jaeri-tech--97-038 jaeri-tech 97-038jaeri-tech 97-038 contents 1. introduction 1 2. material(f82h...

Post on 24-Feb-2021

3 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

JAERI-Tech--97-038

JAERI-Tech97-038 JP9709036

1997 3E9E

Japan Atomic Energy Research Institute

(T319-11

This report is issued irregularly.

Inquiries about availability of the reports should be addressed to Research Information

Division, Department of Intellectual Resources, Japan Atomic Energy Research Institute,

Tokai-mura, Naka-gun, Ibaraki-ken 319-11, Japan.

© Japan Atomic Energy Research Institute, 1997

en

JAERI-Tech 97-038

£?8$ i t • itLLi

(1997^ 7 ^ 15 B

(JRR-2, JMTR)

tf o X % tzo i tz

(i, IEAf6:^ltfk7i7^ h / v ^ f ^ t - f h#i7- + >^

Jlft, B^, EU, T 'J *

JAERI-Tech 97-038

Properties of Low Activation Ferritic Steel F82H IEA Heat— Interim Report of IEA Round-robin Tests (1)—

Kiyoyuki SHIBA, Akimichi HISHINUMA, Akira TOHYAMA*and Katsumi MASAMURA*

Department of Materials Science and EngineeringTokai-Research Establishment

Japan Atomic Energy Research InstituteTokai-mura, Naka-gun, Ibaraki-ken

(Received July 15, 1997)

F82H has been developed by JAERI and NKK Co.Ltd. as a low activation ferritic steel for anuclear fusion reactor, such as prototype reactor and beyond. We have evaluated theproperties of this material including the neutron irradiation effects using JAERI reactors(JRR-2, JMTR) and HFIR at ORNL. F82H also had been chosen as a reference material forthe round-robin testing planned by the IEA workshop on the low activationferritic/martensitic steels. These round-robin tests are conducted by several research groupsin Japan, European Union,and the United States.

The results for the Japanese share of IEA round-robin tests have been obtained, and aresummarized in this report. Several properties, such as microstructure, mechanicalproperties, and physical properties have been obtained. The results are important for theestimation of the possible availability as a fusion reactor material and for the improvementof this material. Data accumulation and the preparation of the database are quite importantfor the reactor design activity.

Keywords : Low Activation Ferritic Steel, Physical Properties, Mechanical Properties,IEA Round-Robin Tests, Microstructure, Vacuum Properties,Corrosion Resistance

* NKK Co.Ltd. Central Research Center

JAERI-Tech 97-038

1. 12 ZtbK 1

2. | | f t : ov> t (F82H£lIEAt±-^*&*>LJI#) 4

3. I£®W& 8

3. 1 &ffiUM 8

3.2 t>3«Jf#14 9

3.3 « t tK#t t 13

3.4 K ^ ^ t t 16

3.5 g&&!}f14 17

4 . i^^lg^jo J: (f%m 21

4. 1 :£ffii£®j 21

4 . 2 t/SM^tt 29

4 . 3 WttfLMftft. 54

4 . 4 * ^ H 4 73

4. 5 J£&!fttt 85

5. i bib 94

m m 9696

97103

JAERI-Tech 97-038

Contents

1. Introduction 1

2. Material(F82H IEA Heat Standard Heat Treatment) 4

3. Experimental Procedure 8

3.1 Metallography Test 8

3.2 Physical Properties 9

3.3 Mechanical Properties 13

3.4 Vacuum Properties 16

3.5 Corrosion Resistance 17

4. Results and Discussion 21

4.1 Metallurgical Tests 21

4.2 Physical Properties • 29

4.3 Mechanical Properties 54

4.4 Vacuum Properties 73

4.5 Corrosion Resistance 85

5. Summary 94

Acknowledgments 96

References 96

Appendix A Tensile Test Charts 97

Appendix B Fatigue Test Stress-strain Hysteresis Curves 103

IV

JAERI-Tech 97-038

1. Itttblz

F82H m\tWmt NKK

2, JMTR)-£*H ORNL (D HFIR

Fig. 1 ic

2030

, Fig. 2 ( c ^ f *9f=» ^ S B * - E U fc

- 1 -

Time Schedule of F82H Development for Fusion Device

i

I

ITER/Prototype/Demo Reactor

IFMIF

(1)Material Development- Standard/Control Properties- Basic Irradiation Properties-Compositional Optimization

(2)Making/Fabrication Technologies- Large Heat Melting- Welding/Joining- Component Fabrication

(3)Properties under Fusion Neutrons- Heavy Irradiation- 14MeV Neutron Irradiation- Fission & Fusion Correlation

(4)Utilization Technologies for- Quasi-Brittle Materials

- Ferromagnetic Materials- Fusion Environment

(5)Data Accumulation for Designing &^ Construction

1995 2000 2005 2010i i i i _ _

2015 2020j i _ _

2025 2030 2035 2040i i i i _ _(ITER) Design/ponstructic)n

.5t

BPP

CDA EDAiConstruction(C&R)

lEA'Collaboration/Round

^Prototype)

Robin Tests

HFIR Phased

iTiq/EB/HIP

SSTT LFission Reactor (HFIRVPhenix/JOYO) Irradiation

Model Simulation

Blanket Module, etc.

Fracture Mechanism

JFT-2M

Coating, etc.

IFMIF Irradiation

esign Code

AF?PDesign Construction

Operation

(DEMO)

Module Tesjt using ITER

JOYO/IFMIF Irradiation

Design/ConstructionOperation

8—0

Fig. 1 Time Schedule of F82H development for fusion devices

JAERI-Tech 97-038

fc IEA t - h t t J

ISfiU

NKK

B

BRW

si

NKK(|)

K P tf(1994-1999)

ORNL-Oak RidgePNL-RichlandUC-Santa Barbara

EU

CEA-SaclayCIEMAT-MadridECN-PettenENEA-CasacciaEPFL-VilligenFZK-KarlsruheNFR-NykopingPSI-Villigen

Fig. 2 Participant of IEA round-robin testing on low activation ferritic steels

- 3 -

JAERI-Tech 97-038

2. IEA fc-

IEA

9741, 9753), t—

9753

0CD 5ton fc—

9741 OM>=fyhfrbl* 7.5mm Hi : 15mm Wa>fl*t£, t—

15mm W-t 25mm J i ^ i W ^ t l ^ t l U H t U i o Fig. 3

IEA t - F82H i^ IEA t -

Table2 lz

Table 1 Ic

Fig. 4 fccfctf Fig. 5 ( c ^ f 0

Melting 5ton VIF

Casting | top:350 x 1410, bottom:250 x 1350, height:2000 mm

temp: 1250 °CBlooming

slab size: 1310 x 3820 x 115t mm

Grinding slab size: 1310 x 3820 x 107t mm

Slab cutting Powder cutting

Hot rolling Reversible rolling mill: reduce to 7.5t, 15t, 25t mmtemp: 1250°C

Normarizing temp: 1040°C

Tempering 750°C x 60 min

Plate cutting Plasma cutting: 7.5t, 15t, 25t mm plates

Fig. 3 F82H IEA heat production flow

- 4 -

i

Slab

Ingot Top

IngotBottom

PlateRolling direction

Aooo

7.5t

15t

3000

RB801-1

RB801-2

RB801-3

'•RB801-4

X

RB801-5

RB801-6

RB801 -7

RB801-8

. - - >RB802-1

RB802-2

RB802-3.__

RB802-4

(Unit: mm)32

0

/

F

s

1B801-X

X-2

X-3

•Y(X=1-8

X-4

X-5

X-6

, Y=1-21), RB802-X-Y(X=1-4, Y=1-21)

X-7

X-8

X-9

X-10

X-11

X-12

X-13

X-14

X-15

X-16

X-17

X-18

X-19

X-20

X-21

>

to—j

ooo

Fig. 4 F82H IEA heat (Heat No. 9741)

Slab

Plate

Ao

8

25t5500

RB820-1

RB820-2

A 15t^ 4000

RB819-1

RB819-1

\V

A

(Unit: mm)

Rolling direction

>TO

Ho

RB820-1,2 (25t); y=31 or 41 RB819-1,2(15t); x=1 or 2

yW-1

yW-14

yW-27

yW-13

yW-26

yW-39

xW-1

xW-10

xW-19

xW-9

xW-18

xW-27

Fig. 5 F82H IEA heat (Heat No. 9753)

JAERI-Tech 97-(

Table 1HeatNo.

9741

9753

Chemical compositions

Roll No.

LadleRB801-1RB801-8RB802-1RB801-4LadleKG819-2KG819-1KG 820-2KG 820-1

C

0.090.090.090.090.090.090.090.090.090.09

Si

0.110.110.110.110.110.080.070.070.070.07

Of F82H

Mn

0.160.160.160.160.160.10.10.10.10.1

IEA heat (wt%)

P

0.0020.0020.0020.0020.0020.0030.0030.0030.0030.003

S

0.0020.0020.0010.0020.0020.0010.0010.0010.0010.001

Cu

<0.010.010.010.010.010.010.010.010.010.01

Ni

0.020.020.020.020.020.020.020.020.020.02

Cr

7.667.707.647.717.707.897.877.877.847.82

Mo

<0.010.0030.0030.0030.0030.0030.0030.0030.0030.003

HeatNo.

9741

9753

Roll No.

LadleRB801-1RB801-8RB802-1RB801-4LadleKG819-2KG819-1KG820-2KG820-1

V

0.160.160.160.160.160.190.190.190.190.19

Nb

<0.010.00010.00010.00010.00010.00020.00020.00020.00020.0002

B

0.00020.00020.00020.00020.00020.00020.00020.00020.00020.0002

To.N

0.0050.0060.0080.0060.0080.0060.0060.0070.0070.007

Sol.AI

0.0010.0030.0030.0030.0030.0010.0010.0010.0010.001

Co

<0.010.0050.0050.0050.0050.0030.0030.0030.0030.002

Ti

0.010.010.010.010.010.0040.0040.0040.0040.004

Ta

0.020.020.020.020.020.020.040.030.040.04

W

2.001.941.971.951.951.991.981.981.981.98

Table 2 Heat treatment conditions of F82H IEA heatHeat No.

9753

7941

Thickness15 mm25 mm

7.5 mm15 mm

Normarizing _j1040°Cx38min1040°Cx40min1040°Cx37min1040°Cx38min

Tempering750°Cx60min750°C x 60 min750°Cx60min750°C x 60 min

7 -

JAERI-Tech 97-038

3.

F82H m IEA fc-

3. 1.

3 . 1 . 1 .

7.5, 15s 25mm <D&®fa 5-14, 2W-23, 42W-18 «fcy% 50 x 30 x t (O

3. 1. 2.

5 i^ (S ]®^WgL, JIS G

&Jte<*:tf ASTM E45-87 Tstandard

Practice for Determining the Inclusion Content of Steelj0 A :,£[z$

3. 1. 3. S

WLM 7.5, 15, 25mm (D&fflWL 5-16, 2W-23, 42W-18 cfcy, 30 x 10 x t

100

JAERI-Tech 97-038

3. 2.

3. 2. 1.

15mm (DMfi 2W-10 J:y,«j>16xiOLmm

3. 2. 2. ttj»

* 15mm 0)WSL 2W-10

SH-3000

Fig. 6

AG

At

S*;ffl5£mis

SSSlB1*

Fig. 6 Specific heat measuring system (isothermal method)

3. 2. 3 m

12L (c DL-7000

0.4°C/min

3. 2. 4. &

15mm (Oflffi 2W-10 <fcy, J»

- 9 -

JAERI-Tech 97-038

Fig. 7 [c

3.2.2 -e

a

oc= 1.37-LVt

. a: $*L:ti/2-

1/2 d)

; a S ATmCD 1/2 (DS

(2)

Fig. 7 Schematic diagram of the thermal conductivity measurement

- 1 0 -

JAERI-Tech 97-038

3. 2.5. ^

Fig. 8 lz

JIUiF^LTI*,

z 1 ~ioMHz

(3)

E: Young's modulusG: Modulus of rigidityv : Poisson ratioVc: Sonic speed of

longitudinal waveVs: Sonic speed of

transverse wavep: Density

Fig. 8 Schematic diagram of Young's modulus and modulus of rigiditymeasurement using super sonic method

- 1 1 -

JAERI-Tech 97-038

3. 2. 6.

