MTD

2015-16

p�+p� at 200 GeV p�+Au, p�+Al at 200 GeV High statistics Au+Au Au+Au at 62 GeV ?

Extract �/s(T) + constrain initial quantum fluctuations Complete heavy flavor studies Sphaleron tests Parton saturation tests

PHENIX MPC-EX STAR FMS preshower Roman Pots Coherent e-cooling test

2017 p�+p� at 510 GeV Transverse spin physics Sign change in Sivers function

2018 No Run Low energy e-cooling install. STAR iTPC upgrade

2019-20 Au+Au at 5-20 GeV (BES-2) Search for QCD critical point and onset of deconfinement

Low energy e-cooling

2021-22 Au+Au at 200 GeV p�+p�, p�+Au at 200 GeV

Jet, di-jet, �-jet probes of parton transport and energy loss mechanism Color screening for different quarkonia Forward spin & initial state physics

sPHENIX Forward upgrades ?

� 2023 ? No Runs Transition to eRHIC

3

BNL’s ����plan ����

Page 15: 2009: IJMPA 26 29 (2014)1430017 1406€¦ · Run-16 resume A Low power costs allow run to make up for (most of the) lost time RHIC Run 16 RHIC performance Run 16 Replace quench protection

Erice 2016� M. J. Tannenbaum 15 �

Years Beam Species and Science Goals New Systems

2014Au+Au at 15 GeV Au+Au at 200 GeV 3He+Au at 200 GeV

Heavy flavor flow, energy loss, thermalization, etc. Quarkonium studies QCD critical point search

Electron lenses 56 MHz SRF STAR HFT STAR MTD

2015-16

p�+p� at 200 GeV p�+Au, p�+Al at 200 GeV High statistics Au+Au Au+Au at 62 GeV ?

Extract �/s(T) + constrain initial quantum fluctuations Complete heavy flavor studies Sphaleron tests Parton saturation tests

PHENIX MPC-EX STAR FMS preshower Roman Pots Coherent e-cooling test

2017 p�+p� at 510 GeV Transverse spin physics Sign change in Sivers function

2018 No Run Low energy e-cooling install. STAR iTPC upgrade

2019-20 Au+Au at 5-20 GeV (BES-2) Search for QCD critical point and onset of deconfinement

Low energy e-cooling

2021-22 Au+Au at 200 GeV p�+p�, p�+Au at 200 GeV

Jet, di-jet, �-jet probes of parton transport and energy loss mechanism Color screening for different quarkonia Forward spin & initial state physics

sPHENIX Forward upgrades ?

� 2023 ? No Runs Transition to eRHIC

3

BNL’s �� �����������

isobars

2022-23

d+Au @ 200, 62, 39, 20 GeV

���������������������������������������������� �������������������������������������� ���

Page 16: 2009: IJMPA 26 29 (2014)1430017 1406€¦ · Run-16 resume A Low power costs allow run to make up for (most of the) lost time RHIC Run 16 RHIC performance Run 16 Replace quench protection

One Future experiment sPHENIX June 2016�

Erice 2016� M. J. Tannenbaum 16 �

Outer HCal

Superconducting coilInner HCalEMCal

Vertexer/Tracker

sPHENIX

Page 17: 2009: IJMPA 26 29 (2014)1430017 1406€¦ · Run-16 resume A Low power costs allow run to make up for (most of the) lost time RHIC Run 16 RHIC performance Run 16 Replace quench protection

Low-Field Test of sPHENIX Magnet - Mar 2016�

Erice 2016� 17�

The sPHENIX Magnet was successfully cooled to 4K and ramped to 100A. The field measure was exactly as expected for this current. �

Page 18: 2009: IJMPA 26 29 (2014)1430017 1406€¦ · Run-16 resume A Low power costs allow run to make up for (most of the) lost time RHIC Run 16 RHIC performance Run 16 Replace quench protection

-20�

0�

20�

40�

60�

80�

100�

120�

1� 58�

115�

172�

229�

286�

343�

400�

457�

514�

571�

628�

685�

742�

799�

856�

913�

970�

1027�

1084�

1141�

1198�

1255�

1312�

1369�

1426�

1483�

1540�

1597�

1654�

1711�

1768�

Ramp rate 2.5 A/S�

Coi

l Cur

rent�

Time (S)�

Erice 2016� 18�

Magnet cold test results�

4.4 o K�

100 amps�256 Gaus

At 4.4 o K we put 100 amps on the magnet coil and the solenoid field generated was 256 G, as expected.�The coil was superconducting.�

Babar/Ansaldo magnet works like new�

Page 19: 2009: IJMPA 26 29 (2014)1430017 1406€¦ · Run-16 resume A Low power costs allow run to make up for (most of the) lost time RHIC Run 16 RHIC performance Run 16 Replace quench protection

Progress on sPHENIX Calorimeter Design�

Erice 2016� M. J. Tannenbaum 19 �

������

����

� ����,����%����%���/���"��%�$�� �#�� �� &%�#������� ���)����:�3-4�)�3-4�

� 4-6���&"�#�! �&�%� ����� �%�� �#!������#+��!���%�$%����%����

� �����,��/�������#�� ���)����:�3-356�)�3-356��

� �#����#,�'�#%�)�9�!&%�#�%#����#�� "%�! $�$%������� ���! $���#��+�� ��&�� �������� �#�%#����#�(�%����%���$$�����

Page 20: 2009: IJMPA 26 29 (2014)1430017 1406€¦ · Run-16 resume A Low power costs allow run to make up for (most of the) lost time RHIC Run 16 RHIC performance Run 16 Replace quench protection

Erice 2016� 20�

�� !�������!���������

Neutrino Line

MTest

MCenter

Linac Booster

Main Injector

�����,� ��"��!���������������� ��#���

-$.$+)*-� ���������������%� ��$����� ��& ����!���� /�

Page 21: 2009: IJMPA 26 29 (2014)1430017 1406€¦ · Run-16 resume A Low power costs allow run to make up for (most of the) lost time RHIC Run 16 RHIC performance Run 16 Replace quench protection

sPHENIX Present Status�•� Dec 2015: Inaugural Collaboration Meeting at Rutgers �

��Bylaws approved�

•� Spokespersons elected (D. Morrison and G. Roland)�•� Recent Collaboration Meeting at BNL May 18-20, 2016 �•� Still looking for new name of collaboration.�

21�Erice 2016�

Page 22: 2009: IJMPA 26 29 (2014)1430017 1406€¦ · Run-16 resume A Low power costs allow run to make up for (most of the) lost time RHIC Run 16 RHIC performance Run 16 Replace quench protection

Erice 2016� M. J. Tannenbaum 22 �

BNL Newsroom | Introducing…sPHENIX!

OUR SCIENCE ABOUT DEPARTMENTS PARTNER WITH US CAREERS NEWS FEEDBACK DIRECTORY

Features Media & Communications Office

PRINTBy Karen McNulty Walsh | June 15, 2016

Introducing sPHENIX!A new collaboration takes aim at understandinghow the ultra-hot, ultra-dense plasma that formedour early universe gets its intriguing properties.

Members of the new sPHENIX collaboration at a meeting heldat Brookhaven Lab in May 2016, with co-spokespersons DaveMorrison (green T-shirt, jeans) and Gunther Roland (blue shirt, blackjeans) front and center.

From the very beginning, there were hints that particle collisionsat the Relativistic Heavy Ion Collider (RHIC) were producingsomething unusual. This U.S. Department of Energy (DOE)Office of Science User Facility at Brookhaven NationalLaboratory was designed to recreate the incredibly hot anddense conditions of matter in the early universe by collidingatomic nuclei at high enough energies to “melt” their constituentprotons and neutrons. The collisions would “free” thoseparticles’ inner building blocks—quarks and gluons—so nuclearphysicists could study their behavior unbound from ordinary

See all

Other Features...CalorimeterComponents Put tothe Test

SuperconductingMagnet Powers UpAfter Cross-CountryJourney

Retired BrookhavenLab Physicist DerekLowenstein Returnsto ReceiveInternational

Accelerator Prize

A BroaderPerspective:Brookhaven Lab'sSmart GridCollaborations Go

International

Meet the NewSecurity PoliceOfficers

Newsroom Photos Videos Fact Sheets Lab History News Categories Contacts

Page 23: 2009: IJMPA 26 29 (2014)1430017 1406€¦ · Run-16 resume A Low power costs allow run to make up for (most of the) lost time RHIC Run 16 RHIC performance Run 16 Replace quench protection

Physics by Press release—one that’s deserved�

Zhengqiao Zhang, agraduate student fromthe Shanghai Institute of AppliedPhysics, with STAR physicist AihongTang at the STAR detector of theRelativistic Heavy Ion Collider(RHIC).

PRINTContacts: Karen McNulty Walsh, (631) 344-8350 or Peter Genzer, (631)344-3174

Physicists Measure Force thatMakes Antimatter Stick TogetherFirst ever measurement of antiproton interactionsthat make possible the existence of antimatternucleiNovember 4, 2015

UPTON, NY—Peering at thedebris from particle collisionsthat recreate the conditionsof the very early universe,scientists have for the firsttime measured the force ofinteraction between pairs ofantiprotons. Like the forcethat holds ordinary protonstogether within the nuclei ofatoms, the force betweenantiprotons is attractive andstrong.

The experiments wereconducted at the RelativisticHeavy Ion Collider (RHIC), aU.S. Department of EnergyOffice of Science UserFacility for nuclear physicsresearch at DOE'sBrookhaven NationalL b t Th fi di

Erice 2016� M. J. Tannenbaum 23 �

Page 24: 2009: IJMPA 26 29 (2014)1430017 1406€¦ · Run-16 resume A Low power costs allow run to make up for (most of the) lost time RHIC Run 16 RHIC performance Run 16 Replace quench protection

Erice 2016� M. J. Tannenbaum 24 �

Discovery Year1940 2020 2040

)2M

ass

(GeV

/c

00.5

11.5

22.5

33.5

44.5

5

He4

H3�

H

tHe3

d

npe

Race for the Heaviest

28

Antimatter History

19�0“Cl ����n 198���o 2000

Aihong TangBNL Colloquium, Dec 2015

Page 25: 2009: IJMPA 26 29 (2014)1430017 1406€¦ · Run-16 resume A Low power costs allow run to make up for (most of the) lost time RHIC Run 16 RHIC performance Run 16 Replace quench protection

Erice 2016� M. J. Tannenbaum 25 �

40

Correlation analysis

Aihong Tang BNL Colloquium, Dec 2015

x1 x2

Attractive interaction

Repulsive interaction

2k*

smaller k*

larger k*

For example, if there is only Coulomb interaction between two particles 1

k*

CF Attractive

Repulsive

p1

p1

p2

p2

p2

p1

��������������������� ��� ��� ������ �������������������� ����������� ��������������� ��� ������� �� ���� ����������

Page 26: 2009: IJMPA 26 29 (2014)1430017 1406€¦ · Run-16 resume A Low power costs allow run to make up for (most of the) lost time RHIC Run 16 RHIC performance Run 16 Replace quench protection

Erice 2016� M. J. Tannenbaum 26 �

30

Nuclear force : scattering length (f0) and effective range (d0)

Aihong Tang BNL Colloquium, Dec 2015

k cot(� 0 ) �1f0+12d0k

2

������� ���������������� ��&������&�������������� ��#�������������� ���� ����&������ ������������������������!�

�&�������������� ������������"������������������ �� ����������������������������������

� = 4� f02

�&�������������� ��������� ��������"����� ������������������������ ��&����� ������$������%���� ��������"�

Page 27: 2009: IJMPA 26 29 (2014)1430017 1406€¦ · Run-16 resume A Low power costs allow run to make up for (most of the) lost time RHIC Run 16 RHIC performance Run 16 Replace quench protection

Erice 2016� M. J. Tannenbaum 27 �

43

Correlation functions

Aihong Tang BNL Colloquium, Dec 2015

C(k*

)

0.70.80.91

1.11.21.3

0.70.80.911.11.21.3

proton-proton

inclusiveC-1]pp[Cpp1+x

0.70.80.91

1.11.21.3

0.70.80.911.11.21.3

inclusiveC

-1]pp[Cpp1+x

antiproton-antiproton

k*(GeV/c)0 0.05 0.1 0.15

(k*)

pp(k

*)/C

ppC

0.80.91

1.11.21.31.4

0.80.911.11.21.31.4

•������ ������ ����������������#��� ��$��������������������#��������•��������� ��������� ����������������#���!��$���������������#� ����$����"������������#������$���� ���������������#�������

1� contour

STAR Preliminary

Nature 527 345 (2015)

dip at 0 is Fermi statistics, bump is attractive singlet s wave interaction�

Page 28: 2009: IJMPA 26 29 (2014)1430017 1406€¦ · Run-16 resume A Low power costs allow run to make up for (most of the) lost time RHIC Run 16 RHIC performance Run 16 Replace quench protection

Erice 2016� M. J. Tannenbaum 28 �

44

f0 and d0

Aihong Tang BNL Colloquium, Dec 2015

(fm)0f-10 0 10 20 30

(fm

)0d

0

2

4

6proton-protonproton-neutron(singlet)proton-neutron(triplet)neutron-neutronantiproton-antiproton

Nature 527 345 (2015)

Page 29: 2009: IJMPA 26 29 (2014)1430017 1406€¦ · Run-16 resume A Low power costs allow run to make up for (most of the) lost time RHIC Run 16 RHIC performance Run 16 Replace quench protection

Physics by Press Release---not deserved�

Erice 2016� M. J. Tannenbaum 29 �

Contacts: Karen McNulty Walsh, (631) 344-8350 or Peter Genzer, (631) 344-3174

RHIC Particle Smashups Find that Shape MattersScientists colliding football- and sphere-shaped ions discover evidence supporting aparadigm shift in the birth of the quark-gluon plasma

Monday, December 7, 2015

Postdoc Prithwish Tribedy and Brookhaven physicist Paul Sorensen at the STAR detector at the Relativistic Heavy IonCollider (RHIC).

UPTON, NY—Peering into the seething soup of primordial matter created in particle collisions at the Relativistic HeavyIon Collider (RHIC)—an "atom smasher" dedicated to nuclear physics research at the U.S. Department of Energy'sBrookhaven National Laboratory—scientists have come to a new understanding of how particles are produced in thesecollisions. This understanding represents a paradigm shift consistent with the presence of a saturated state of gluons,super-dense fields of the glue-like particles that bind the building blocks of ordinary matter.

As described in a paper just published in Physical Review Letters, the discovery emerged as the scientists searched for away to separate collision results by shape at RHIC, a DOE Office of Science User Facility.

Before these measurements, the standard picture suggested that the number of particles produced would depend on thenumber of collisions, so these results directly rule out that picture. The new results are consistent with at least two modelsthat don't require a dependence on the number of collisions.

"One of these is the gluon saturation model—which is why we think that model did a better job at predicting how well we'dbe able to resolve the tip-tip vs. body-body collisions," Sorensen said.

"This result is just one piece of evidence. But it does support a new picture of how particles are born and that picturelooks in many ways a lot like gluon saturation," Sorensen said. Future research will focus on further testing the idea ofgluon saturation in comparison with other alternative explanations.

Page 30: 2009: IJMPA 26 29 (2014)1430017 1406€¦ · Run-16 resume A Low power costs allow run to make up for (most of the) lost time RHIC Run 16 RHIC performance Run 16 Replace quench protection

Physics by Press Release---not deserved�

Erice 2016� M. J. Tannenbaum 30 �

Contacts: Karen McNulty Walsh, (631) 344-8350 or Peter Genzer, (631) 344-3174

RHIC Particle Smashups Find that Shape MattersScientists colliding football- and sphere-shaped ions discover evidence supporting aparadigm shift in the birth of the quark-gluon plasma

Monday, December 7, 2015

Postdoc Prithwish Tribedy and Brookhaven physicist Paul Sorensen at the STAR detector at the Relativistic Heavy IonCollider (RHIC).

