cerebellum 66

58
1 Cerebellum, Cerebellum, Psychiatric Aspects Psychiatric Aspects & Routine Disorders & Routine Disorders Dr Khalid Mansour Consultant Psychiatrist Priory Hospital Cefn Carnau

Upload: khalid-mansour

Post on 08-Aug-2015

176 views

Category:

Health & Medicine


2 download

TRANSCRIPT

1

Cerebellum, Cerebellum, Psychiatric Aspects Psychiatric Aspects & Routine Disorders& Routine Disorders

Dr Khalid MansourConsultant Psychiatrist

Priory Hospital Cefn Carnau

Introduction•10% of the weight of the brain (Llinas et al, 2004).

•80% of brain neurones (Herculano-Houzel, 2010)

•Traditionally: cerebellum only > posture, balance & motor control.

•Not involved in initiating motor activity, but coordinating them (Flourens, 1824).

Introduction •Abundant connections > non-motor brain regions.

•Involved in coordinating all non-motor functions e.g. perceptions, emotions, cognition, speech, personality, etc.

•Cerebellar abnormalities exist in most mental illnesses.

•Mental illnesses exist in most cerebellar disorders.

3

1.Anatomy2.Models of Cerebellar

Functioning3.Psychiatric Aspects of

Cerebellar Disorders4.Cerebellar Abnormalities in

Psychiatric Disorders: 5.Cerebellar Mental Therapies.6.Clinical Reflections:

4

Anatomy

5

Gross anatomy: •Anterior lobe. •Posterior lobe.•Flocculonodular lobe.

Cross sectional:•Gray matter:•White matter:

•Nerve fibre tracts•Deep nuclei

6

Functional Anatomy:

•Vestibulocerebellum (flocculonodular lobe).

•Spinocerebellum (vermis & paravermis).

•Cerebrocerebellum (lateral cerebellar hemispheres).

7

Deep Cerebellar

Nuclei

•Dentate, •Interposed (Globose & Emboliform)

•Fastigial Nuclei.

8

Cerebellar Cortex

•Three layers:•Granular Layer, Granule cells and Golgi cells.

•Purkinje Layer•Molecular Layer,

•Dendrite of Purkinje cells,

•Parallel Fibers •Stellate cells and Basket cells 9

Cerebellar Connections:• Afferent:

• Brainstem, spinal cord and cerebrum > Mossy Fibers > Granule cells> Parallel Fibers > Purkinje cell >

• Inferior Olivary nucleus > Climbing Fibers > Purkinje cells• Efferent:

• Purkinje cell > Deep Cerebellar Nuclei > climbing and/or Mossy fibers > Brainstem, spinal cord and cerebrum

10

Models of Cerebellar Functioning

11

Marr & Albus Model for Cerebellar Learning (Eccles, Ito & Szentagothai,1967)

•Several theories about cerebellum and learning.

•Most theories about Cerebellar functioning / learning are derived from early models of David Marr (1969) and James Albus (1971).

•Albus (1971) formulated his model as a software algorithm: Cerebellar Model Articulation Controller, which has been tested in a number of computer applications.

12

David Marr

James Albus

Marr & Albus Model for Cerebellar Learning (Eccles, Ito & Szentágothai,1967)

1. Feedforward processing.2. Divergence and Convergence.3. Modularity / Compartmentalization4. Plasticity.

13

Cerebellar Perceptron, James Albus

(1) Feed-forward Processing:(Eccles, Ito & Szentágothai,1967)

•Signals move uni-directionally from input to output, with very little recurrent internal transmission > a quick and clear response with no reverberation.

14

(2) Modularity / Compartmentalization(Oscarsson, 1979; Apps & Garwicz, 2005)

•Cerebellar cortex > zones and micr-ozones (1000 Purkinje cells).

•Interactions within a micro-zone much stronger than interactions between different micro-zones. 15

(3) Plasticity(Mial et al, 1998; Ohtsuki et al, 2009)

• Purkinje cells normally > high rate action potentials : • Simple spike • Complex spike

• Parallel fibre-Purkinje cell synapse > long-term depression (LTD).

• Repetitive firing of parallel fibres alone > long-term potentiation (LTP).

16

(4) Divergence & Convergence:(Llinas et al, 2004; Apps & Garwicz, 2005)

•200 million MF > 50 billion GC (1:500).

•Granule Cells > PF > spines > 15 million PC

•PCs < 100000 PF (over 200000 spines) + 1 CF.

•Each micro-zone (1000 PCs) > 50 DNCs.