200,300.

c(i DMS

Fig. 9 Ic

3000Oe *-efc«fci; 15000Oe

xtf-a-

Fig. 9 schematic diagram of the magnetic properties measurement

- 1 2 -

JAERI-Tech 97-038

3. 3.

3. 3 . 1 .

s JIS Z \ £

10kgf(9.8N),

B

3. 3. 2. a

mm 15mm <*)&£ 2W-10

KUJIS G

»KK* f ro f c 0 K e ( = l i A * a » ^ — h ^ 7 IS-10T

;£. 50, 100. 200, 300, 400, 450, 500, 550, 600, 650, 7OO°C<7) 12 fc

Fig. 10 Iz

R3

(|)6.2±0.02C2

(mm)

R0.590° R0.5

CO•e-

l\ l\

cb-e-oq

-©oo-e-

Fig. 10 Dimension of the tensile test specimen

- 1 3 -

JAERI-Tech 97-038

3. 3. 3.

15mm

11

2W-10

1 O m m ) £ « U JIS Z2242

M-50-ICA S ^

c, -20, -50, -

SEM JSM-T330 \z£<>)fem 200 {SfcJ:t; 2000

SEM

s Fig.

Fig. 11 Positions of the SEM observation of fracture surface after Charpy test

B

3. 3. 4. ^ ' J -

M 15mm (D®m 2W-10

U

Table 3 I c ^

Table 3 Creep test conditions

ID

2W1012W1022W1032W1062W1052W104

Test temp.(°C)

600650600650600650

Applied stress(MPa)

18012016010015075

Expected rupture time(h)

300

1000

3000

- 1 4 -

JAERI-Tech 97-038

3. 3. 5.

25mm

Table 4 Iz,

42W-18 JIS Z

zo tt

EMF-EB3

& 0.1

^ S Fig. 12 fz

Table 4 Fatigue test conditions

ID

97

Gauge length(mm)

£

Test temp.

RTRT

Total strain

1.00.6

range

_ 20 ^ ,

(mm)

Fig. 12 Dimension of the fatigue test specimen

- 1 5 -

JAERI-Tech 97-038

3. 4.

15 x 15 xO.4t mm 2000 #<7)X>'J— ffi-ePfift, 0.05urn

AQA-100MPX

::l£, -b<=i—«««:« Model

STP-300 S-7tf^tf>?($su£J£:0.34 m3/s:N2)<t ULVAC

TypeOMT-050(»StiSJt:0.06 m3/s), -ett lcf l |«i/K>^tL

Model 929-9119 >^ r ^—7K>^* f f i f f lU I'J^B#(7)^Jr>/'v-*(DE^Ii 12 x

10"5 Pa -Cfcofco H5t»a0)«l f i ia* Fig. 13 d

TDS

ft, 10

0.08, 0.17, 0.33, 0.55, 0.83 deg/s

m/e=1 - 4 5

QMS

0 £f:QMS£>JfS

TMP RP

OrificeWindow (1Omm<|>)

,MIG

Ti Getter ManipulatorPump

Transfer Rod

—cSample

TMP RP

Valveo\

Fig. 13 Schematic diagram of the released gas analysis system (TDS method)

- 1 6 -

JAERI-Tech 97-038

3. 5.

F82H

(is F82H HT-9

z F82H MIc 43wx20Lx6t mm

o Table 5 \z HT-9

TableC

0.19

5 Chemical comjSi

0.22Mn

0.48P

0.018

position of HT-9 steel (wt%)S

0.001Ni

0.59Cr

12.0Mo

1.00V

0.29Sol.AI

<0.0005W

0.02Ta

0.51T.O. I

0.002||

Fig. 15 ic

- [ c r * 6

K*4(TP1 ~

o Table 6

Table 6 Estimated test temperature of each specimen position(in the case of 280°C operation)

Distance from top(mm)

Temp (°C)

Thermocouple(measured)

TC1

159

281

TC2

343

220

Test piece (calculated)

TP1

139

290

TP2

179

275

L TP3

219

260

TP4

259

250

TP5

299

235

^ 6

339

220

- 1 7 -

JAERI-Tech 97-038

0.8 ppm

920°C),Ci\ AI203sNH4CI

» unmmvtD cr 40%cr

. HCI

2.

3.

4.

5.

Cr

NH4CI <-> NH3 + HCI (2NH3

Cr + 2HCI - CrCI2 + H2

CrCI2 + H2 - Cr + 2HCI

CrCI2+Me - Cr+MeCI2

N2 + 3H2)

- 1 8 -

I i§

Fig. 14 High-temperature water circulation system for corrosion teset

CO

o±m

300

280

260

240

220

200

TP1

TP2

TP3

TP4

TP5

TP6

A

139

TC1

179219 259 299 339

TC2

96 33 40

159 TC1

40

\ / \

_ \40 40 40

343

/ \ z_

TC2(mm)

Fig. 15 Alignment of corrosion test pieces and estimated temperature

JAERI-Tech 97-038

4.

4. 1.

4 . 1 . 1 .

photo 1 fc<m* Photo 2 ic

ASTM 3.o , m(7) ASTM & J t 7.5

c Ta

Ta

4. 1. 2.

Table 7 (c JIS JilZ , £tz Table 8 Iz ASTM ;

Photo 3

Photo 4 izJF

Table 7 Non-metallic inclusion analysis result of F82H IEA heat(JIS method)

Roll No.

RB801-5KG819-2KG819-2

Plate ID

5-142W-23

42W-18

Thickness(mm)

7.51525

Type of inclusion (%)A type0.00400

Btype0.0200.004

Ctype0.020.020.04

L_Total0.050.02

^ 0.04

Table 8 Non-metallic inclusion analysis result of F82H IEA heat(ASTM method)

Roll No.

RB801-5KG819-2KG819-2

Plate ID

5-142W-23

42W-18

Thicckness(mm)

7.51525

At iT1.0

00

/peH

000

Type ofBtypeT1.51.01.5

H0.51.0

0

nclusionCtypeT

000

H000

Dt>T1.01.51.0

/peH0.50.50.5

4. 1. 3. 5

Photo 5-7 lcs

- 2 1 -

JAERI-Tech 97-038

(ill

I 2mm

Photo 1 Macroscopic structure of F82H IEA heat (x5); (a) 5-14, (b) 2W-23

- 2 2 -

JAERI-Tech 97-C

Photo 2 Macroscopic structure of F82H IEA heat (x5); (42W-18)

- 2 3 -

JAERI-Tech 97-038

5-14 ASTM method x100

A

type

B

type

D

type

5-14 JIS method x400

A

type

B

type

C

type

• • £ - : • • "

*The largest inclusion in the scope was photographed

Photo 3 Non-metallic inclusion in F82H IEA heat (5-14)

I 25|im I

- 2 4 -

JAERI-Tech 97-038

2W-23

B

type

D

type

42W-18

B

type

D

type

ASTM method x1OO

ASTM method x100

-

2W-23

B

type

C

type

42W-18

B

type

C

type

JIS method x40C

JIS method x400

*The largest inclusion in the scope was photographed

Photo 4 Non-metallic inclusion in F82H IEA heat (2W-23, 42W-18)

- 2 5 -

( a ) ,

J

' • , ,

* - • • / : •

JAERI-Tech 97-038

', t5.

"*.:&& • "

*-•

'•iff' ' '•"? ~i •• /»

9

' "• <.

, f

• , '

V

. ¥\7v I -

I 25nm I

Photo 5 Microstructure of F82H IEA heat (5-16); (a) x100, (b) x400

- 2 6 -

JAERI-Tech 97-038

(b)-

.&.

•'-h• i f - ' " •'.

'*^^ >•

~ ' Ui '• * * *> ' ' - - **» J •••' ' > / ' '

Photo 6 Microstructure of F82H IEA heat (2W-23); (a) x100, (b) x400

- 2 7 -

JAERI-Tech 97-038

<

• ' • * • -

'• J ,

V A" ,,

*?yr'-J •*',*" ''&*• ^ . r

f *•

s - V

•' * Us9

* > ,

» • ; • • •

Hi'

/ " • ,

V.

tv.,

*.*• : ' ,•*:-.

• '

I25nmi

Photo 7 Microstructure of F82H IEA heat (42W-18); (a) x100, (b) x400

- 2 8 -

JAERI-Tech 97-038

4. 2.

4. 2. 1.

fc F82H 7.87 g/cm3

4. 2. 2. it®

9 I z ^

Fig. 16 (z

CD 5 h> ; t

Table 9 Specific heat of F82HTest temp.

(K)293323373423473523573623673

Specific heat(J/kg-K)

448460477494510527544565586

IEA heatTest temp.

(K)723773823873923973

102310331073

Specific heat(J/kg-K)

611644682728782866

10751155803

- 2 9 -

JAERI-Tech 97-038

4. 2. 3.

Table

5 h>i Fig. 17 iz

Ehrlich

[4]o

Table 10 Results of thermal expansion measurement of F82H IEA heat

Test temp.(K)

293373473573673773873973

107311731273

Thermalexpansion (%)

Heating | Cooling^0

6.0866.1980.3136.4436.5780.7160.8480.9840.8761.048

-0.137-0.0450.0770.1950.3170.4450.5860.7300.7720.8131.049

Temp, range(K)

293-373293-473293-573293-673293-773293-873293-973293-1073293-1173293-1273

-

Thermal expansioncoefficient (1/K)

Heating10.8 x 10"'11.0x10"'11.2x10"'11.7x10"'12.0 X10"6

12.3x10"'12.5x10"'12.6x10"'10.0x10"'10.7x10"'

-

^Cooling*11.5 x 10"'11.9x10"'ii.9xi6"6

12.0x10"'12.1 x i o 6

12.5x10"'12.8x10"'11.7x10"'10.8x10"'12.1 x10"6

-

'Coefficient during cooling was calculated with the room temperature aftercooling (293K).

- 3 0 -

JAERI-Tech 97-038

4. 2. 4. mmmmTable 11 iz CD 5

18 lc

Table 11 ( z ^

Table 11Test

temp.(K)293373473573673773873973

1073

Thermal properties of F82H IEA heatThermal diffusion

coefficient(cm2/s)

0.08850.08656.08220.07850.07250.06560.05750.04790.0474

Specificheat

(J/kg-K)

448477511544586644728866804

Thermalconductivity

(W/m-K)

31.333.633.133.733.533.333.032.730.1

Calibrated thermalconductivity

(W/m-K)

31.332.532.933.433.032.732.331.929.2

- 3 1 -

JAERI-Tech 97-038

1200

1000

6)800

CO

5 600o

1 400Q.CO

200

0

-••"Pre-IEAheat|

yA

200 400 600 800

Test Temperature (K)

Fig. 16 Specific heat of F82H IEA heat

1000 1200

cCDO

•+—CDO

OcoCOc03CLX

LJJ"cc£CD

X10-6

r 1 3

12

11

10

8

y-••-Pre-IEAheatl-o-IEAheat i

VJ

0 200 400 600 800 1000 1200 1400

Test Temperature (K)

Fig. 17 Thermal expansion coefficient of F82H IEA heat

- 3 2 -

JAERI-Tech 97-038

40

35

4

ocoO

CD

30

25

20

* ^ .

-••- Pre-1 EAh€-°-IEAheat

'atSI

—0 o.

\

200 400 600 800

Test Temperature (K)

Fig. 18 Thermal conductivity of F82H IEA heat

1000 1200

- 3 3 -

JAERI-Tech 97-038

4. 2. 5.

Table 12 IZ

Table 12 <D

*fc-€-<DISJIi£ Fig. 19 ic

Table 12Testtemp.

