iaea/aapm code of practice for the dosimetry of static...

54
IAEA/AAPM Code of Practice for the Dosimetry of Static Small Photon Fields Jan Seuntjens McGill University Montréal, Canada

Upload: others

Post on 02-Feb-2021

4 views

Category:

Documents


0 download

TRANSCRIPT

  • IAEA/AAPM Code of Practice for the

    Dosimetry of Static Small Photon

    Fields

    Jan Seuntjens

    McGill University

    Montréal, Canada

  • Acknowledgements

    • IAEA/AAPM small and composite field working group: Hugo Palmans (Chair), Rodolfo Alfonso, Pedro Andreo, Roberto Capote, Saiful Huq, Joanna Izewska, Jonas Johansson, Warren Kilby, T Rock Mackie, Ahmed Meghzifene, Karen Rosser, Jan Seuntjens, Wolfgang Ullrich

    • Edmond Sterpin, Mania Aspradakis, Simon Duane, Hugo Palmans, Pedro Andreo for discussions on a variety of aspects related to this effort.

  • Disclosures

    • My work is supported in part by the Canadian Institutes

    of Health Research, the Natural Sciences and

    Engineering Research Council, Canada through

    operating grants and training grants.

    • Sun Nuclear Corporation provided untied funding to

    support the graphite probe calorimeter project.

    • Some brand names of commercial products are

    mentioned in this presentation. This does not represent

    any endorsement of one product or manufacturer over

    another

    3

  • Learning Objectives

    • Review the problems of small field dosimetry

    and the solutions that have been identified

    • Learn about the IAEA-AAPM recommendations

    and data for small field dosimetry

  • Overview

    • The problems in small-field dosimetry

    • The IAEA dosimetry formalism

    • Conclusions

  • What constitutes small-field conditions?

    • Beam-related small-field conditions

    – the existence of lateral charged particle disequilibrium

    – partial geometrical shielding of the primary photon

    source as seen from the point of measurement

    • Detector-related small-field condition

    – detector size compared to field size

  • Lateral charged particle loss broad photon field

    volume volume

    narrow photon field

    A small field can be defined as a field with size smaller

    than the “lateral range” of charged particles

    is a measure of the degree of charged particle

    equilibrium or transient equilibrium

  • Concept of rLCPE

    Lateral charged particle loss

    MC calculations, Seuntjens (2013)

  • Detector size relative to field size

    • Small field conditions exist when one of the

    edges of the sensitive volume of a detector is

    less then a lateral charged particle equilibrium

    range (rLCPE) away from the edge of the field

    (Li et al. 1995 Med Phys 22, 1167-1170)

    rLCPE (in cm) = 5.973•TPR20,10 – 2.688

    Slide courtesy: H. Palmans

  • Source occlusion

    Large field conditions Small field conditions

    (Figure courtesy M.M. Aspradakis et al, IPEM Report 103)

  • Overlapping of beam penumbras

    Das et al. 2008 Med Phys 35: 206-15

    definition

    of field

    size is not

    unique

  • Detector-related small field condition

    Based on criterion 1, one could claim that the GammaKnife

    18 or 14 mm diameter fields are not small (quasi point

    source + electron equilibrium length about 6 mm).

    Meltsner et al., Med

    Phys 36:339 (2009)

    Exradin A16 inner

    diameter

    Exradin A16 outer

    diameter

  • Detector dependence of output factor

    From Sanchez-Doblado et al. 2007 Phys Med 23:58-66

  • Detector issues in small field dosimetry

    • Energy dependence of the response

    • Perturbation effects

    – Central electrode

    – Wall effects

    – Fact that cavity is different from water, fluence perturbation

    – Volume averaging

    • These effects depend somewhat on the beam spot size

  • Dosimetry protocol values (e.g., TG-51) of these factors are

    applicable usually only in TCPE and only for the

    conditions:

    10 x 10 cm2; zref = 10 cm; SSD or SAD 100 cm

    Detector issues in small field dosimetry

    15

  • Stopping power ratio water to air

    Eklund and Ahnesjö, Phys Med Biol 53:4231 (2008)

    Very

    small

    effects!

    0.5% effect

    Andreo&Brahme PMB 8:839 (1986)

  • Role of different perturbation factors

    080915

    Crop et al., Phys Med Biol 54:2951 (2009)

    PP31006 and PP31016

    chambers

  • Magnitude of correction factors on and

    off-axis

    080915

    Crop et al., Phys Med Biol 54:2951 (2009)

    8 mm x 8 mm field, 10 cm depth (0.6 mm, 2 mm spot sizes)

    Very large effects!

    Very large effects! Relatively small effects!