•100 MF > 10 billion spines > 1 DNC

17

Adaptive Filtering (Fujita 1982; Dean & Porell, 2008; Dean et al, 2010)

• Elimination of noise• Fine tuning • Optimality / Coordination

• Execution not creativity

18

1. Feedforward processing.2. Divergence and

Convergence.3. Modularity /

Compartmentalization4. Plasticity.

•Kenji Doya (2000): •“Neural computation”. •Katz & Steinmetz (2002): •“Regulates brain processes”.•Boydon (2004): •“Makes fine adjustments to the way an action is performed”.

•Masao Ito (2005): •“Matches intentions with actual performance”.

•Reeber et al (2013): “computational task … recognizing neural patterns … predict optimal movements”. 19Masao Ito

Kenji Doya

Cerebellar Learning: “Software Programmer”

Cerebellar Learning:

(Burguiere et al, 2010, Kalmbach et al, 2011)

•Cerebellum > develops learnt behaviour with >

1.Minimum Errors2.Minimum Time 3.Minimum Effort 4.Minimum Attention /

awareness5.Maximum stability

20Chase Britton

Psychiatric Aspects of Cerebellar Disorders

21

1 - Psychological Studies of Normal Individuals with Reduced Cerebellar

Volume•Individuals with reduced cerebellar volume > higher scores on scales of anxiety, type A personality, phobia, tenderness and hostility (Chung et al, 2010).

22Chase Britton

2 - Other Psychiatric Aspects of Cerebellar Disorders: (Wolf et al, 2007)

23

3 - Psychiatric Aspects of Anatomically Specific Cerebellar Abnormalities

•Vermal Agenesis > severe LD & Autism (Tavano

et al, 2007).•Vermal lesions > affective and relational disorders (Schmahman et al, 2007).

•Spinocerebellar Ataxia > impairment in attention, memory, executive functions and theory of mind (Garard et al, 2008).

24

4 - Cerebellar Cognitive Affective Syndrome (Schmahman et al, 2007; Tavano et al, 2007; Levisohn et al, 2000):

25

Cerebellar Syndromes > motor impairments +Cognitive impairments: Executive dysfunctions, visuo-spatial abnormalities, linguistic dysfunction.Affective impairments: Anxiety, lethargy, depression, lack of empathy, ruminativeness, perseveration, anhedonia and aggression.

Jeremy Schmahmann

Cerebellar Abnormalities in Psychiatric Disorders:

General

26

Cerebellar Abnormalities in Psychiatric Disorders

•Bipolar Affective Disorder: e.g. reduced Cerebellar / Vermis volume (Glaser et al, 2006)

•Anxiety: e.g. cerebellar-vestibular dysfunction (Levinson, 1989)

•Depression: e.g. reduced posterior cerebellar activities (Fitzgerald et al, 2009)

27

ADHD:

•Smaller cerebellar volume (Berquin et al 1998; Giedd et al, 2001). 

•Abnormalities in post-inferior cerebellar hemispheres and vermis (Casey et al, 2007; Steinlin, 2007).

•Reduction in the activity of cerebellum and vermis (Mackie et al, 2007).

Cerebellar Abnormalities in Psychiatric Disorders:

•Post Traumatic Stress Disorder: e.g. altered function of the vermis (Anderson et al, 2002)

•Alcohol abuse: e.g. induced reduction in Cerebellar / Vermis volume (Glaser et al, 2006) 28

•Gender differences: (Dean & McCarthy, 2008)

•Antisocial Personality Disorder: e.g. reduced Cerebellar volume (Barkataki et al, 2006).

•Alzheimer Dementia: e.g. cerebellar atrophy (Wegiel et al, 1999)

Cerebellar Abnormalities in Psychiatric Disorders:

Dyslexia, Schizophrenia & Autism

29

(1) Cerebellum & Dyslexia:•Developmental Dyslexia:

(Stoodley & Stein, 2011; Nicolson et al, 2001; Pernet et al, 2009)

•Dyslexia > cerebellar structural and functional abnormalities in 80% of cases.

•Dyslexia > impairment in the ability to perform skills automatically.

•Cerebellar syndromes > impairments in reading and writing characteristic of dyslexia.

30

The Cerebellar Deficit Hypothesis of Dyslexia: (Nicolson & Fawcett, 1990; Nicolson et al,

2001): dyslexia is an impaired automatization of high-order sensory-motor procedures in reading.

(2) Cerebellum & Schizophrenia: General Studies

• ↑ Imaging studies > cerebellar abnormalities in schizophrenia (Vernas et al,

2007): • ↑ Cerebellar-Motor

Dysfunction in Schizophrenia and Psychosis-Risk (Bernard & Mittal, 2014).