(K)293323373423473523573623673723773823873923973

Elastic modulus and modulusSonic speed of

longitudinalwavejm/s)

598059605950593058805840582057905760572056405580552054405350

Sonic speed oftransversewavejm/s)

327032503240321031903180315031303110309030502990295028702790

of rigidity^

Poissonratio

0.290.290.296.296.290.290.290.290.290.290.290.300.300.310.31

of F82H IEA heatModulus of

rigidity(GPa)

84.183.3 (83.3)82.4 (82.3)81.1 (81.0)80.4 (80.2)79.6 (79.4)87.1 (77.8)77.3 (77.0)76.1 (75.8)75.4 (75.0)73.1 (72.7)70.5 (70.6)68.4 (67.9)64.9 (64.4)61.4(60.9)

Elasticmodulus

(GPa)217215(215)213(213)210(210)207 (207)205 (204)202(201)200(199)197(196)195(194)189(188)183(182)178(177)170(169)161 (1601

4. 2. 6.

Table 13~Table 21 j^to Fig.

S fc tXx 'J vX f f i l f £ Fig. 21 -Fig. 28 (

19500 '

17500

210 170

210

- 3 4 -

JAERI-Tech 97-038

220(a) Elastic modules

COQ _CDLU

200

180

160

COQ_CDCD

80

70

60

en

(b)

-

-

-

Modules of ric1jidity

0.40 (C) Poisson ratio

"cS 0.35DC

§0.30COo°~ 0.25 h

0.20.200 400 600

Temperature (K)800 1000

Fig. 19 Elastic modulus, modulus of rigidity and Poisson ratio of F82H IEA heat

- 3 5 -

JAERl-Tech 97-038

20000

enC/>

CO

wCD

19000

18000

17000

CO

CO

CD

0

100 200 300 400

400100 200 300Test temperature (°C)

Fig. 20 Temperature dependence of magnetic properties of F82H IEA heat

- 3 6 -

I00

Table 1Testtemp.

(K)

300

473

573

673

3 Summary of maqnetic properties of F82H IEA heatFile

name

RTLRTC200L

200C1300L300C400L400C

Mass

(kg)0.1610.1700.1610.1700.1610.1700.1610.170

Sigma

(EMU/q)1.983E+021.960E+021.910E+021.881 E+021.848E+021.822E+021.765E+021.740E+02

Umax

(Oe)1.500E+041.500E+041.500E+041.500E+041.500E+041.500E+041.500E+041.500E+04

Bs

(Gauss)1.967E+041.943E+041.894E+041.866E+041.833E+041.807E+041.750E+041.726E+04

Br

(Gauss)2.162E+022.009E+022.080E+021.931 E+021.895E+021.697E+021.668E+021.697E+02

SQ

1.100E-021.034E-021.098E-021.035E-021.034E-029.388E-039.533E-039.830E-03

S*

4.496E-021.659E-024.067E-022.941 E-021.672E-023.333E-026.216E-02

-1.272E-02

Hc

(Oe)4.462E+011.473E+011.372E+011.417E+011.278E+011.250E+011.115E+011.214E+01

AH

(Oe)2.264E+032.549E+032.235E+032.452E+032.160E+032.367E+032.060E+032.233E+03

Sfd

1.549E+021.731 E+021.629E+021.731 E+021.691 E+021.893E+021.847E+021.839E+02

Sigma :Hmax :

Bs :Br :H c :SQ :S*A

(EMU/g)(Oersted)(Gauss)(Gauss)(Oersted)

:A/Hc

:dH/Hc

to

JAERI-Tech 97-038

Table 14Oersted

1500012000900060003000200019001800170016001500140013001200110010009008007006005004003002001001050-5-10-15-20-25-30-35-40

F82HPGauss19670196701963019550193101887018770186501850018300180401769017210165601575014790136701239010980951280036466491033491783376.9302.7216.2148.374.14-6.178-80.32-160.6-234.8-315.1-389.2

IIEA fc-hOersted

-45-50-55-60-65-70-75-80-85-90-95-100-200-300-400-500-600-700-800-900

-1000-1100-1200-1300-1400-1500-3000-4500-6000-7500-9000-10500-12000-13500-15000-15000

Gauss-469.5-545.7-624

-704.3-784.6-858.8-935-1015-1094-1174-1254-1328-2889-4436-5989-7519-9041-10540-11980-13330-14510-15540-16410-17100-17620-17980-19320-19500-19580-19630-19670-19680-19690-19670-19670-19670

Oersted

-12000-9000-6000-3000-2000-1900-1800-1700-1600-1500-1400-1300-1200-1100-1000-900-800-700-600-500-400-300-200-100-10-5051015202530354045

5t*££(3(Gauss

-19670-19630-19550-19310-18870-18770-18650-18500-18300-18040-17690-17210-16560-15750-14790-13670-12390-10980-9512-8003-6466-4910-3349-1783-376.9-302.7-216.2-148.3-74.146.17880.32160.6234.8315.1389.2469.5

)0K, RTL)Oersted

505560657075808590951002003004005006007008009001000110012001300140015003000450060007500900010500120001350015000

Gauss

545.7624

704.3784.6858.89351015109411741254132828894436598975199041105401198013330145101554016410171001762017980193201950019580196301967019680196901967019670

- 3 8 -

JAERI-Tech 97-038

Table 15 F82H#UEAfc- , RTC)Oersted

1500012000900060003000200019001800170016001500140013001200110010009008007006005004003002001001050-5-10-15-20-25-30-35-40

Gauss

194301944019400193301904018490•18370182101803017780174501700016390156301474013720125801132010000864372625868445630381622347.1275

200.9138.568.25-3.9

-70.2-142.4-214.5-284.7-354.9

Oersted

-45-50-55-60-65-70-75-80-85-90-95-100-200-300-400-500-600-700-800-900-1000-1100-1200-1300-1400-1500-3000-4500-6000-7500-9000-10500-12000-13500-15000-15000

Gauss

-425.1-497.3-565.5-637.7-707.9-780

-852.2-922.4-992.6-1063-1133-1205-2623-4029-5439-6839-8229-9598

-10940-12230-13420-14500-15440-16240-16890-17380-19040-19260-19350-19400-19430-19450-19450-19430-19430-19430

Oersted

-12000-9000-6000-3000-2000-1900-1800-1700-1600-1500-1400-1300-1200-1100-1000-900-800-700-600-500-400-300-200-100-10-5051015202530354045

Gauss

-19440-19400-19330-19040-18490-18370-18210-18030-17780-17450-17000-16390-15630-14740-13720-12580-11320-10000-8643-7262-5868-4456-3038-1622-347.1-275

-200.9-138.5-68.25

3.970.2142.4214.5284.7354.9425.1

Oersted

505560657075808590951002003004005006007008009001000110012001300140015003000450060007500900010500120001350015000

Gauss

497.3565.5637.7707.9780

852.2922.4992.61063113312052623402954396839822995981094012230134201450015440162401689017380190401926019350194001943019450194501943019430

- 3 9 -

JAERI-Tech 97-038

Table 16 F82HSHIEAL— ,200L)Oersted

1500012000900060003000200019001800170016001500140013001200110010009008007006005004003002001001050-5-10-15-20-25-30-35-40

Gauss18940189501890018830186301830018230181401802017870176801741017060165201577014820137101243011040956880486504493433651783362.5288.3208

133.959.72-20.59-96.79-175

-255.4-331.6-416

Oersted

-45-50-55-60-65-70-75-80-85-90-95-100-200-300-400-500-600-700-800-900

-1000-1100-1200-1300-1400-1500-3000-4500-6000-7500-9000-10500-12000-13500-15000-15000

Gauss-490.1-570.5-644.6-724.9-805.2-881.4-959.7-1040-1118-1197-1277-1355-2931-4494-6057-7607-9133-10640-12080-13410-14590-15590-16400-16970-17350-17630-18670-18830-18890-18930-18950-18970-18960-18940-18940-18940

Oersted

-12000-9000-6000-3000-2000-1900-1800-1700-1600-1500-1400-1300-1200-1100-1000-900-800-700-600-500-400-300-200-100-10-5051015202530354045

Gauss-18950-18900-18830-18630-18300-18230-18140-18020-17870-17680-17410-17060-16520-15770-14820-13710-12430-11040-9568-8048-6504-4934-3365-1783-362.5-288.3-208

-133.9-59.7220.5996.79175

255.4331.6416

490.1

Oersted

505560657075808590951002003004005006007008009001000110012001300140015003000450060007500900010500120001350015000

Gauss570.5644.6724.9805.2881.4959.71040111811971277135529314494605776079133106401208013410145901559016400169701735017630186701883018890189301895018970189601894018940

- 4 0 -

JAERI-Tech 97-038

Table 17Oersted

1500012000900060003000200019001800170016001500140013001200110010009008007006005004003002001001050-5-10-15-20-25-30-35-40

F82H»Gauss

18660186501859018520183101788017790176801753017360171101677016280155901472013710125701133010020865372785880446430421619339.3263.3193.1128.758.5-11.7-81.9-152.1-222.3-292.5-366.6

IIEAfc—hOersted

-45-50-55-60-65-70-75-80-85-90-95

-100-200-300-400-500-600-700-800-900

-1000-1100-1200-1300-1400-1500-3000-4500-6000-7500-9000

-10500-12000-13500-15000-15000

Gauss

-438.8-509

-579.2-649.4-725.4-795.6-865.8-936

-1006-1080-1153-1223-2644-4062-5476-6880-8272-9647-10990-12270-13450-14510-15430-16170-16700-17050-18340-18530-18600-18630-18650-18670-18670-18660-18660-18660

Oersted

-12000-9000-6000-3000-2000-1900-1800-1700-1600-1500-1400-1300-1200-1100-1000-900-800-700-600-500-400-300-200-100-10-5051015202530354045

!5E$PH(4"

Gauss

-18650-18590-18520-18310-17880-17790-17680-17530-17360-17110-16770-16280-15590-14720-13710-12570-113301-1002(1-8653-7278-5880-4464-3042-1619-339.3-263.3-193.1-128.7-58.511.781.9152.1222.d292.5366.6J438.8|

73K, 200C1)Oersted

505560657075808590951002003004005006007008009001000110012001300140015003000450060007500900010500120001350015000

Gauss

509579.2649.4725.4795.6865.893610061080115312232644406254766880827296471099012270134501451015430161701670017050183401853018600186301865018670186701866018660

- 4 1 -

JAERI-Tech 97-038

Table 18Oersted

1500012000900060003000200019001800170016001500140013001200110010009008007006005004003002001001050-5-10-15-20-25-30-35-40

F82HJBGauss

18330183201828018220180401775017690176201753017400172401703016750163401570014800137001244011050958080656514494033611777352.2273.9189.5121.541.19-32.95-113.3-191.5-269.8-348

-428.4

IEA fc-h«*«M&31*tt1±3H5eiSJII(573K, 300LOersted

-45-50-55-60-65-70-75-80-85-90-95-100-200-300-400-500-600-700-800-900-1000-1100-1200-1300-1400-1500-3000-4500-6000-7500-9000-10500-12000-13500-15000-15000

Gauss

-508.7-589

-667.2-743.4-825.8-904.1-984.4-1065-1141-1219-1299-1380-2963-4535-6102-7663-9195-10710-12140-13460-14620-15570-16250-16680-16980-17200-18050-18190-18250-18300-18320-18350-18350-18330-18330-18330

Oersted

-12000-9000-6000-3000-2000-1900-1800-1700-1600-1500-1400-1300-1200-1100-1000-900-800-700-600-500-400-300-200-100-10-5051015202530354045

Gauss

-18320-18280-18220-18040-17750-17690-17620-17530-17400-17240-17030-16750-16340-15700-14800-13700-12440-11050-9580-8065-6514-4940-3361-1777-352.2-273.9-189.5-121.5-41.1932.95113.3191.5269.8348

428.4508.7

Oersted

505560657075808590951002003004005006007008009001000110012001300140015003000450060007500900010500120001350015000

)Gauss

589667.2743.4825.8904.1984.41065114112191299138029634535610276639195107101214013460146201557016250166801698017200180501819018250183001832018350183501833018330

- 4 2 -

JAERI-Tech 97-038

Table 19Oersted1500012000900060003000200019001800170016001500140013001200110010009008007006005004003002001001050-5-10-15-20-25-30-35-40