UPTON, NY—Peering into the seething soup of primordial matter created in particle collisions at the Relativistic HeavyIon Collider (RHIC)—an "atom smasher" dedicated to nuclear physics research at the U.S. Department of Energy'sBrookhaven National Laboratory—scientists have come to a new understanding of how particles are produced in thesecollisions. This understanding represents a paradigm shift consistent with the presence of a saturated state of gluons,super-dense fields of the glue-like particles that bind the building blocks of ordinary matter.

As described in a paper just published in Physical Review Letters, the discovery emerged as the scientists searched for away to separate collision results by shape at RHIC, a DOE Office of Science User Facility.

Before these measurements, the standard picture suggested that the number of particles produced would depend on thenumber of collisions, so these results directly rule out that picture. The new results are consistent with at least two modelsthat don't require a dependence on the number of collisions.

"One of these is the gluon saturation model—which is why we think that model did a better job at predicting how well we'dbe able to resolve the tip-tip vs. body-body collisions," Sorensen said.

"This result is just one piece of evidence. But it does support a new picture of how particles are born and that picturelooks in many ways a lot like gluon saturation," Sorensen said. Future research will focus on further testing the idea ofgluon saturation in comparison with other alternative explanations.

In 2014 it was established�that Ncoll was not correct. �It was well known in HEP�that hard scattering is not �relevant for Nch and ET which are predominantly from low pT particles.�Constituent Quarks are �the fundamental elements�of Nch and ET�

PHENIX PRC89 (2014) 044905�

Page 31: 2009: IJMPA 26 29 (2014)1430017 1406€¦ · Run-16 resume A Low power costs allow run to make up for (most of the) lost time RHIC Run 16 RHIC performance Run 16 Replace quench protection

Constituent Quarks cf. Partons�

Erice 2016� M. J. Tannenbaum 31 �

Constituent quarks are Gell-Mann’s quarks from Phys. Lett. 8 (1964)214, proton=uud [Zweig’s Aces].These are relevant for static properties and soft physics, low Q2<2 GeV2 ; resolution> 0.14fm�

1.6fm�

For hard-scattering, pT>2 GeV/c, Q2=2pT

2>8 GeV2, the partons (~massless current quarks, gluons and sea quarks) become visible �

��%%�* ������(!)

��������&$$��&(�*!&%

��������(�%),�()���'!%�

Resolution ~0.5fm� Resolution ~0.1fm� Resolution <0.07fm�Erice 2014�

Page 32: 2009: IJMPA 26 29 (2014)1430017 1406€¦ · Run-16 resume A Low power costs allow run to make up for (most of the) lost time RHIC Run 16 RHIC performance Run 16 Replace quench protection

Selecting Body-body or Tip-tip

In two-component model, multiplicity depends on the Npart and Ncoll and since v2 is propotional to initial eccentricity

If dN/d� depends on Ncoll, large dN/d� should correlate with small v2. ��Central U+U collisions are ideal for testing particle production

Strategy: select events with few spectators (fully over-lapping), then measure v2 vs. multiplicity: how strong is the correlation?

Npart=10�Ncoll= 5�

Npart= 10�Ncoll= 25�

*idealizations�

small v2 and large Nch�

large v2 and small Nch�

Erice 2016�

nAA � npp[(1� xhard )Npart

2+ xhardNcoll ]

fully overlapping�

This is wrong they will be disappointed�

M. J. Tannenbaum 32 �Erice 2014�

Page 33: 2009: IJMPA 26 29 (2014)1430017 1406€¦ · Run-16 resume A Low power costs allow run to make up for (most of the) lost time RHIC Run 16 RHIC performance Run 16 Replace quench protection

Minimum-bias U+U and Au+Au�No evidence of knee structure for central U+U���Glauber plus 2-component model

suggests knee structure at ~2% centrality�

��Knee washed out by additional multiplicity fluctuations?1�

��Other interpretations? �

����

1Maciej Rybczy�ski, et. al. � Phys.Rev. C87 (2013) 044908�

Erice 2016�

Dashed lines represent top centrality percentages for U+U collisions based on multiplicity, curves are used to guide the eye�

M. J. Tannenbaum 33 �

v2{4} data: we see the prolate shape of the Uranium nucleus ��The lack of a knee indicates a weakness in Ncoll multiplicity models�

Yes,Nqp!!!�

The U+U v2{4} results are non-zero in central����Result of intrinsic prolate shape of the Uranium nucleus���Au v

2{4}4 becomes consistent with

zero�

Erice 2014�

Page 34: 2009: IJMPA 26 29 (2014)1430017 1406€¦ · Run-16 resume A Low power costs allow run to make up for (most of the) lost time RHIC Run 16 RHIC performance Run 16 Replace quench protection

PHENIX NQP model: Data driven pp� dAu, AuAu�

2) Deconvolute p-p ET distribution to the sum of 2—6 quark participant (QP) ET distributions taken as � distributions�

3) Calculate dAu and AuAu ET distributions as weighted sum of QP ET distributions�

M. J. Tannenbaum 34 �

1) Generate 3 constituent quarks around nucleon position, distributed according to proton charge distribution for pp, dA, AA�

Erice 2016�

PHENIX PRC89 (2014) 044905�

Erice 2014�

Page 35: 2009: IJMPA 26 29 (2014)1430017 1406€¦ · Run-16 resume A Low power costs allow run to make up for (most of the) lost time RHIC Run 16 RHIC performance Run 16 Replace quench protection

