2010.10.01-opv-prezhdo

Upload: sirajus-salekin

Post on 05-Apr-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/2/2019 2010.10.01-OPV-Prezhdo

    1/33

    LBNL Oct. 1, 2010

    Oleg Prezhdo

    U. Rochester

    Photoinduced Electron Transfer

    at Molecule-Semiconductor Interfaces:

    A Time-Domain Ab Initio Perspective

  • 8/2/2019 2010.10.01-OPV-Prezhdo

    2/33

    Adiabatic vs. Nonadiabatic MD

    electrons treated quantum-mechanically

    nuclei treated classically

    e e

    ee

    e

    e

    Nonadiabatic MD: Couplingbetween potential surfacesopens channels for system tochange electronic states.

    transition allowed

    weak coupling strong coupling

  • 8/2/2019 2010.10.01-OPV-Prezhdo

    3/33

    Time-Domain DFT for

    Nonadiabatic Molecular Dynamics

    p pxx 2)(

    SDNvqptxtxtx ,,, 21

    Electron density derives from Kohn-Sham orbitals

    H tRDFT functional depends on nuclear evolution

    txHt

    txi pp ,,

    2,1pVariational principle gives

    Ricci R

    Orbitals are expanded in adiabatic KS basis

    xtctx pp ,

    tRxtRtRxtRxH ;;;

  • 8/2/2019 2010.10.01-OPV-Prezhdo

    4/33

    How to think of bulk-molecule interface:Cluster models or MOs weakly coupled to bands?

    Electron-vibrational relaxation (heating):

    Which phonons are involved and why?

    General Questions

  • 8/2/2019 2010.10.01-OPV-Prezhdo

    5/33

  • 8/2/2019 2010.10.01-OPV-Prezhdo

    6/33

    Dye-Sensitized Semiconductor

    Solar Cell

    Oregan, Gratzel Nature 353 6346 (1991)

    Photovoltaics:

    optimize voltage, current,

    photo yield

    electron transfer mechanism

    and its properties

    Molecule-bulk interface:

    little understood in

    molecular-electronicsand other fields

  • 8/2/2019 2010.10.01-OPV-Prezhdo

    7/33

    The electron transfer did not involve redistribution of vibrational excitation energy and wascompletely different from the well known Marcus-Levich-Jortner-Gersicher mechanism.

    Burfeindt, Hannappel, Storck, Willig JPC101 6799 (1997)

    A new mechanism, not Marcus-Levich-Jortner-Gerischer ?

    Reaction Mechanism ?

    One possibility for the observed fast injection is a strong coupling of the dcbpy * orbital withTiO2, leading to an adiabatic electron transfer from dcbpy to TiO2.

    However, it is unclear whether strong coupling is necessary a large accepting state density

    in TiO2 would also give rise to an ultrafast injection time even when the coupling is weak.

    Asbury, Ellingson, Ghosh, Ferrere, Nozik, Lian JPC103 3110 (1999)

    Adiabatic orNon-adiabatic ?

    dye

    dye

    TiO2

    TiO2

  • 8/2/2019 2010.10.01-OPV-Prezhdo

    8/33

    Types of Photoexcitation

    TiO2-Alizarin TiO2-Catechol, Ru-dyes

    VB VB

    CB CB

    dye*

    dye*

    dye

    dye

  • 8/2/2019 2010.10.01-OPV-Prezhdo

    9/33

    Electronic State Densities

  • 8/2/2019 2010.10.01-OPV-Prezhdo

    10/33

    Alizarin Motion

  • 8/2/2019 2010.10.01-OPV-Prezhdo

    11/33

    Vibrationally Induced Dynamics

    of Electronic Energy Levels

  • 8/2/2019 2010.10.01-OPV-Prezhdo

    12/33

    Dynamics of Electronic

    Energy and Coupling

    Energy

    Localization

    (dye

    /semicond

    .coupling

    )

    surface OH

    Photoexcited state oscillates around the CB edgeSurface OH contribute to state localization, but not energy

  • 8/2/2019 2010.10.01-OPV-Prezhdo

    13/33

    Photoexcited

    State Energy and Localization

    Distribution of Excite State Energies

    ~40 vibrations give Gaussian distribution of excited state energyalizarin excited state delocalizes into CB at high energy

    Localization of Photoexcited

    State on Alizarin

  • 8/2/2019 2010.10.01-OPV-Prezhdo

    14/33

    Alizarin ET, simulationDuncan, Stier, PrezhdoAdv. Mater. 16 240 (2004)

    JACS 127 7941 (2005)

    total

    adiab.

    NA

    Experiment 6 fs, theory 8 fs

    Adiabatic ET dominates over non-adiabatic ETPhotoexcited state is 30% delocalized onto TiO2

  • 8/2/2019 2010.10.01-OPV-Prezhdo

    15/33

    Inside

    conduction band

    initial state dynamics final state

  • 8/2/2019 2010.10.01-OPV-Prezhdo

    16/33

    Multiple entrances

    into conduction band

    initial state dynamics final state

  • 8/2/2019 2010.10.01-OPV-Prezhdo

    17/33

    Single entrance

    into conduction band

    initial state dynamics final state

  • 8/2/2019 2010.10.01-OPV-Prezhdo

    18/33

    Adiabatic ET vs. Temperature

    14 12.8 10x s 13 1

    2 10dye x s

    KG 50

    kTGkET /exp

    low barrier, hard to see T-dependence experimentallymultiple acceptor states speed up transfer

  • 8/2/2019 2010.10.01-OPV-Prezhdo

    19/33

    Electron Relaxation Inside TiO2

    relaxation time is nearly independent of initial energy

  • 8/2/2019 2010.10.01-OPV-Prezhdo

    20/33

    Role of Electrolyte

    Fisher, Peter, Ponomarev, Walker, Wijayantha, J. Phys. Chem. B. 2000, 104, 949.