F82HSGauss18070180601799017930177301736017290171901708016920167301647016100155101470013700125701133010020866472805885446430381603315.9245.7169.7105.335.1-35.1-105.3-175.5-245.7-315.9-392

i IEA \i-\*mmmmwmm&mm&m(573K, 3000Oersted

-45-50-55-60-65-70-75-80-85-90-95-100-200-300-400-500-600-700-800-900

-1000-1100-1200-1300-1400-1500-3000-4500-6000-7500-9000-10500-12000-13500-15000-15000

Gauss-462.2-532.4-602.6-676.7-748.8-819

-889.2-963.3-1035-1104-1176-1246-2679-4101-5523-6933-8331-9711-11050-12330-13500-14540-15400-16020-16420-16690-17740-17910-17980-18020-18040-18070-18080-18070-18070-18070

Oersted-12000-9000-6000-3000-2000-1900-1800-1700-1600-1500-1400-1300-1200-1100-1000-900-800-700-600-500-400-300-200-100-10-5051015202530354045

Gauss-18060-17990-17930-17730-17360-17290-17190-17080-16920-16730-16470-16100-15510-14700-13700-12570-11330-10020-8664-7280-5885-4464-3038-1603-315.9-245.7-169.7-105.3-35.135.1105.3175.5245.7315.9392

462.2

Oersted505560657075808590951002003004005006007008009001000110012001300140015003000450060007500900010500120001350015000

Gauss532.4602.6676.7748.8819

889.2963.310351104117612462679410155236933833197111105012330135001454015400160201642016690177401791017980180201804018070180801807018070

- 4 3 -

JAERI-Tech 97-038

Table 20

Oersted

1500012000900060003000200019001800170016001500140013001200110010009008007006005004003002001001050-5-10-15-20-25-30-35-40

F82H£lGauss17500175001747017410172401700016940168801680016710165901642016220159201547014730136801243011050957480636512493633511761327.4247.1166.896.7918.53-61.78-138

-216.2-296.6-376.9-457.2

IEA t-h«*!»&JittIB1iaiSlBft(673K, 400LOersted

-45-50-55-60-65-70-75-80-85-90-95-100-200-300-400-500-600-700-800-900-1000-1100-1200-1300-1400-1500-3000-4500-6000-7500-9000-10500-12000-13500-15000-15000

Gauss-537.5-613.7-692

-774.3-852.6-935-1013-1096-1174-1254-1330-1411-3003-4582-6160-7723-9267-10780-12210-13520-14620-15400-15870-16170-16400-16550-17230-17350-17410-17450-17490-17520-17510-17500-17500-17500

Oersted

-12000-9000-6000-3000-2000-1900-1800-1700-1600-1500-1400-1300-1200-1100-1000-900-800-700-600-500-400-300-200-100-10-5051015202530354045

Gauss-17500-17470-17410-17240-17000-16940-16880-16800-16710-16590-16420-16220-15920-15470-14730-13680-12430-11050-9574-8063-6512-4936-3351-1761-327.4-247.1-166.8-96.79-18.5361.78138

216.2296.6376.9457.2537.5

Oersted

505560657075808590951002003004005006007008009001000110012001300140015003000450060007500900010500120001350015000

)Gauss

613.7692

774.3852.693510131096117412541330141130034582616077239267107801221013520146201540015870161701640016550172301735017410174501749017520175101750017500

- 4 4 -

JAERI-Tech 97-038

Table 21Oersted

1500012000900060003000200019001800170016001500140013001200110010009008007006005004003002001001050-5-10-15-20-25-30-35-40

F82H$Gauss

17260172601721017130169301662016560164701638016260161101593015660152601461013680125701134010030867672955887447230381603310.1239.9169.7101.429.25-39

-111.2-181.4-255.5-327.6-397.8

IIEA fc-h«TOratt«14JWJE*S*(673K, 400C)Oersted

-45-50-55-60-65-70-75-80-85-90-95-100-200-300-400-500-600-700-800-900-1000-1100-1200-1300-1400-1500-3000-4500-6000-7500-9000-10500-12000-13500-15000-15000

Gauss

-468-538.2-612.3-684.5-754.7-830.7-900.9-971.1-1041-1112-1188-1258-2693-4119-5552-6964-8366-9747-11090-12360-13520-14500-15180-15590-15870-16070-16920-17060-17130-17180-17210-17240-17260-17250-17260-17260

Oersted

-12000-9000-6000-3000-2000-1900-1800-1700-1600-1500-1400-1300-1200-1100-1000-900-800-700-600-500-400-300-200-100-10-5051015202530354045

Gauss

-17260-17210-17130-16930-16620-16560-16470-16380-16260-16110-15930-15660-15260-14610-13680-12570-11340-10030-8676-7295-5887-4472-3038-1603-310.1-239.9-169.7-101.4-29.25

39111.2181.4255.5327.6397.8468

Oersted

505560657075808590951002003004005006007008009001000110012001300140015003000450060007500900010500120001350015000

Gauss

538.2612.3684.5754.7830.7900.9971.110411112118812582693411955526964836697471109012360135201450015180155901587016070169201706017130171801721017240172601725017260

- 4 5 -

JAERI-Tech 97-038

F82H IEA heat (300K, RTL)

20000

CD,CD

-15000

-20000-15000 -10000 -5000 0 5000

H (Oersted)10000 15000

IUUU

800

600

400

"ST 2 0 0

«i n

m -200

-400

-600

-800

.mnn

-

-

-

I

/ ,

/ // /

/ /i i i / /

II/// //

1

I

i i i

-400 -300 -200 -100 0 100 200 300H (Oersted)

Fig. 21 Hysteresis curve of F82H IEA heat (300K, RTL)

400

- 4 6 -

ICTJOCD

20000

15000

10000

5000

0

-5000

-10000

-15000F

-20000

JAERI-Tech 97-038

F82H IEA heat (300K, RTC)

, 1 " ^

f1 1

-15000 -10000 -5000 0 5000H (Oersted)

10000 15000

IUUU

800

600

400

-u> 200

I °CD -200

-400

-600

-800

.mnn

-

-

-

/ /

/ /

/ /I ! I / /

itI/I/I

I

I I I

-400 -300 -200 -100 0 100H (Oersted)

200 300 400

Fig. 22 Hysteresis curve of F82H IEA heat (300K, RTC)

- 4 7 -

ICO

CDm

20000

15000

10000

5000

0

-5000

-10000

-15000

1000

800

600

400

2 0 0

(0

-200 -

-400-

-600 -

-800

-1000-400

JAERI-Tech 97-038

F82H IEA heat (473K, 200L)

-

I

IJ

I

fI I

-15000 -10000 -5000 0 5000H (Oersted)

10000 15000

-300 -200 -100 0 100H (Oersted)

200 300 400

Fig. 23 Hysteresis curve of F82H IEA heat (473K, 200L)

-48-

J AERI-Tech 97-038

F82H IEA heat (473K, 200C1)

wwCO

m

20000

15000

10000^

5000

0

-5000

-10000

-15000

-20000

I

JI }

fI 1

-15000 -10000 -5000 0H (Oersted)

5000 10000 15000

w

CD

IUUU

800

600

400

200

0

-200

-400

-600

-800

innn

-

-

-

-

/

/

/ /

/ /

/ /i i i / /

II1/ll' 1

j

i i i

-400 -300 -200 -100 0 100H (Oersted)

200 300 400

Fig. 24 Hysteresis curve of F82H IEA heat (473K, 200C1)

- 4 9 -

ICD.m

20000

15000

10000

5000

0

-5000

-10000

-15000

-20000

JAERI-Tech 97-038

F82H IEA heat (573K, 300L)

t I

ff

-15000 -10000 -5000 0 5000H (Oersted)

10000 15000

(Gau

ss)

m

800

600

400

200

0

-200

-400

-600

-800

mnn

-

-

-

/

1/ /

/ // /

i i i / /

1

\ i i

-400 -300 -200 -100 0 100H (Oersted)

200 300 400

Fig. 25 Hysteresis curve of F82H IEA heat (573K, 300L)

- 5 0 -

JAERI-Tech 97-038

F82H IEA heat (573K, 300C)

wCO

OCO

20000

15000

10000

5000

0

-5000

-10000

-15000

-20000

J1 1

f

1 1

-15000 -10000 -5000 0 5000H (Oersted)

10000 15000

CO

o

800

600

400

200

200

400

600

800

nnn

-

-

-

-

/ /

/ /

/ /i i i / /

II

11

i i i

-400 -300 -200 -100 0 100 200 300H (Oersted)

Fig. 26 Hysteresis curve of F82H IEA heat (573K, 300C)

400

-51-

COCO

(T3

om

20000

15000-

10000

5000

0

-5000

-10000

-15000

-20000

1000

800

600

400

| 2 0 0

co 0CD

m -200

-400

-600

-800 h

-1000

JAERI-Tech 97-038

F82H IEA heat (673K, 400L)

-

/

1 1

f1 1

-15000 -10000 -5000 0 5000H (Oersted)

10000 15000

-

I I

I I

/

-400 -300 -200 -100 0 100H (Oersted)

200 300 400

Fig. 27 Hysteresis curve of F82H IEA heat (673K, 400L)

- 5 2 -

JAERI-Tech 97-038

F82H IEA heat (673K, 400C)

20000

CO

OCO

-10000

-15000

-20000-15000 -10000 -5000 0

H (Oersted)5000 10000 15000

(Gau

ss)

CO

800

600

400

200

0

-200

-400

-600

-800

mnn

-

-

-

-

jI

/ // /

/ /i i i l l

II

II/I

i i i

-400 -300 -200 -100 0 100H (Oersted)

200 300 400

Fig. 28 Hysteresis curve of F82H IEA heat (673K, 400C)

- 5 3 -

JAERI-Tech 97-

4. 3.

4. 3. 1.

Table 22 Ic Hv213

Hv222 Hv217 25mm

Table 22 Results of Vickers' hardness measurement of F82H IEA heat

Roll No.

RB801-5KG819-2KG819-2

Plate ID

5-142W-23

42W-18

Thickness(mm)

7.51525

Hardness: HV101

216219213

2222215218

3220219214

Ave.219218215

- 5 4 -

JAERI-Tech 97-038

4. 3. 2.

Table 23 fcJ:tf Fig. 29 [z s Fig. 29 fwl

, IEA

Fig. 30

V.

Table 23 Tensile

ID

2W-10-12W-10-22W-10-32W-10-42W-10-52W-10-62W-10-72W-10-82W-10-92W-10-102W-10-112W-10-12

Testtemp.Temp

(K)296323373473573(373723773823873923973

properties of0.2% offsetyield stress

YS(MPaJ548534553500480458437413363296219160

F82H IEA heatUltimate tensile

stressUTS

(MPa)669645624579548517493463420368307243

Totalelongation

Et(%)21.720.020.018.717.016.315.717.721.325.023.726.3

Reductionof area

RA(%)787980828181798288909192

Breakposition

(JIS)AAAAAABAAAAA

- 5 5 -

JAERI-Tech 97-038

CO

a.

C/D

700

600

500

400

300

200

100

0

- Nt^tlltimate tensile

^_ 0.2% offsetyield stress

i i

stress

Total1

\1 Reductionof area "*"

elongation-*i

1000

co

5

2CD

100

400 600 800Test temperature (K)

1000

100

80

60 *o

• •S3

40 oID

20

0

Fig. 29 Tensile properties of F82H IEA heat

oo

700

o oo o oo

300

Oo

200

Oo

100

ooo

oo

-20

oo

-40

oo

-60

o oo o

S 811 i i i r i T i r

0.001 0.002 0.003 0.004 0.005 0.006

Test Temperature 1/T (K1)

Fig. 30 Temperature dependence of yield stress of F82H

- 5 6 -

JAERI-Tech 97-038

n I* Fig. 31

n=- (4)

k: ^ou:E: •V

a: m

(W/m)

(W/mK)(Pa)(Pa)

8000

200 600

Fig. 31

400

Temperature (°C)

Thermal stress factor of F82H IEA heat

800

- 5 7 -

JAERI-Tech 97-038

4. 3. 3. S/-WUtf-«SKB

SKB<D*S!ll£ Table 24 Iz,

, L5, L6)lz-Dl^X(D SEM H

ig. 32 (c^

Photo 8~Photo 10

Fig. 32 DBTT

, DBTT

Table 24 Charpy impact test results of F82H IEA heat

ID

L6L3L9L2L8L5L7L4L1C12C9C15C8C14C11C13C10C7

Testtemp.