How we generated the quarks around the nucleon position in PHENIX2014�

M. J. Tannenbaum 35 �Erice 2016�

Page 36: 2009: IJMPA 26 29 (2014)1430017 1406€¦ · Run-16 resume A Low power costs allow run to make up for (most of the) lost time RHIC Run 16 RHIC performance Run 16 Replace quench protection

M. J. Tannenbaum 36 �

Mainz, Bernauer etal�

Erice 2016�

Page 37: 2009: IJMPA 26 29 (2014)1430017 1406€¦ · Run-16 resume A Low power costs allow run to make up for (most of the) lost time RHIC Run 16 RHIC performance Run 16 Replace quench protection

We got a comment from Adam Bzdak via Pete Steinberg 6 months after the paper appeared in PRC that our method didn’t

preserve the radial charge distribution about the c.m. of the three generated quarks�

Erice 2016� M. J. Tannenbaum 37 �

�This statement is correct so several of us got together to figure out how to generate 3 quarks about a nucleon that would preserve the c.m. position and the charge distribution about this c.m and how this would affect our results from PHENIX2014.��� We found 3 new methods that preserve both the original proton c.m. with the correct charge distributions about the c.m. I discuss 2. �� See Mitchell, Perepelitsa, Tannenbaum and Stankus PRC93,054910 (2016)� �

Page 38: 2009: IJMPA 26 29 (2014)1430017 1406€¦ · Run-16 resume A Low power costs allow run to make up for (most of the) lost time RHIC Run 16 RHIC performance Run 16 Replace quench protection

[fm]r

0 0.5 1 1.5 2 2.5 3

]-1

) [fm

r/d

N)(d

N(1

/

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

PHENIX2014(after recentering)

)r(proton�×2r

0 0.5 1 1.5 2 2.5 3 3.5 4

-410

-310

-210

-110

1

Radial charge distribution about the c.m for PHENIX2014 compared to Eq.4

r2�proton(r)= r2 exp -4.27r �

Erice 2016� M. J. Tannenbaum 38 �

Page 39: 2009: IJMPA 26 29 (2014)1430017 1406€¦ · Run-16 resume A Low power costs allow run to make up for (most of the) lost time RHIC Run 16 RHIC performance Run 16 Replace quench protection

Planar Polygon �

Erice 2016� M. J. Tannenbaum 39 �

Generate one quark at (r,0,0) with r drawn from r^2 e^{-4.27r}. �Then instead of generating cos � and � at random and repeating �for the two other quarks as was done by PHENIX2014, imagine that this quark lies on a ring of radius r from the origin and place the two other quarks on the ring at angles spaced by 2�/3 radians. Then randomize the orientation of the 3-quark ring spherically symmetric about the origin. This guarantees that the radial density distribution is correct about the origin and the center of mass of the three quarks is at the origin but leaves three quark triplet on each trial forming an equilateral triangle on the plane of the ring. �

Page 40: 2009: IJMPA 26 29 (2014)1430017 1406€¦ · Run-16 resume A Low power costs allow run to make up for (most of the) lost time RHIC Run 16 RHIC performance Run 16 Replace quench protection

DVP—Empirical Radial distribution Recentered�

Erice 2016� M. J. Tannenbaum 40 �

where! r! is! the! radial! position! of! the! quark! in! fm.!�the three constituent-quark positions are drawn independently from the auxiliary function f(r) above. Then the center of mass of the generated three-quark system is re-centered to the original nucleon position. �This function was derived through an iterative, empirical approach. For �a given test function f^{test}(r), the resulting radial distribution ��^{test}(r) was compared to the desired distribution �^{proton}(r) in �Eq. 4. The ratio �^{test}(r) / �^{proton}(r) was parameterized with a �polynomial function of r or 1/r, and the test function was updated by �multiplying it with this parametrized functional form. Then, the �procedure was repeated with the updated test function used to generate �an updated �^{\rm test}(r) until the ratio �^{test}(r) / �^{proton}(r) �was sufficiently close to unity over a wide range of r values.�

Page 41: 2009: IJMPA 26 29 (2014)1430017 1406€¦ · Run-16 resume A Low power costs allow run to make up for (most of the) lost time RHIC Run 16 RHIC performance Run 16 Replace quench protection

Radial charge distribution about the c.m r2�proton(r)= r2 exp -4.27r �

M. J. Tannenbaum 41 �

]-1) [

fmr

/dN

)(dN

(1/

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Planar Polygon, n=3�

�� ����������

� ����������������

r2 exp(-r×4.27/fm)

0 0.5 1 1.5 2 2.5 3 3.5 4

-410

-310

-210

-110

1

[fm]r0 0.5 1 1.5 2 2.5 3

ratio

0.5

1

1.5

Erice 2016�

Page 42: 2009: IJMPA 26 29 (2014)1430017 1406€¦ · Run-16 resume A Low power costs allow run to make up for (most of the) lost time RHIC Run 16 RHIC performance Run 16 Replace quench protection

NQP centered with PHENIX2014 data�

Erice 2016� M. J. Tannenbaum 42 �

[GeV]TE0 100 200 300 400 500 600 700 800 900 1000

]-1

[GeV

TdY

/dE

-710

-610

-510

-410

-310

-210

-110

=0.�0���=0.654NQP=0.761NQP

200 GeV Au+AuNQP calc Planar Polygon �NQP calc Planar Polygon �NQP calc Planar Polygon �

(b)