• ↓ Cerebellar volume (Bottmer et al, 2005)

• ↓ Blood flow on PET scan (Andreasen et al, 1996).

31

• ↓ Level of N-acetylaspartate in Magnetic Resonance Spectroscopy Imaging (MRSI) studies (marker of neurone density and viability) in vermis and cerebellar cortex (Ende et al, 2005).

• ↓ Volume in the cerebello-thalamic-cortical network (Rusch et al, 2007).

• Neuronal disorganisation in the superior peduncle on Diffusion Tensor Imaging (DTI) studies (Okugawa et al, 2006).

(2) Cerebellum & Schizophrenia: Specific Symptoms (Picard et al, 2008)

•Hallucinations (Shergill et al, 2003; Neckelman et al, 2006)

•Formal Thought Disorder (Kircher et al, 2001; Levitt et al, 1999)

•Affect symptoms (Stip et al, 2005; Paradiso et al, 2003; Abel et al, 2003)

•Cognition (Szesko et al 2003; Toulopoulou et al 2004)

•Attention (Eyler et al, 2004; Honey et al, 2005; Aasen et al, 2005)

•Language (Shergill et al, 2003; Boksman et al 2005; Kircher et al 2005)

•Memory (all types) (Mendrek et al, 2005; Whyte et al 2006)

32

(2) Cerebellum & Schizophrenia: Cerebellar Glutamate

Theory

33

•Hypo-functioning of the Glutamate NMDA receptors in cerebellum > cognitive dysmetria > schizophrenia.

• Yeganeh-Doost et al, 2011):

(2) Cerebellum & Schizophrenia: Cognitive Dysmetria Theory

(Andreasen et al, 1998) •The Cortico-Cerebellar-Thalamo-Cortical circuit is dysfunctional > poor mental coordination > (Cognitive Dysmetria) > Schizophrenia.

•The theory has been criticised by other researchers (e.g. Kaprinis et al, 2002, Kaprinis et al, 2002; Shanagher et al, 2006) Nancy

Andreasen

(2) Cerebellum & Schizophrenia: Secondary Cerebellar Abnormalitites

•Schizophrenia > increased dopaminergic activities > cerebellar disorder > motor disorders in schizophrenia (even neuroleptics naïve) (Mittleman et al, 2008; Hoppenbrouwers et al, 2008; Varambally et al, 2006; Picard et al, 2007).

35

(3) Cerebellar & Autism:General Studies

•One of the most consistent abnormalities found in ASD (DiCicco-Bloom

et al, 2006). • 95% of post mortem examinations of autistic individuals (Delong, 2005)

•Consensus related to cerebellar involvement in autism (Fatemi et al, 2012):

• Abnormal cerebellar anatomy, • Abnormal neurotransmitter systems, • Oxidative stress, • Cerebellar motor and cognitive deficits, • Neuro-inflammation

36

S. Hossein Fatemi

(3) Cerebellum & Autism:Cerebral Involvement

•Associated with mal-development of the frontal lobe and any other brain regions > ASD (Carper & Courchesne, 2000; Kuemerle et al, 2006; Reeber et al, 2013).

•Loss of modulatory control of Frontal Cortex > ASD, (Catani et al, 2008).

• Cerebellum malfunction hinders neural development (Wang et al, 2014).

Sam Wang

Cerebellar Mental Therapies

38

Cerebellar Exercises / Training (Schmahmann, 2010)

• Some claims (e.g. DORE) > Physical exercises (movement + balance) > speed up information processing and improve cerebellar functioning > improve dyslexia, ADHD and Asperger’s syndrome:

• ? Could improve some mental illnesses like schizophrenia . • No known scientific studies. • Controversial treatments (Reynolds & Nicolson, 2007; Bishop,

2007; Rack, 2007)

39

Dance & Movement Therapy(Levi, 1988; Jeong et al, 2005)

40

Cerebellar Transcranial Magnetic Stimulation (TMS) (Schmahmann, 2010)

•Demirtas-Tatlidede et al (2010): stimulation of the vermis in 8 schizophrenic patients > improvements in mood, alertness, memory, attention, visual-spatial skills and energy.

•Very early stages (Minks et al, 2010)

•No RCT

41

Cerebellum: Clinical Reflections

42

Cerebellum: Clinical ReflectionsIntroduction

•Best way to make clinical judgment > follow the model of motor cerebellar functioning:

• Well studied• Must be linked physiologically to non-

motor functioning.

•Two main fields: • Cerebellar connections to mental

disorders specially dyslexia, schizophrenia and Autism > very promising and interesting but slow and small impact .