(°C)

-100-80-70-60-55-50-45-40-20

-100-80-70-60-55-50-45-40-20

Direction

L

C

Absorbedenergy

(J)6

385821

159186

9180258

523

8854391

9166237

Brittle surfacearea

(%)9585809050409540

09590957085659545

0

DBTT(fractured area)

vTrsso(°C)

-44

-39

DBTT(energy)

vTrE(°C)

-48

-39

- 5 8 -

JAERI-Tech 97-038

0-100

L-directionC-direction

L-directionC-direction

-80 -60 -40 -20Test temperature (°C)

Fig. 32 Charpy impact test results of F82H IEA heat

- 5 9 -

JAERI-Tech 97-038

; *>/•„<*&*?&* *"' 4.1, 7

1OOum

Notch side

2~3 mm insidefrom notch

10pm

Photo 8Fracture surfaceof L1 (-20°C)

- 6 0 -

JAERl-Tech97-(

Notch side

2~3 mm insidefrom notch

10(im

Photo 9Fracture surfaceof L5 (-50°C)

- 6 1 -

JAERI-Tech 97-038

1OOum

1OLim

Notch side

2~3 mm insidefrom notch

10Lim

Photo 10Fracture surfaceofL6(-100cC)

- 6 2 -

JAERI-Tech 97-038

4. 3. 4. &)-

Fig.

Table 25 ( c ^ f o Sfc, £'J—• x — £ £ Fig. 33

ig. 36 Ic

600°C<t

Fig. lEAt—

F82H

F82H

F82H ic

Fig. 37

Larson-Miller/

Table 25 Creep test results of F82H IEA

ID

2W1012W1022W1032W1062W1052W104

Test temp.(°C)

600650600650600650

Applied stress(MPa)

18012016010015075

heatRupture time

(h)401.5239.0

1581.0929.5

2862.54417.5

Elongation(%)362829221827

RA(%)889088878587

- 6 3 -

JAERI-Tech 97-038

(a)

ion

(on

gat

LU

18

16

14

12

10

8

0

(b)7

6

LU

0

Specimen ID:Test Temperature:Applied StressRupture Time:

Elongation:RA:

mirr

2W101 |600°C 1180 MPa I401.5 h 136.2 % I88.2% 10.06 mm 18.77X103 %/h I

0 50 100 150 200 250Time (h)

300 350 400

Specimen ID:Test Temperature:Applied StressRupture Time:

Elongation:RA:e0:p'

tnin

2W102650°C120 MPa239.0 h28.4 %90.1 %0.04 mm1.25X10-2 %/h

0 50 100 150

Time (h)

200 250

Fig. 33 Creep rupture test result of F82H IEA heat

- 6 4 -

JAERI-Tech 97-038

(a)10

9

8

I 6""3 5

o 4LU

3

2

0

(b)

cg

cg

12

10

8

6

4

2

0

Specimen ID:Test Temperature:Applied StressRupture Time:

Elongation:RA:e0:

2W103600°C160 MPa1581.0 h29.3 %88.4 %0.05 mm2.07x10-3 %/h

0

0 200 400 600 800 1000

Time (h)1200 1400 1600

Specimen ID:Test Temperature:Applied StressRupture Time:

Elongation:RA:e0:* mirr

2W104650°C75 MPa4417.5 h26.8 %87.0 %0.02 mm1.11x103 %/h

1000 40002000 3000

Time (h)

Fig. 34 Creep rupture test result of F82H IEA heat

5000

- 6 5 -

JAERI-Tech 97-038

(a)8

cg"co 4D)

Q] 3

1

0

Specimen ID:Test Temperature:Applied StressRupture Time:

Elongation:RA:

£min-

2W105600°C150 MPa2862.5 h18.1 %85.2 %0.06 mm8.58x104%/h

0 500 1000 1500Time (h)

2000 2500 3000

200 400 600Time (h)

800 1000

Fig. 35 Creep rupture test result of F82H IEA heat

- 6 6 -

250

200as

Q_

8 150CD

CO

J 100Q.

50

0

• Pre-IEAheat600°C

• Pre-IEA heat 650°C

OlEAheat600°C

• IEAheat650°C

i

10 100 1000

Rupture Time (h)

Fig. 36 Creep rupture test result of F82H

10000 100000

JAERI-Tech 97-038

</>w0"w•D(D

"Q.QL

<

300

200

10090

80

70

60

— c

• —

i i i i

toih£ / o = -1017 In (P) + 3575

%O >0O

\

\ 1

o

1 1 1 1 1 1 1 1 1

20 25 30Larson-miller parameter

P = T(logt + 30)/1000(K,h)

Fig. 37 Creep rupture test results of pre-lEA F82H

35

- 6 8 -

JAERI-Tech 97-038

4. 3. 5.

Table 26 (c

Fig. 39 Iz,

Fig. 38 [z%

£ Fig. 40

MANET I

Fig. 41

Table 26 Low cycle fatigue test

ID

9

7

Gaugedia.

(mm)

<|>7

<j,7

Testtemp

(°C)

RT

RT

Totalstrainrange(%)

1.0

0.6

Cycles tcrupture(ruptureposition)

3028(B)

10504(B)

results of F82H IEA

#ofcycle

110203050

100500

10001

10203050

100500

100070009700

Elasticstrainrange(%)0.540.570.566.556.540.530.500.500.450.460.460.460.450.440.420.400.370.36

Plasticstrainrange(%)0.460.430.440.450.460.470.506.500.150.140.140.140.150.160.180.200.230.24

heat

Stressrange

(MPa)11471115108610641037996917886

10681039102710201005980912889821805

Peaktensilestress(MPa)

573559544535521499462443533519510506498487462449415400

Peakcompressive

stress(MPa)

-574-556-542-529-516-497-455-443-535-519-517-515-507-493-451-440-407-405

- 6 9 -

JAERI-Tech 97-038

1.5

fCDCDCCOQCc"2coTo* - •

o

0.5

0

Test Temperature: RT |

\\

10 100 1000 10000 100000

Cycles to Failure

Fig. 38 Low cycle fatigue test results of F82H IEA heat

Test Temperature: RT

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I-80010000

Fig. 39 Low cycle fatigue test results of F82H IEA heat

- 7 0 -

JAERI-Tech 97-(

0.6

~0.56

CO 0.4

I 0.3cCO

55°-2o

1 0.1LU

0.0

0.6

io.4

I 0.3c

.(a) Elastic strain range

• •o o o o o

oTest Temperature: RT o

o o

•E,o,al=1%

O £,„,„, = 0.6%

I I I I I I I I I I I I I 11 I I I I I I I I I I I I I I I I

1 10 100 1000 10000

oU. I

0.0

(b) Plastic strain range

Test Temperature: RT

o o o o o o oo

• £ , o , a l = 1 %

O etolal = 0.6%

I I I I I I 111 I I I I I I 111 I I I I I I 111 I I I I I I I I

10 100Cycles

1000 10000

Fig. 40 Low cycle fatigue test results of F82H IEA heat

- 7 1 -

JAERI-Tech 97-038

a)

I00

o

0.8

0.6

0.5

0.4 -

0.3100

Test temperature: RT

O MANET I PI

• F82H IEA heat

i i i i I i 1 1 i i i i i i i i l I i I i i i 1 1

1000 10000

Cycles to rupture

100000

Fig. 41 Low cycle fatigue test results of F82H IEA heat and MANET I at roomtemperature.

• 7 2 -

JAERI-Tech 97-038

4.4.

Fig. 42 IZ F82H «(zo^T3W^Lfc TDS

I* H2s H2O, CO, CO2, CH4 *T?fc<6

Fig. 43 fr b Fig. 47 I c ^ f o £fc Fig. 43~Fig. 47 IC( J i t «< tLT SUS316L

SSkt^LXl^o -*lb©#gHIJ:y» F82H

, H2O Jb<#! 400K, H2s CO, fc\fctf CO2 *<#) 550K -e

Table 27 l c ^

Table 27 Temperatures of desorption peak

Gas

H2

H2O

CO

CO2

CH4

Desorptionpeak

1st peak i2nd peak3rd peak1 st peak ,

2nd peak1st peak

2nd peak1 st peak

2nd peak1 st peak2nd peak3rd peak

Peak temperature (K)F82H

- 6 5 0 i- 7 2 0- 8 0 0- 4 6 0 |- 6 3 0- 6 4 0- 8 0 0- 6 1 0- 6 6 0- 5 3 0- 6 2 0- 6 9 0

316L

- 6 0 0- 8 0 0---

-1120-

- 5 8 0- 8 0 0- 5 8 0

-1000-

Table 28 Total amount of desorption gases

Gas

H2

H2OCOCO2

CH4

Total

F82HAmount ofdesorption

iip2omolec./m2)2.45.05.41.20.14

14.03

Flux in totaldesorption

(%)16

r 3638

81

100

316LAmount ofdesorption

(1020molec./m2)14.50.970.620.340.086

16.5

Flux in totaldesorption

(%)88

' 64

[ 20.5

100

- 7 3 -

JAERI-Tech 97-038

1400

1000 2000 3000 4000 5000

Time (sec)

6000 7000

Fig. 42 TDS spectrum of F82H IEA heat (p = 0.17 K/s)

- 7 4 -

JAERI-Tech 97-038

x1O1712

10

CM

E 8d

CD

2.2 49-oCOCD oQ 2

0

o F82HSSA 316LSS

300 400 500 600 700 800 900 1000

Temperature (K)

Fig. 43 TDS spectrum of H2 gas from F82H IEA heat (p = 0.17 K/s)

x10

300 400 800 900500 600 700

Temperature (K)

Fig. 44 TDS spectrum of H2O gas from F82H IEA heat (p = 0.17 K/s)

- 7 5 -

JAERI-Tech 97-038

17X101' 6

dCD To 3

E,CD

2 2cg

11CDQ

o F82HSS |cA 316LSS

o '

300 400 500 600 700 800 900

Temperature (K)

Fig. 45 TDS spectrum of CO gas from F82H IEA heat (p = 0.17 K/s)

x1016

CO

o 4E,CD

2 3c

oCOCDQ

0

i

o o F82HSSA 316LSS

300 800 900500 600 700

Temperature (K)

Fig. 46 TDS spectrum of CO2 gas from F82H IEA heat (P = 0.17 K/s)

- 7 6 -

x1015 12

JAERI-Tech 97-038

o F82HSS316LSS

1 ' L.

300 400 500 600 700

Temperature (K)

800 900

Fig. 47 TDS spectrum of CH4 gas from F82H IEA heat (p = 0.17 K/s)

- 7 7 -

JAERI-Tech 97-038

, F82H ffllcfe

CO > H2O > H2 > CO2

H2O t CO

'{fl\ K:

v2:a0:

53 A^b Fig. 57 I c ^ f 0

Table 29 Iz j^

TDS Fig. 48 frb Fig. 52 iz

ln (5)

1/TP, Fig.

Table 29 Activation energy of desorption

Gas

H2

H2O

CO

CO2

CH4

Desorptionpeak

1st peak2nd peak3rd peak1 st peak2nd peak1s1peak

2nd peak3rd peak1 st peak2nd peak1st peak2nd peak3rd peak

Activation energy (eV)F82H ^

0.56±0.18I 0.67±0.34

0.70±0.070.17±0.050.48±0.120.50±0.580.38±0.130.40±0.100.24±0.250.50±0.240.18±0.280.44±0.100.51 ±0.20

316L

0.84±0.070.62±0.08

3.47

1.231.17

-78-

JAERI-Tech 97-038

x1O17

CO

Ed"o

4 -

3 -

2 -

ge-oCOCDQ

1 -

400 600 800 1000

Temperature (K)Fig. 48 TDS spectrum of H2 gas from F82H IEA heat with heating rate

variation (p = 0.17-0.83 K/s)

x1017 io

.Ed

co

8 -

6 .