NQP

��������� ��� ��� ��� �� �� ��� ��� �� ��� ����

���

�����

������

����

����

���

���

����

����

������������������������������������������������������������������������������������������������

� ��� ��

���

[GeV]TE0 10 20 30 40 50 60 70 80

]-1

[GeV

TdY

/dE

-610

-510

-410

-310

-210

-110

1 ����������� (c)�������������� ������!�������������������������������������� !����������

[GeV]TE0 100 200 300 400 500 600 700 800 900 1000

]-1

[GeV

TdY

/dE

-710

-610

-510

-410

-310

-210

-110

1������������������������ ��������∈������������������ ��������∈�������������������� ��������∈�������������������������������∈����������������������� ��������∈������������������������ ����� ��������∈�������

all work w

ithin 1 standard deviation�

Page 43: 2009: IJMPA 26 29 (2014)1430017 1406€¦ · Run-16 resume A Low power costs allow run to make up for (most of the) lost time RHIC Run 16 RHIC performance Run 16 Replace quench protection

Constituent-quark-participant scaling-Nqp�

Erice 2016� M. J. Tannenbaum 43 �

qpN0 500 1000

[GeV

][y

=0]

)qp

/ (0

.5 N

�/d T

dE

0

0.5

1

1.5

2

200 GeV Au+Au130 GeV Au+Au62.4 GeV Au+Au39 GeV Au+Au27 GeV Au+Au19.6 GeV Au+Au14.5 GeV Au+Au7.7 GeV Au+Au

(a)

PHENIX

qpN0 500 1000

[y=0

])

qp /

(0.5

N�

/dch

dN0

0.5

1

1.5

2

200 GeV Au+Au130 GeV Au+Au62.4 GeV Au+Au39 GeV Au+Au27 GeV Au+Au19.6 GeV Au+Au14.5 GeV Au+Au7.7 GeV Au+Au

(b)

PHENIX

PHENIX PRC93(2016)024901 �

Uses Empirical Recentered---now standard �

Page 44: 2009: IJMPA 26 29 (2014)1430017 1406€¦ · Run-16 resume A Low power costs allow run to make up for (most of the) lost time RHIC Run 16 RHIC performance Run 16 Replace quench protection

M. J. Tannenbaum 44 �

�since many people had asked why do you stop at 3 quarks: why not 2, 4, 5, we looked into this too with (dNch/d�)/0.5Nqp�

What happens with 2,3,4,5 quarks �

��������

������ ����� ������������������ ���������

�2 is rejected; 3 give the same result for all 4 methods; 4,5 seem to work as well as 3 in the PHENIX2014 calculation�

Erice 2016�

Page 45: 2009: IJMPA 26 29 (2014)1430017 1406€¦ · Run-16 resume A Low power costs allow run to make up for (most of the) lost time RHIC Run 16 RHIC performance Run 16 Replace quench protection

Agreement from ALICE�

Erice 2016� M. J. Tannenbaum 45 �

[8] ALICE Collaboration, ALICE-PUBLIC-2015-008 [9] ALICE Collaboration, arXiv:1512.06104 [nucl-ex] [10] C. Loizides, arXiv:1603.07375 [nucl-ex] ⟩

partN⟨

0 100 200 300 400

⟩η

/dch

Nd⟨ ⟩

qp

N⟨

µ, ⟩

η/d

chN

d⟨ ⟩p

art

N⟨2

4

6

8

10

12

= 5.02 TeVNNsALICE, Pb-Pb,

partN

=3.2µ=3, CN

=4.3µ=5, CN

| < 0.5 η|

�partN�0 100 200 300 400

��/d

chNd� �

part

N�2

4

6

8

10

ALICE = 5.02 TeVNNsPb-Pb,

= 5.02 TeVNNsp-Pb, = 2.76 TeV (x1.2)NNsPb-Pb,

= 2.76 TeV (x1.13)NNspp,

| < 0.5 �|

•� Decrease by 1.8 from the most central <Npart> to the most peripheral

•� Ratio between 5.02 TeV and 2.76 TeV is flat within the uncorrelated uncertainties

Glauber MC with quark scaling [10] Single quark position determined with proton density: particle multiplicity density scales linearly with the number of constituent quark participants [8]

29

Pseudorapidity density in Pb-Pb

Run 2 Centrality dependence of the charged-particle multiplicity density at mid-rapidity in Pb-Pb collisions at �sNN = 5.02 TeV [9]

ρ(r) = ρ proton0 exp(−a · r)

Page 46: 2009: IJMPA 26 29 (2014)1430017 1406€¦ · Run-16 resume A Low power costs allow run to make up for (most of the) lost time RHIC Run 16 RHIC performance Run 16 Replace quench protection

Agreement from ALICE�

Erice 2016� M. J. Tannenbaum 46 �

2015-008 04 [nucl-ex] ex] ⟩

partN⟨

0 100 200 300 400

⟩η

/dch

Nd⟨ ⟩

qp

N⟨

µ, ⟩

η/d

chN

d⟨ ⟩p

art

N⟨2

4

6

8

10

12

= 5.02 TeVNNsALICE, Pb-Pb,

partN

=3.2µ=3, CN

=4.3µ=5, CN

| < 0.5 η|

�00

Glauber MC with quark scaling [10] Single quark position determined with proton density: particle multiplicity density scales linearly with the number of constituent quark participants [8]