    One of the main reasons for efficiency loss

    I2 dissociates off TiO2

    I2-binds to TiO2

  • 8/2/2019 2010.10.01-OPV-Prezhdo

    21/33

    Electron-Hole

    Recombination

    1.5-2.6 ps

    in experiment

    (very fast!)

  • 8/2/2019 2010.10.01-OPV-Prezhdo

    22/33

    Complete Sequence of Events

    (based on alizarin simulation)

  • 8/2/2019 2010.10.01-OPV-Prezhdo

    23/33

    VOLTAGE

    Injection at CB edge

    CURRENT

    Anneal surface traps Keep electrolyte away from surface

    METAL-LIGAND vs. ORGANIC DYE

    Excited state towards surface Ground state away from surface Slower vibrational modes

    Practical Considerations

  • 8/2/2019 2010.10.01-OPV-Prezhdo

    24/33

    a short-lived ( 15 fs) state

    2.4 eV above the Fermi level

    Defect States

    O2- VB

    Ti4+ CB

    EF

    Evac

    e-

    TiO2 H2O

    Wet-Electrons on TiO2

    Petek: Science 308 1154 (2005); 311 1436 (2006)

  • 8/2/2019 2010.10.01-OPV-Prezhdo

    25/33

    Charge density of wet-electron state supported via

    dangling H atoms on the surface H2O more important than OH

    High level of charge delocalization over TiO2 substrate

    Fischer, Duncan, PrezhdoJ. Am. Chem. Soc. 131 15483 (2009)

    Wet-e: Electronic States

  • 8/2/2019 2010.10.01-OPV-Prezhdo

    26/33

    Thermal fluctuations distort geometry, affecting electronic dynamics

    Changes in the Ti-O bond lengths/angles affect the electrostatic interactions

    between the H2O and the substrate surface

    Wet-e: Surface Motions

    Fischer, Duncan, PrezhdoJ. Am. Chem. Soc. 131 15483 (2009)

    Surface layers shift sideways

  • 8/2/2019 2010.10.01-OPV-Prezhdo

    27/33

    Energy is affected by movement of surface hydrogen atoms,

    while localization depends mostly on motion of heavier atoms

    Energy Localization(donoracceptor

    coupling)

    Active Phonon Modes

    Fischer, Duncan, PrezhdoJ. Am. Chem. Soc. 131 15483 (2009)

  • 8/2/2019 2010.10.01-OPV-Prezhdo

    28/33

    Strong coupling & high TiO2 DOS favor ultrafast ET

    ET starts from a state with significant TiO2 contribution

    NA & adiabatic ET mechanisms play equal roles

    Electron Transfer Dynamics

  • 8/2/2019 2010.10.01-OPV-Prezhdo

    29/33

    Displays similar characteristics to dye-semiconductor systems

    Ultrafast ET driven by relatively low frequency vibrational modes

    Both adiabatic and NA mechanisms are important

    Wet-electron differs in being a true interfacial state

    Results have practical implications TiO2 is a popular electrode material and the wet-electron state is likely to

    play role in electro-chemical photolysis, e.g. water splitting

    Provides fundamental understanding for the role of electrolyte in dye-

    sensitized semiconductor solar cells

    Wet-e: Conclusions

  • 8/2/2019 2010.10.01-OPV-Prezhdo

    30/33

    How to think of bulk-molecule interface:Cluster models or MOs weakly coupled to bands?

    Electron-vibrational relaxation (heating):Which phonons are involved and why?

    General Questions

    Ri R

  • 8/2/2019 2010.10.01-OPV-Prezhdo

    31/33

    TiO2particle size effect on ET dynamics Polymer on TiO2 Reverse process: CdSe to a dye

    Quantum dot on TiO2 Realistic models of electrolyte

    Role of triplet, etc. states in Ru-dyes

    Chromophore diads Anatase-Rutile interface

    Current & Future Projects

  • 8/2/2019 2010.10.01-OPV-Prezhdo

    32/33

    Annu. Rev. Phys.Chem. 58 143 (2007)

    Acc. Chem. Res. 41 339 (2008)Prog. Surf. Sci. 84 39 (2009)

    J. Phys. Chem.B 106 8047 (2002)

    J. Mol. Struct630

    33-43 (2003)Isr. J. Chem. 42 213-224 (2003)

    Adv. Mater. 16 240 (2004)

    J. Am. Chem. Soc. 127 7941 (2005)

    J. Phys. Chem.B 109 365 (2005)

    J. Phys. Chem.B 109 17998 (2005)

    Phys. Rev. Lett. 95 163001 (2005)

    J. Am. Chem. Soc. 129 8528 (2007)

    J. Am. Chem. Soc. 130 9756 (2008)

    J. Am. Chem. Soc. 131 15483 (2009)

    Book Chapters:Elsevier(2006), Springer(2007)

    Publications

  • 8/2/2019 2010.10.01-OPV-Prezhdo

    33/33

    Bill Stier (UT-Austin)

    Walter Duncan (Schrodinger Inc.)

    Zhenyu Guo (visitor from China)

    Sean Fischer (current student)

    DOE, NSF

    Acknowledgments