4 _

oCO

S 2

600 800Temperature (K)

1000

Fig 49 TDS spectrum of H2O gas from F82H IEA heat with heating ratevariation (P = 0.17-0.83 K/s)

- 7 9 -

JAERI-Tech 97-038

0400 600 800

Temperature (K)

Fig. 50 TDS spectrum of CO gas from F82H IEA heat with heating ratevariation (p = 0.17~0.83 K/s)

x10

400 600 800Temperature (K)

1000

Fig. 51 TDS spectrum of CO2 gas from F82H IEA heat with heating ratevariation (p = 0.17-0.83 K/s)

- 8 0 -

JAERI-Tech 97-038

X1O16

V)

doES 22cge-8 iCD '

Q

3 "

|3=O.83(K/s)0.50.33

400 600 800Temperature (K)

1000

Fig. 52 TDS spectrum of CH4 gas from F82H IEA heat with heating ratevariation ((5 = 0.17~0.83 K/s)

- 8 1 -

JAERI-Tech 97-038

16.0

13.5 -,

x10"

Fig. 53 The relationship between disorption peak temperature of H2 andheating rate p.

13.01.2 1.4 1.6 1.8

1/Tp (1/K)

2.0 2.2

x10 -3

Fig. 54 The relationship between disorption peak temperature of H2O andheating rate p.

- 8 2 -

JAERI-Tech 97-038

OQ.

15.5

15.0

14.5

14.0

13.5

i ' 1 •

-

i . i .

I • I ' I •

! 1 ~ / 1

•f /

/ . I . I .

- /ly 1

.... iI

• 1st peak• 2nd peak

i

1.1 1.2 1.3 1.4 1.5 1.6 1.7

x10-3

Fig. 55 The relationship between disorption peak temperature of CO andheating rate p.

OQ.

15.5

15.0

14.5

14.0

13.5

n n

1 • 1 ' 1 •

" /

/ /

V . \r , I

1

/

' M

I

U

• 1st peak• 2nd peak

i . i

1.2 1.3 1.4 1.5 1.6 1.7

Fig. 56 The relationship between disorption peak temperature of CO2 andheating rate p.

• 8 3 -

JAERI-Tech 97-038

16.0

15.5

15.0

14.5

14.0

13.5 -

13.0

• 1st peak• 2nd peak•*• 3rd peak

.8 2.0

x10-3

Fig. 57 The relationship between disorption peak temperature of CH4 andheating rate p.

• 8 4 -

JAERI-Tech 97-038

4. 5. fttt

2 EKDS/'J-Xl

s s a * < b © w w t t # t t * i » » L f c o R K S J K I * 22O°C~

290°C-C\ ;g#B£*ft($tt 1 ppm T?fc-60 S J S * * K * K K © I £ * £ Table 30 fc<fc

tf Table 31 Izjfkto £tzZftt><Dm%:£:tfo?tim7KLtz:h<Dtf Fig. 58 <h Fig. 59 T?

Fig. 58 «t Fig.59lcli|«ilz«k5aa<DS<bi:iaftj*Jt*^LTteys Fig. 58

1 Isl @ CD;liJ^lzoUTs ^fc Fig. 59 [zl i 2 ID g CD;I"J

F82H mti&U HT9 i?ICOUTI*> 260oClil±C7)IS!^;aS'C[i$^ 2 Ms

c F82H

F82H »|fcj:tf HT9 JHf--

Fig. 60 fccfct; Fig. 61 IZTF^O BftjSJt<DB$fflftcS14^b» fcJ:^ 1 Ms iik

f T ^ 1.5 Ms

Fig. 61

F82H ffli 12%Cr"efe* HT9fll::l£fS£A/£SlJfcl\J:9-e&<6o 260°C

).9Ms

- 8 5 -

JAERI-Tech 97-038

iai© 1/5 <Dmnm.mm.XD

40%Cr)-eii±

- 8 6 -

JAERI-Tech 97-038

.2 wCO CD™.2CO CD

2 $3oO

CD

» £?'

o

OO w

• 1 1 1 1 1 1 1 1 1 •L U I L U I L U LU LU LUCM CO r» \rt CO -r-

CD 100 I CM I O I O> I CM

ooio>|coicoi**l<o

I I I I ITt 1 co 1 - i - |in 10011-

- |T-/OIO|O|OI I I ' I ' II I I I I

^ s - ^ff f/ ^ ^ / w

in i in i m I in I m I mCO i CO (CO i CO i CO i CO

d i d i d i d i d i dJJJJJ

j l i j Jnlo m c o n c o c o

CD|LO|CO|r--|CO|CM•<* I co 1 co 1 co 1 i n 11

I I 1 1m 11-1 CM 1 CM 11^. 1 TJ-

I I I ' I ' II I I I I

0 0 ' 0 0 ' 0 0 1 0 0 ' 0 0 ' 0 0O> I <J> I O> I O> I O> IO>CM 1 CM 1CVJ1CVJ1 C\J 1CVJ

IUCJJJ,

• I i | i | V | i |LU LU LU LU LU LUx- CM 00 00 CM -r-TJ-I o I Tt I |s-1 r-100oo i T - | TJ | r t | in i CM

I I I ' I ' II I I I I

co I co I co I co 1 co I co001001001001001 co

•p.ILL I,

co

b 2

5 E

LU 'LU 'LU 'LU 'LU 'LUCM I CO 11^. I TJ- I CD I

2;cS!Sj§!S|001 ai 1 cb 1 co 1 1 co

I I I ' I '

co 1 co 1 co 1 • * 1 in 1 T-

c o n c M c n y dTJ-1 in 1001 in 1 in 15in n a a o) 5

C M C M C M C M ' ;

^ I CD 11~ I in 1001 T - T- I in 11-1 h. I a> I co4- 4-4-

o03

LU

I I I I II I I I I

djdjdjdjdjoI I I I I

co I-^ I in I in I in I o

J I I I

d'dldjdjdlo1 I I I • I • I

I I I I I

•e V,

CD

COHOlCM|00|i-|h>m r * i n C M C M C 0

OOlCMlCOICOlmhI I

CMlCDlI I LIOOlOh

d I a> IO) I d I ai' airicoicoi^lcoico d I CT> I a i 101 en I a i•fl-1 co 1 co 1 • * 1 co 1 co

d I ai! ai I d I a> I ai•<a-|coico|rricoico• o i T—Tco' o> i coicoimicoicMioo

1 in 1 o 1

jSjSj< 0 0

jSo ! a>! oi ' d ! a>! oiT f I CO I CO I "<fr I CO I CO

I I I I I

cq jSjSo coi

in o co vtoi oi 0 oi

Soq0 oi oi 0 oi a

TJ- I CO I CO I Tj-1 CO I CO

I I I I

001 CM 1 co 1 coiin 11-

oo o> a>M I O I C O

1CD •=

a> 1 a> 1 o 1 ai 1 a> 1 a>m m m m m mCD I CO I CO I CO < CD I CD

CO O j

I I I I

djdjdjdjdjd1 1 1 1 1

ai 1 o> 1 a> 1 a> 1 a) 1 a>co co co co co coCO I CO I CD I CD I CO I CO

d I d I d I d I d I d1 1 1 1 1

00100100100100100CO CO 00 00 CO COCO I CD I CO I CO I CD I CO

0! 0! d J d j 0 j d

OQ

001001001 cq 100100I d I I I 1d I d I d I d I d I d

olololololo

I I I I Ia

CD Oo in o o m oa> I r -1 co I i n I co I CMCM | CM | CM | CM | CM | CM

I I I 1 I

o in o o in ocnlr-lcolinlcolcMCM I CM I CM I CM I CM 1 CM

I I I I I

o in o o in olrlDlnlcolcMa l r D n l c o l c MCM I CM I CM I CM I CM | CM

I I I I ICD

Io

001 o> I o 11 . I co 11-|O|O|T-|CD|CT) • |O |O|T - |CD|O>ITlPlTlPl^

in 1 m 1 in 1 in 1 in 1 •*1 1 1 1 1

in 1 in 1 in 1 in 1 in 1 • *1 1 1 1 1

in I in I m I in I m I Tti i i i i

£cg'co

iooCD

CD

If3 CO

CO

CM ' 00 I Tf I T— I i n I CM

colcolcolcoiinicoCM I 00 ' I T— ' i n I CM

cDlcolrtlcoiinlcoTt I •<* I Tf I Tt I rr 11-CM I CM I CM I CM I CM I CM

I I I I I

TTlTj-l^tlTflxtlTj-CM | CM | CM j CM | CM | CM

I I I I I

CM ' 00 ' 1 " ' y— ' i n ' CM

co I co I co I CD I in I coCM I CM I CM I CM I CM I CM

I I I I

1 1V1X d>CM '

1 \ ION

<LU

XCM00LL

OCO

X3CO

I «00' I 'COI ILL I I ILLI ITJI I ITJ

I I-M| 1 |.Ml lEi-pi | £

2 2

I?,' I lx,ILL I I ILLI-Ol I lT3l-^l I I-M'I'-r' §2

Ico' 'ILL I Il-plI P.\

looILL

1 ' N

c

•55CD

c

to

poitl/il«itl^LL|X|O|LL|X|O

ccrCM

LLiX|O|LLJXiOC

"ECO

- 8 7 -

JAERI-Tech 97-038

CO

O wCO <DNt-

O -js t:

IT*x:u

I I • ! v I i l I I v

LU LU UJ LUILUILLI00 O> CO O) m COc o i c o l ^ l i - l i n l - « t

co | co | co i in | co | C DT-II-IT-IOIOIO

I I I I ' I 'I I I I I

en I o > I o > | e n i o ) i O )CO | CO | CO | CO | CO | COd i d i d i d i d i d

• I • I • I • I • I •UJ UJ 111 LU LU LU00 T - O) CO CD S to I •>* I i n 11-1 i n ITf | O) | - i - | CO | CO |

-H--a-1 oo | co | co | o> | r«-T-|T-IOIO|T-|CM

I I I ' I ' II I I I I

iniin|inim|in|inO | O | O i O i O i O- f -•— I -"— I -•— I -•— I"

JJJJJc

^ ^ i ! 2• i • i • i > i • i •

LU LU LU LU LU UJco -i- co co co rv.CM I oo I h-1 in I o> I • rCD | rT | h- | O | CO 11-CM I W I •*}• I t I CD I - i -

i i in1

T - I CO I <N I M CO I CO•^ I c\i I d I T-1 I c\i I •"*

• LLLLLO|O|O|O|O|O

I I I I

o «

8 *

O ' O ' O 1— i— •»—

LLJ I L U ' 111' U J ' LLJ' LU LU'LU'LU'LU'LU'LUCO I CO I CO I O I - ^ 100r--1 CM i co i co I o> I C J00 i - CM CO CO CO

l l l l ? lI I I I I

c3

UJ

om E> o

co' oo' oo' m ' co' coI I 1 I I

c\j I o I in 11-1 co 11

I I I I ' I •I I I I II I I I I

• I I • I • I • II I I I Ii i i i i

c o I i n I T - I T - I <j> Id! d! d ' ^ ' d ' CM, I | • | i | . | .