• Mental equivalent to praxis and dyspraxia > clearer and more promising

43

(1) Motor Learning vs Non-motor / Mental Learning

Cerebellum > “motor” and “non-motor / mental” coordination.

a) Motor coordination > “Motor Learning / Praxis”.

b) Mental coordination > Non-motor coordination / Mental Coordination”

44

•Cerebellum failing in motor coordination > • (Motor) dyspraxia, • Developmental Coordination Disorder (DCD),

• Clumsy Child Syndrome, etc.

•Cerebellum failing in non-motor / mental coordination > • ? Mental Dyspraxia, • ? Developmental Mental Coordination Disorder (DMCD),

• ? Mentally Clumsy Child Syndrome, or

• ? Mental Routine Disorder (MRD)45

(2) Motor Dyspraxia vs Non-motor Dyspraxia

(3) Mental Routine Disorders (MRD): A new chapter in psychopathology?!1. Better understanding of a

major part of human behaviour.

2. Widespread problem > marked suffering > needs attention.

3. Good room for effective interventions

4. Enhance therapies for major mental disorders e.g. ASD.

46

(4) Prevalence of MRDs• Motor Dyspraxia : 6-10 % in school children (Gibbs et al, 2007).

• Dyscalculia: 5-7% (Butterworth et al, 2011)

• Developmental Coordination Disorder (DCD): 5–6% (Blank et al, 2012; Zwicker et al, 2012).

• Dyslexia: 5% - 17% of school-age children (USA) (Shaywitz & Shaywitz, 2003).

• Symptom: 40% reading below grade level (Shaywitz & Shaywitz, 2003).• Special groups: 80% of individuals with LD (Shaywitz & Shaywitz,

2003).• Complications: lower self-esteem and more emotional and behavioural

difficulties than those without dyslexia (Terras et al, 2009).• comorbidity : 95% (Pauc 2005).

47

3- Assessment of MRDs:(A) Doya’s Model of Motor Learning (Doya, 2000)

(also Imamizu et al, 2000; Hikosaka et al, 2002, Bosch-Bouju et al, 2013)•Brain circuits:

• The cortico-cerebeller-thalamo-cortical circuit

• The cortico-striato-thalamo-cortical circuit

•Learning paradigms•Cerebral cortex > unsupervised learning

•Basal ganglia > reinforcement learning

•Cerebellum > supervised learning

Kenji Doya

49

50

Ferreira et al, 2008

(B) The Four Primary Components

1. Failure to learn (problem solving, adapting, planning, etc.) e.g. LD.

2. Failure to eliminate anxiety (threat) > marked disturbance of functioning e.g. OCD.

3. Failure to reach satisfaction without causing marked disturbance of functioning e.g. habit disorder

4. Failure to have smooth functioning without errors e.g. dyspraxia

51

(C)The Four Components Mixed

•Complex routine abnormalities.•1, 3 & 4 okay but 2 faulty > OCD with inner resistance.

•3 & 4 okay but 1 & 2 faulty > rigid obsessional routines without inner resistance. 52

Functional Routines

Dysfunctional Routines

Meaningful > Serves a purpose

Bizarre (counting lamp posts / eating flies).

Resilient (to stress): stress > little disruption

Unstable: stress > marked disruption

Adaptive (with novelty): new data > little disruption

Rigid: new data > significant disruption

53

(4) Classification of MRDs: a- Dysfunctional Routines

(4) Classification of MRDs: b- Simple vs. Complex MRD

54

Simple Complex

− Single faulty component (e.g. OCD or drug addiction)

− Highly functional individuals

‒ Multiple faulty components e.g. routine problems in Autism.  

‒ Less functional individuals

(4) Classification of MRDs: c- Primary vs. Secondary MRD

55

e.g. primary clumsiness

Secondary clumsiness

− Clumsiness due to faulty cerebellar component (Performance clumsiness)

‒ Clumsiness due to faulty cerebral (cognitive) component. 

(Mentation Clumsiness)

(5) Treatment of MRDs: The Methods

• General Lines:1. Medications.2. Educational.3. CBT.4. Behavioural.5. Others: e.g.

• GORE or Movement Therapies

• Process-oriented approach• Task-oriented approach• Transcranial Magnetic

Stimulation (TMS)• Specific:

• Depends on specific conditions 56

“3 Dimensions” is not the same as “2 Dimensions”: •Integrating the psychiatric dimension into the neuropsychological and OT therapies for dyspraxia > extra depth and sophistications but needs resources and time.

(5) Treatment of MRDs : The Strategy

58

Thank you

Comments