29

ρ(r) = ρ proton0 exp(−a · r)

Page 47: 2009: IJMPA 26 29 (2014)1430017 1406€¦ · Run-16 resume A Low power costs allow run to make up for (most of the) lost time RHIC Run 16 RHIC performance Run 16 Replace quench protection

T-Shirt Plotsour most important measurements�

•� Mike’s PHENIX T-shirt Plot from� Megan Connor’s sPHENIX Talk�•� What will be the sPHENIX Tshirt plot�

47�Erice 2016�

Page 48: 2009: IJMPA 26 29 (2014)1430017 1406€¦ · Run-16 resume A Low power costs allow run to make up for (most of the) lost time RHIC Run 16 RHIC performance Run 16 Replace quench protection

Suppressed high pT hadrons aka Jet Quenching�

Erice 2016� M. J. Tannenbaum 48 �

(GeV/c)T

p0 2 4 6 8 10 12 14 16 18 20

AA

R

00.20.40.60.8

11.21.41.61.8

22.22.4 = 200 GeV, 0-10% most centralNNsPHENIX Au+Au,

direct � 0-5% cent ����������������0 (PRL101, 232301)

(PRC82, 011902)� (PRC83, 024090)�

p (PRC83, 064903)

0-20% cent. (PRL98, 232301)�J/ 0-20% cent. (PRC84, 044902)�

(PRC84, 044905)HF�e (PRC83, 064903)+K

RAA (pT ) =d2NAA

� /dpTdyNAAinel

TAA d2� pp� /dpTdy

Note that eHF, electrons from Heavy �Flavor decay, are suppressed as much �as �0 from light quarks for pT 5-6 GeV/c�

Page 49: 2009: IJMPA 26 29 (2014)1430017 1406€¦ · Run-16 resume A Low power costs allow run to make up for (most of the) lost time RHIC Run 16 RHIC performance Run 16 Replace quench protection

Erice 2016� M. J. Tannenbaum 49 �

���� ���������� �������� �� ��

��

����� �����

��

����

���

����� � ����

PHENIX PRC93,034904 (2016)�

Page 50: 2009: IJMPA 26 29 (2014)1430017 1406€¦ · Run-16 resume A Low power costs allow run to make up for (most of the) lost time RHIC Run 16 RHIC performance Run 16 Replace quench protection

PHENIX PRC93,034904 (2016)�

Erice 2016� M. J. Tannenbaum 50 �

���� ')��$��+)'&*� )'%��"�)%��&���'++'%�& '$�#&!�+'�'�+�#&����������$��+)'&� )��+#'&�#&��,��,�'%�#&��.#+"�()�-#',*�)�*,$+*�#&�((� )'%��'))�$�+#'&��&�$/*#*

� ��� ')��� ���&���� ��*�(�)�+�$/�

�"�)%��&���'++'%�*#%#$�)$/�*,(()�**����+�"#!"�(��'++'%�$�**���$'.�0� ��������� ��+')�' �0���%')��*+�+#*+#�*� )'%��,&�����������+�/�+,&��� ')� ,+,)��,(��+�*��

�"/*����-���� �� ���� �����

Page 51: 2009: IJMPA 26 29 (2014)1430017 1406€¦ · Run-16 resume A Low power costs allow run to make up for (most of the) lost time RHIC Run 16 RHIC performance Run 16 Replace quench protection

�0 Fractional energy loss propto dNch/deta�

Erice 2016� M. J. Tannenbaum 51 �

(a) (b)

(c) (d)

(e) (f)

PHENIX-210

-110

1-210

-110

1-210

-110

1

pp T/p

Tpδ

≡lo

ssS

10 210 310 410 10 210 310 410

η/dchdNPHENIX PRC93(2016)024911�

(GeV/c)T

p6 7 8 9 10 11 12 13 14 15

dy TdN

/dp

-810

-710

-610

-510

-410

p+p dataand fit func.

Au+Au data

scaleAA

(1) T (2) Move along fit toscaled p+p data

Tp�(3) Calculate

pT(p+p) - pT(Au+Au)�

After a decade of the ratio RAA we are now paying more attention to �pT the shift in the pT spectrum as an indicator of energy loss in the QGP�

Page 52: 2009: IJMPA 26 29 (2014)1430017 1406€¦ · Run-16 resume A Low power costs allow run to make up for (most of the) lost time RHIC Run 16 RHIC performance Run 16 Replace quench protection

STAR high pT Rcp unidentified charged How low in �sNN does suppression hold�

������

������� ��������

Erice 2016� M. J. Tannenbaum 52 �

Rcp is not a good variable because peripheral may be suppressd also�

Page 53: 2009: IJMPA 26 29 (2014)1430017 1406€¦ · Run-16 resume A Low power costs allow run to make up for (most of the) lost time RHIC Run 16 RHIC performance Run 16 Replace quench protection

STAR new variable: Ncoll scaling vs centrality for a given pT�

Erice 2016� M. J. Tannenbaum 53 �

���

�������������� � �������������� �

���

Rising=Cronin effect�Flat=Ncoll scaling: no suppression�Falling=suppression: QGP�

Clear suppression for ��sNN�27 GeV QGP�

Small Cronin+Flat 19.6,11.5 GeV� Likely Hadron Resonance-Gas �need Lattice QCD at this �sNN�

Page 54: 2009: IJMPA 26 29 (2014)1430017 1406€¦ · Run-16 resume A Low power costs allow run to make up for (most of the) lost time RHIC Run 16 RHIC performance Run 16 Replace quench protection

2 particle azimuthal correlations and kT quark `intrinsic’ transverse momentum�

Erice 2016� M. J. Tannenbaum 54 �

Dijets and dihadrons are not back to back in azimuth because of kT, mean quark transverse momentum in a nucleon, named by Feynman, Field and Fox NPB128,1-65�

Page 55: 2009: IJMPA 26 29 (2014)1430017 1406€¦ · Run-16 resume A Low power costs allow run to make up for (most of the) lost time RHIC Run 16 RHIC performance Run 16 Replace quench protection

�0 �<p2out> increases with pTa for fixed pTt �

Erice 2016� M. J. Tannenbaum 55 �

�0�<p2out> for fixed pTa is ~independent of pTt �

Something dramatic becomes evident when one plots the pout distribution for fixed pTt

integrated over all pTa �

[GeV/c]trigT

p4 5 6 7 8 9 10 11 12 13 14

[GeV

/c]

�2 ou

t p�

0

1

2

3

4

5

|<0.35�|=510 GeVsp+p at

<2assocT

1<p

<3assocT

2<p

<4assocT

3<p

�Isolated Direct

0�

�� ��������������

� �<p2out> for fixed pTa decreases with pTt �

Page 56: 2009: IJMPA 26 29 (2014)1430017 1406€¦ · Run-16 resume A Low power costs allow run to make up for (most of the) lost time RHIC Run 16 RHIC performance Run 16 Replace quench protection

pout distribution vs pTt�

Erice 2016� M. J. Tannenbaum 56 �

Gaussian for pout<1.5 GeV/c likely represents the intrinsic kT while the power law �for pout>1.5 GeV/c is likely standard QCD gluon radiation�

[GeV/c]out

p-8 -6 -4 -2 0 2 4 6 8

-1 [G

eV/c

]ou

tdpdN

trig

N1

-1110

-1010

-910

-810

-710

-610

-510

-410

-310

-210

-1101

10

210 =510 GeVsp+p at |<0.35�|

3�4<��<3

�2

<10assocT

0.7<p

<5 trigT

4<p) -1<6 (x10trig

T5<p

-2<7 (x10trigT

6<p)-3<8 (x10trig

T7<p

)-4<9 (x10trigT

8<p)-5<12 (x10trig

T9<p

)-6<15 (x10trigT

12<p

±-h�Isolated ±-h0�

�� ��������������

Page 57: 2009: IJMPA 26 29 (2014)1430017 1406€¦ · Run-16 resume A Low power costs allow run to make up for (most of the) lost time RHIC Run 16 RHIC performance Run 16 Replace quench protection

Gaussian width decreases with pTt for both �0-h and �-h �

Erice 2016� M. J. Tannenbaum 57 �

This is different from the expected effect in Drell Yan in PYTHIA �simulation which may be important perhaps a contradiction for �Transverse Momentum Dependent parton distribution ideas.�

�� ��������������

[GeV/c]trigT

p4 5 6 7 8 9 10 11 12 13 14

Gau

ssia

n W

idth

[GeV

/c]

0.5

0.6

0.7

0.80�

�Isolated Direct Linear Fit0�

Linear Fit�Isolated Direct <10assoc

T0.7<p |<0.35�|

=510 GeVsp+p at

PHENIX p+pPYTHIA p+p

�� ��������������

[GeV/c]µµM20 30 40 50 60 70 80 90 100

Gau

ssia

n W

idth

[GeV

/c]

2

3

4

5PYTHIA SimulationDrell-Yan Dilepton

>4 GeVlepT

p|<0.35�|

=510 GeVsp+p at

�� ��������������

Page 58: 2009: IJMPA 26 29 (2014)1430017 1406€¦ · Run-16 resume A Low power costs allow run to make up for (most of the) lost time RHIC Run 16 RHIC performance Run 16 Replace quench protection

Net charge fluctuations from last year Search for critical point on phase diagram�

Erice 2016� M. J. Tannenbaum 58 �

Tem

per

atu

re

µ

early universe

neutron star cores

LHCRHIC

SIS

AGS

quark−gluon plasma

hadronic fluid

nuclear mattervacuum

FAIR/JINR

SPS

n = 0 n > 0

<ψψ> ∼ 0

<ψψ> = 0/

<ψψ> = 0/

phases ?

quark matter

crossover

CFLB B

superfluid/superconducting

2SC

crossover

3

Page 59: 2009: IJMPA 26 29 (2014)1430017 1406€¦ · Run-16 resume A Low power costs allow run to make up for (most of the) lost time RHIC Run 16 RHIC performance Run 16 Replace quench protection

PHENIX central cumulant ratios vs �sNN�

Erice 2015� M. J. Tannenbaum 59 �

2�/

0.01

0.1

1 Net-chargeAu+Au (0-5)%

| < 0.35�|

(a)

�S

0.0

0.2

0.4

0.6PHENIX(b)

DataNBD

(GeV)NNs10 100

2� �

0.5

1.0

1.5

2.0(c)

(GeV)NNs10 100

�/3�S

0.5

1.0

1.5

2.0(d)

Note that the ``data’’ � calculations from the �Nch=N+ - N- distributions agree with the NBD fits to the N+ and N- distribution and the NBD Cumulant Theorem.�

PHEN

IX P

RC

93,0

1190

1(R

)(20

16)