I I I I Ii i i i i

•S CO

S2m I o> I o I co I co I o

d I o> I d I d I oi I d^ICOI^ItlCOl^O)I->-ICMICOIO)ICDCM I CD I CO IO) I CO ILO

d I ai I d I d I ai I d^j-1 co | • * i i co i-«*

o I -1-t I CD I-i-1 oo^" 100 i CO 11-» i T - i O*a-1 CD I co 151 co I cod I o> I d I d I o) I d" * I CO I • * I -<t I CO I ^

CO

•o

CM

I

CDQ

ECD

c o o > i r > | o o >•<3-1 r--1 co I oo I CM I CM

d o> d d o> dTt I CO I • * I Tt I CO I-"t

i • i • i • i • io o> o o o> oT f I CO I • * I • * I CO I •*!•

• I • I • I • I • I0 0 ) 0 0 0 ) 0•<t I CO I Tl-1 I CO I •'fr

Vi 5 "en01 C 5Vi01 C

2

O) O) O) O) O> O>co I co I co I co I co I cod! d I d I d 1010

[ i l l

o q o odjdjdjdjdjd

I I I I I

O|O|O |O|O|O

co I co I co I co I co I CD

djdjdjdjdjdI I I I I

OQ

olololololo olololololo olololololo

I IJ I

I I I I I- 1 —: I -.—: I —: I —: I -,

I I I I I1 1 i 1 1

O en I ren I r--1CM

en I r 1 co I m I co I CMCM I CM I CM I CM I CM I CM

I I I I I

o m o o in oen I f -1 co I i n I co I CMCM I CM I CM I CM I CM I CM

I I I I I

o m o o in oen I r-1 co I in I co I CMCM I CM I CM I CM I CM I CM

I I I I

I c \ i c M r t r oCM|T- | I - |CM|CO|I -

O

CM I CM I (••» I TJ- I r-» l oCM 1 1 - 1 1 - I CM 100 1 1 -

C M I CM I r-. I -1 r^ I oC M 1 -<-1 f-1 C M 1001 -i-

P3 i n i i n i i n i i n i i n i i nI I I I I

I I T I T l P l Tin 1 in 1 in 1 in 1 m 1 in

1 1 1 1 1

ITITITlPlTin i in j in j m 1 m 1 in1 1 1 1 1

co

£o

"c/3

eooCO0}

CD £

CO • 00 ! CM ' CO I CO I T-co I C D I C D I C D I in I cq

CO ' 00 ' CM ' CO ' 00 I T-cqlcqlcDlcqlLnico

3C7)

05 CM I CM I CM I CM I CM I CMCM I CM I CM I CM I CM I CM

CO I 00 I CM I CO I CO 1 1 -co I co I cq I cq I in I cq^ t I TT I T f I Tf I TT I T fCM I CM I CM I CM I CM I CM

plcolf i K l t l ?Xld)IXIXId)IX

S J J S ' S J ' SSJHJSSJHLLILLLLI

xoSxxoMx

S|!EJSjgJ!EJg^ c o l T ^ t i ?Xld)IXIXId>II00 iH" 100100 iH~ 100UJX!UL!U.!X!U.

LJJ

XCM00

CO

co

o

c

MlCVjIplcMlcM'PlcMooitzipeipoit-iooLL|X|LL|LL|X|LL

C

tr

I I I I II I I I II I I I II I I I II I I I I

x1 'x'x1 'xCjlOTlcjIclOTl

U-|X|LL|LL|X|LLC

CM

CjlOTlcvjIcvjlOTlcMO0lt-|CO|00|H|00LL|X|U-|LJL|X|LL

ir"ECO

- 8 8 -

JAERI-Tech 97-038

CD

C? 1CO

o

g> 0CD

-1

-2

3 -

2 -

(a)

-

_

-

-

-

-

F82H IEA STD * §50°

HT Q A 2 7 5 °H T"9 A 235°

Chromized F82H " 220°

* - —

r> = —

ccc

- B " ' "

^ A

^ ^

— - -D

~-—-O

—A1

Gain

Loss

0 0.5 1.0 1.5 2.0 2.5

1.0 1.5Test time (Ms)

Fig. 58 Corrosion test results (1st batch)

- 8 9 -

JAERI-Tech 97-038

E,CDDJ

CO

O

g>'CD

-2

-3 -

-4

-5

20 -

15 -

10 -

CD 5

I 0

-5

-10

-15

-(b)

-

I

• 290°C

F82HIEASTDA) 250°C

A 220°C• 275°C

M ' "y D 235°C

Gain

----- •--——•

o

A

Loss

— A

i i

0.5 1.0 1.5Test time (Ms)

2.0 2.5

Fig. 59 Corrosion test results (2nd batch)

- 9 0 -

JAERI-Tech 97-038

2 -

en

CD A

cn-1CT3

o

CD

-2

-3

-4

-5

x1011

20

O 290°CA 260°CD 250°C

220°C

15 -

wCM

o10 -

B 52o

oO

-5 "

-10 -

-15

-(b)

^ ~ - ~ ^ ^ 290°C

250°C

1 1 1

O 290°CA 260°CD 250°C• 220°C

Gain

Loss

0 0.5 1.0 1.5Test time (Ms)

2.0 2.5

Fig. 60 Corrosion test results (F82H IEA heat)

- 9 1 -

JAERI-Tech 97-038

0 1.0 1.5Test time (Ms)

Fig. 61 Corrosion test results (HT-9)

2.5

- 9 2 -

JAERI-Tech 97-038

E,a>O)c03.co

D)

200 220 240 260

200 220 240 260Test temperature (°C)

280 300

280 300

Fig. 62 Weight change and corrosion rate after 1.5 Ms (temperature dependency)

- 9 3 -

JAERI-Tech 97-038

5.

F82H m IEA t -

Pre-IEA t -

0.29 " e -

,«H3 Pre-IEA t-h*tT?

400ttT?(Df-$!b<#b*lfc. fi&fPffi^m^^I*. MSIz fc^T^ 19500

i*fS! 17500 1S

- 9 4 -

JAERI-Tech 97-038

fc DBTT Iifcfc<fc^-45OC-Z?&y, Pre-IEA t

% Pre-IEA t

600°C«b 650°ClzfcUT-ttL^tl 3 1fct>£ftV<D<7l)-y®mm&'n?tzm%:. Pre-

IEA t-h*fiHSf(D^«J-^»14**LTt><5 ;fca>i:*iLb4i'6o fcfc\ Pre-IEA t - K

0=11017 In P+ 3575 (6)

o: ( 6 * (MPa)P: Lason-Miller parameter, P = T(log t + 30) /1000 (K, h)T: igJS (K)t: ®BftB#PB1 (h)

F82H

MBS. 1ppm -e i i .

z HT-9

- 9 5 -

JAERI-Tech 97-038

[1] NKK

[2] t & * i t ,

1996.

[3] K. shiba, et.al., to be published.

[4] K. Ehrlich, et.al., Proceedings of IE A Low Activation Ferrite/Martensite Steels

Workshop Meeting (Barden), 1995.

[5] R. Gersinska, et.al., Proceedings of IEA Low Activation Ferrite/Martensite

Steels Workshop Meeting (Tokyo), 1993.

[6] N. Yamanouchi, J . Nucl. Mater. 191 -194, 1992, p822-826.

- 9 6 -

|=t

• H - : -

— • —

~n"CT

-I ^r-rr.

T • : = : : -

r.:::r

J

tr.-

~:r:

: : •

1 -

.;r|-.T

. . . —

—-

-t—1i

]~'-

:~—•——

.M

i;!li

•T7

r/—

I .

.,•

u., _•+—J...J

T

f" '"

~Z-

-/-

— /

; • . ;

L

• • . : . . :

-t

X .

. . _

-y.\:..-

-'-':'-

• - ' • ' •

j - .

\

"I

I—-1

^ • ±

/-z• -

1!

±:-..-: ~.z.

—rf.

- ' • " • ' -

1

{•:•••

• 1 — : -

* ,_ -

- HI• m: * J

•.ms.;S»S*

J

t~

1T

1

"i

I

. ' ' - - i-

j _^ r_

•:rq—;:

2m-

li

^ —

- • • H

- : ;-T-

- t - . t -

1 • • i

i : :

: : • : :

' ! . 1. . . = . (

v * • ' • •

_ . . . | . . . . . ...

. : :

; • - ' ; -

10-250540

HI

i—+ • •

•jji

¥M

i. •. i

• i

.::l

+—

-

.01.

-ig. A-1 Load-Displacement diagram of tensile test at room temperature (2W-10-1) Fig. A-2 Load-Displacement diagram of tensile test at 50°C(2W-10-2)

00

I

i ,

._ j , , . I : j mtimt

a-io-4200

14451675

.L-i—LJITJ-

.._}..—

^:-Ii£=t=SK:

^ U - J l l ^

: : ^ : - -

.d-gs-t--i—•_>£__L

i-i

•— !-t" :

-H-#n^pr

w-_l -,

/ - -

.... . 1 _.I — j.i:.

i-;./

- . + • - -_ : - | ^ ^ H • " -

-P11

L: :-Z'u^tr^--•---riK-i s - iiirlSlH

if'—

-Sr

- - • 1 - —

—Jr-^w~z i . . . ~

• I :• - • i -

±~

m*=

T£=T=}-®:

j - - j ...1 ..-

...;-L--fE-l;-.i4itli:

CC) 3002X-10-5

Ckjf) I 1385

ZJI.__ * * S « (ktf) I 1580

t . .

-I j — I-

~q—; :r_.:ri:

j ]...H-.V--

— I -

-M- —

I ^ - i

•i i

[ • - j • - • - [ • •

- J

• i—i

- 0. 2S •

z-:

~

:-:ri :.-rd,

i i

• i

|.;-:K.::t:

Fig. A-3 Load-Displacement diagram of tensile test at 200°C (2W-10-4) Fig. A-4 Load-Displacement diagram of tensile test at 300°C (2W-10-5)

<o

I

Fig. A-5 Load-Displacement diagram of tensile test at 400°C (2W-10-6)

1 ". '

= r

——

:3ZET

'-'I

- ' - • • -

vri- •

: : ; T

— I - - ,

7

" n :*T-r—

1 • : : 1

- - - - - —

~si—z

"•—i—— ; —

| ^ Z i ^

-—j

: • ; • + -1f -

•J

. . . :.

s~~

„...

i

-i

i • ' •

-•--J-— • r —

j . . , • : , . . ! . . . .

1 . - . . - t : - - . I ' ...1.. . :-7]... " ; . :

i —

: :.zHill

_

—-J.. . . .

" • ' " • I

.2%- -

1

• — /

. / :

i . . .1 i—r~- ~

---1 - - - .

:..--r/ii..-,: 1 ...

-

• : : _ •

1: - - • ! - - - j

1' "TT ~1-

— 1

j - - i —\- -4—Irrd.--.—

J L

. ^

••-4:4i

—T

- —

_ : :

^ >

1

—r-- —

: :::

| - : -

KMS3C ('» » S S (I* K S 1 (I

1 —

- —

— _

__j ;

z . :•;

-- -1 - -

o- _-.::.

' - " • ' • - \ •

2o

— - • •

• - - - •

"" " ; '

N-\

:::.. \

- I . : :

1 CT-10-7

C)iff)

•Si)

450

1250

1420

—r~

4---

4

—i-—- i-—1—=

-—-:~

1~—- — -

1

....

• :- p

„ • ; •

'V.

. . . .

ZZd

: : - "

: ; :

: „ i:...

.... I . . .

• : . ; : | : ; : :

- •

4.

- -

<n

-:;

liili

- ;— •

- r -

(%)

Fig. A-6 Load-Displacement diagram of tensile test at 450°C (2W-10-7)

oo

_).::^".::»L:rj

X

K**«^K*S£ CO•*»«(ML»*« * (kff)

a-io-8500

11901335

1=

— "I"

-UL,-

^ ~ 1 r J : l . _

4=^=1—

Mi9" —t- -:

-:|::::

~31 q ! 1-

H i—- -

jZT-:pz:

. i |/ J—-EEEd3^

z:is~:

- — t — •

«t ' ^ ' . _ ( ' 2J

: ^ f e = t : ~

E :h: -f:::

tffej^^r^]

:!:;::

Fig. A-7 Load-Displacement diagram of tensile test at 500°C (2W-10-8)

2 . 0

1 .

2

Fig. A-8 Load-Displacement diagram of tensile test at 550°C (2W-10-9)

1 . 5

1 .fl

>w2

Fig. A-9 Load-Displacement diagram of tensile test at 600°C (2W-10-10) Fig. A-10 Load-Displacement diagram of tensile test at 650°C (2W-10-11)

Io

n

pa

558

o

0 . 5

Fig. A-11 Load-Displacement diagram of tensile test at 700°C (2W-10-12)

5 0

§

- 5 0

- 0 . 50 . 5

5 0

- 5 0

i ii— i

BSlftg..0°/

« g - £ l_Z0

. . . . . _ . i — / : • • - ; . .

- - - I -

I

- 0 . 5

# (X)

Fig. B-1 Stress-Strain hysteresis diagram of fatigue test at room temperature

(Specimen ID:6, Total strain range: 1.0%, Cycle number: 1-10)

Fig. B-2 Stress-Strain hysteresis diagram of fatigue test at room temperature

(Specimen ID:6, Total strain range: 1.0%, Cycle number 20)

Io

I

5 0

•R

- 5 0

No

• - ! 1 -_ \p

....|::

_.. L__:;t-Tir-;jr~ ;l '•'-

fcS:

: I ::_-.

- 0 . 5 0

T

0 . 5

S 0

- 5 I)

-\

•I • j .

«5ta

.!

RT

1.0%

50

• L . ._ : : ' L— .--pi^i".; '.' _ ; :

i - ! - I - :

.. : . . ., ,.| • j . --_

fgfgi?:Sit^:- !•• —! I-

-rr-^L-

. _ - . r - ^ i - h •

J^^ii" . i

"."... 7 : _ - - — L .

i::-.:f--r:rrrf:

___ .. j . _ .

- 0 . 5J . 5

t * (X)

Fig. B-3 Stress-Strain hysteresis diagram of fatigue test at room temperature

(Specimen ID:6, Total strain range: 1.0%, Cycle number: 30)Fig. B-4 Stress-Strain hysteresis diagram of fatigue test at room temperature

(Specimen ID:6, Total strain range: 1.0%, Cycle number: 50)

5 0

on -3

- 5 0

S M 5 S |RT

~|ausia I loo

^ ^

- -+ 1—7-

i1

LIT ~ 11 I '

' ' 1 - ' i

- 0 . 50 . 5

T H (%)

5 9

0

- 5 0

1 - i — --

- [•• •

j

-r--|-:..-|-n:: . :: -.S S K & 8 E IRT

1.0%500

- ] •

. „. : . . . . .

- : - !

~ ~ i l . f _ "~i

: - : l • L - - 1 ' j - i !. .:

. - -. ; . | . - j -. ... ...- • ! • - • • ! !

:.: .•. "rrp~'L""" "i "'™r.- "~• ! i ' — —

B

-f==^ t- . ! - - ] j

- 0 . 50 . 5

r # (X)

Fig. B-5 Stress-Strain hysteresis diagram of fatigue test at room temperature

(Specimen ID:6, Total strain range: 1.0%, Cycle number: 100)

Fig. B-6 Stress-Strain hysteresis diagram of fatigue test at room temperature

(Specimen ID:6, Total strain range: 1.0%, Cycle number: 500)

II—>

o

5 g

- 5 0

..„!:

• '

, L j

—r as us

HT1.0%1000

: • T 1 : : . . i i : [_ . i - i - - ! . ' - - • r ...

- . . . . : . - . . - i - . . [ • - : • • - ••• P - r - : - - - : ~ r

• ~±1_ r r " " : "ir :;

i=bzt=nz^fefe^pmfzrr:

L.i -.

rf-3^..j.- -' —M--

.r.L-i:

r-r--4-::fe ii.r-i.jrr^ [ -tru-t-r:;

- J .

t h- (%)

5 O -.

M A

- 5 I)

E»».'3C

absua i i~io

~r r i I

0 . 5

V- t * (%)

Fig. B-7 Stress-Strain hysteresis diagram of fatigue test at room temperature Fig. B-8 Stress-Strain hysteresis diagram of fatigue test at room temperature

(Specimen ID:6, Total strain range: 1.0%, Cycle number: 1000) (Specimen ID:7, Total strain range: 0.6%, Cycle number. MO)

I

O

I

i .IT

- 5 0

0-6%

-L--—L

— j. . —

•-U—F

-I-/—i/—tr

. . • • / . - A

— rzrr—"'X..-;

1 r 1 — - I — T

E=z^-b-!^ELt£z

- 0 . 5 . 5

f » (%)

i as-ua"""-i.—jTzir:. . j .

: k _ j .

RT0.6% i_

30

_L_ . _:_..... —

• h •

i • • :

- i

- _ : . . . . _ . _ _ . ; ! _ . . / .

"A- :\~'.A~"~rrIr-l//F/

• ..X •-..;- : " . —

- . . . I - " - . — I — . .

.. „ ! )....

. s I) . 5

>enSR

Fig. B-9 Stress-Strain hysteresis diagram of fatigue test at room temperature

(Specimen ID:7, Total strain range: 0.6%, Cycle number: 20)

Fig. B-10 Stress-Strain hysteresis diagram of fatigue test at room temperature

(Specimen ID:7, Total strain range: 0.6%, Cycle number: 30)

0

- 5

IRT

SigLS 50

^

—i3~_ZZTl I L L • ~^—

. - i . ! (:-:- . . ^ ~ l"

-f \--f-

! ! i ! ! :

— ; |

- 0 . 5

t ft- (%)

5 0K 8 S 3 IRT

io.6%

l a s t s | loo~ r > -'-•

-7?

4__t.!..z^;.:

- 5 (1

- • • • I -

a^L~i

J L 1 .1 1 L J I- 0 . 5 0 . 5

>

Ii

H

Fig. B-11 Stress-Strain hysteresis diagram of fatigue test at room temperature

(Specimen ID:7, Total strain range: 0.6%, Cycle number: 50)

Fig. B-12 Stress-Strain hysteresis diagram of fatigue test at room temperature

(Specimen ID:7, Total strain range: 0.6%, Cycle number: 100)

o

I

5 0 L

- 5 0

. — _ sssiesjs

**LSS—

RT0.5%

500

_ . ; _ ._ I ._ i _ ,

. j ' . •

1 j ]— - -

1 ;

, ; / ~ _ . „ j / „ ,j . .

— _ i i

m&:S-n

i 1

- 8 . 5 II . 5

f *(X)

5 a

0

•R

- 5 0

r ,

RT

0.5%: l * g L S ! IOOO

~——~iqij-

i- --—J -f

l~'/ "I -A! ' - i

_. ! I

- -j •( - -

. ... T j ,

=4:^4^1

_j ~r=i-— ) - . - ; ; ;-

-jr—p-.

- 0 . 5 . s

(X)

>en

Fig. B-13 Stress-Strain hysteresis diagram of fatigue test at room temperature Fig. B-14 Stress-Strain hysteresis diagram of fatigue test at room temperature

(Specimen ID:7, Total strain range: 0.6%, Cycle number 500) (Specimen ID:7, Total strain range: 0.6%, Cycle number: 1000)

oI

5 0

- 5 0

u s 7ooo0.5%

_.. i _ _ _ _ _

T-

_..| ..

zziit

- i . .

ztr—l .

- 0 . 50 . 5

V- t » (%)

5 0• i

n

SSkSS. | RT±O-r»«B 1 0.6%absua |97oo

! : — • — •

. . . , ' i ; ~ — ; - — — : — • : —

o__•R

- 5 I)

• : . : | _ . i .

zzr. I ~.: .'.1 — L . —

.. - j — . % — r ~: [/ .- - - p r r p r r n z r - / • -

• • • i - — / i

^ : - . | :

• -_-- - I ——™ —I

• I : — I -

L •>-I—--r r

- J . 5. 5

>

aoo

Fig. B-15 Stress-Strain hysteresis diagram of fatigue test at room temperature Fig. B-16 Stress-Strain hysteresis diagram of fatigue test at room temperature

(Specimen ID:7, Total strain range: 0.6%, Cycle number: 7000) (Specimen ID:7, Total strain range: 0.6%, Cycle number: 9700)

*

ft18$

i SIJS

ft3

ftS3SS

ft H ftfg

® ft(* ft

*

T

ii

7

-

P 7

»y

IV

y

•y

T 7

7

~!

t '

-r

r

L.

T

y

7

y

y

ie «?m

kgs

AK

molcd

rad

sr

X 2

« 3

it: ;x*/u-

r. ** a*(>!.ft

n y

affi-f y

-fe /U-

w.fix

«

ft

/ j

7 . £+•-, f t * . *

. ft W

• . a3Ki, &^

y 7 7 y

^ ^/7 7 7 y•y -7 x fi

ft ^

*

/J

ftin.X

*

fSX

If

m

*ft

—'<•y

7

7

+7

*

y

-7

-f

-N

"tIV

IV

-s:

7• y

/u

j . - h

x ft

V

— D

IV

7 7

-

- / y

x -

X

y ')

>u y "7 x

7

7 U

y

y

/ i -

;u

hy

t-

K/.

X

><

7

Ity

X

/u

-f

1-

HzN

PaJ

W

CV

FCl

S

Wb

TH

tlm

lx

BqGy

Sv

s" 'm-kg/s2

N/m?

N-m

J / s

A-s

W/A

C/VV/A

A/V

V-sWb/m'Wb/A

ed-srlm/m'

s"'

J/kgJ/kg

*i)

«

B?f

7=f

.+'

». B. f>h ,v

y

iv Y

min, h, d•

1. Lt

eV

u

1 eV=I.602I8xlO-"J

1 u= 1.66054x10" kg

iv fxh• -,<

,<

H

4- * ')

v- y V t

7

u

y

IV

-

y

K

A

b

bar

Gal

aR

r ad

rem

A=0.1 nm=10-|0m

b=100fm!=10-28m2

bar=0.1 MPa=105Pa

Ci = 3.7xlO'°Bq

R=2.58xlO"'C/kg

rad = lcGy=10"2Gy

rem= lcSv= 10 !Sv

fSft

1 0 "

10's

1 0 "

10"

10'

101

10'

10'

10-

io-'io-'io-10'*

1 0 "

10"'1

10""

mmX {

- :

•f

* '

+^ >.T

-?

i

tt"

7 i

T

7

O

•y

>;

7 a/

h

EPTGMkh

da

d

c

m

n

Pf

a

as.)1. — 5 14

/^ ;L. 1 eV

u£>Ml±CODATA© 1986?Jig

3. barli, JISTIi«(*fflff ^ / ^ S ^ t «

5 .

r, barniji

Xf

N(=105dyn)

1

9.80665

4.44822

kgf

0.101972

1

0.453592

Ibf

0.224809

2.20462

1

1 Pa-s(N-s/m')=10P(*TX)(g/(cm-s))

lmVs=IO'St(x h - 7 x)(cm2/s)

II MPa(=10bar)

1

0.0980665

0.101325

1.33322x10"

6.89476 x 10-

kgf/cm'

10.1972

1

1.03323

1.35951 x 10"

7.03070 x 10'

atm

9.86923

0.967841

1

1.31579 x 10'

6.80460 x 10'

mmHg(Torr)

7.50062 x 101

735.559

760

1

51.7149

lbf/in'(psi)

145.038

14.2233

14.6959

1.93368 x 10"

1

X

IV

1

ftf

J (=10 7 e rg )

1

9.80665

3.6 x 10'

4.18605

1055.06

1.35582

1.60218 x 1 0 "

kgf-m

0.101972

1

3.67098 x 105

0.426858

107.586

0.138255

1.63377 x 10—

kW- h

2.77778 x 10"

2.72407 x 10"

1

1.16279 x 10-'

2 .93072x10 '

3.76616 x 10"

4.45050 x 1 0 - '

cal(Itftffi)

0.238889

2.34270

8.59999 x 10s

1

252.042

0.323890

3.82743 x 1 0 "

Btu

9.47813 x 10"'

9.29487 x 1 0 -

3412.13

3.96759 x 10"3

1

1.28506 x 10"'

1.51857x 1 0 - !

ft • lbf

0.737562

7.23301

2.65522 x 10'

3.08747

778.172

1

1.18171 x 10""

eV

6.24150 x 10"

6.12082 x 10"

2.24694 x 10"

2.61272 x 10"

6.58515 x 10"

8.46233 x 10"

1

Bq

3.7 x 10"

2.70270 x 10'

1

IXs

Gy

1

0.01

rad

100

1

C/kg

2.58 x 10'

3876

1

1 cal = 4.186O5 J(I t f t t t )

= 4.184J (MW)

= 4.1855 J (15 "C)

= 4.1868 J(fiRH5\

\ PS ULM,fl)

= 75 kgf-m/s

= 735.499 W

Sv

i

0.01

100

1

12 ft 26

top related