  • Correction factors for ionization

    chambers

    Benmahklouf and Andreo (2013)

  • Diodes for small field dosimetry

    Sauer and Wilbert 2007

    Med Phys 34:1983-8

  • Shielded and unshielded diodes

    Benmahklouf and Andreo (2013)

  • Benmahklouf and Andreo (2013) 22

  • Summary of issues leading to dosimetric

    uncertainties in small fields

    • Beam dependent issues

    – Beam focal spot size

    – Lateral disequilibrium

    – How do we measure beam quality in practice?

    • Detector effects

    – There is no ideal detector

    – Volume averaging and fluence perturbation effects

    – Corrections depend on beam spot size

  • What are the single set of two largest contributors to correction

    factors and their uncertainties for commercial air-filled ionization

    chambers in small photon fields?

    3%

    17%

    75%

    5%

    1% 1. The stopping power ratio and the central electrode

    effect

    2. The stopping power ratio and the chamber wall

    effect

    3. The fluence perturbation effect and the volume

    averaging effect

    4. The stopping power ratio and the volume averaging

    effect

    5. The ionization chamber wall effect and the stem

    effect

  • • Correct answer: 3 The fluence perturbation effect and the volume

    averaging effect

    • Discussion: The field size dependence of stopping power ratios is

    0.5% or less. For most ionization chambers the field size

    dependence of wall corrections is limited to a few percent. The

    volume averaging and fluence perturbation corrections are

    potentially very large (on the order of 10-30% or more depending on

    the situation)

    • Reference:

    – Crop et al (2009) Phys Med Biol 54 2951-2969

    – Bouchard et al (2009) Med Phys 36 (10), 4654-4663

  • Which two competing effects lead to field size dependent correction factors of unshielded diode detectors?

    1. Intrinsic energy dependence

    of Si in photon beams and

    volume averaging

    2. Intrinsic energy dependence

    of Si in photon beams and

    perturbation effects

    3. Polarity effect and

    recombination

    4. Polarity effect and

    electrometer calibration

    5. Recombination effect and

    diode doping 1. 2. 3. 4. 5.

    14%

    78%

    5%0%

    3%

  • • Correct answer: 2 Intrinsic energy dependence of Si in photon

    beams and electron fluence perturbation effects

    • Discussion: Volume averaging is usually small in diodes because of

    the small size of the sensitive volume. Diodes are not polarized by

    an external bias, so there is no polarity effect. Recombination effects

    and diode doping are not relevant in this context.

    • References:

    – Francescon et al 2011, Med Phys 38: 6513

    – Benmakhlouf et al 2014, Med Phys 41: 041711

  • IAEA TECDOC small field dosimetry

    • Code of Practice / working document

    • Physics relevant to reference and relative dosimetry

    • Formalism

    • Instrumentation

    • Practical implementation

    – Machine-specific reference dosimetry

    – Relative dosimetry

    • Data

  • Ch. 2 - Physics of small fields

    e.g. Small field conditions

    LCPE source occlusion detector size

    0.2

    0.4

    0.6

    0.8

    1.0

    0.0 0.5 1.0 1.5 2.0 2.5

    beam radius / cm

    rati

    o o

    f d

    ose

    to

    ke

    rma

    Co-60

    6 MV

    10 MV

    15 MV

    Meltsner et al. 2009

    Med Phys 36:339-50

    Aspradakis et al 2010

    IPEM Report 103

    Seuntjens

    MC

  • 0 0

    ,

    , , , , ,msr refmsr msr

    msr msr msr

    f ff f

    w Q Q D w Q Q Q Q QD M N k kmsrclin

    msrclin

    msr

    msr

    clin

    clin

    ff

    QQ

    f

    Qw

    f

    Qw DD,

    ,,, Machine specific

    reference field fmsr Clinical field

    fclin

    Tomotherapy

    5 cm x 20 cm

    REFERENCE DOSIMETRY RELATIVE DOSIMETRY

    GammaKnife

    d = 1.6/1.8 cm

    CyberKnife

    6 cm

    Ionization chamber

    Broad beam reference field

    fref

    00 ,,, QQQwDkN

    Hypothetical

    reference field fref

    micro MLC

    10 cm x 10

    cm

    refmsr

    msr

    ff

    QQk,

    ,

    Radiosurgica

    l collimators

    d = 1.8 cm

    refmsr

    msr

    ff

    QQk,

    ,

    msrclin

    msrclinmsr

    msr

    clin

    clinmsrclin

    msrclin

    ff

    QQf

    Q

    f

    Qff

    QQ kM

    M,

    ,

    ,

    ,

    30

    Reference Fields Small Fields

  • Ch3. – Formalism (Alfonso et al) / Dw in

    machine specific reference (msr) fields

    • Chamber calibrated specifically for the msr field

    • Chamber calibrated for the conventional reference field and

    generic correction factors are available

    • Chamber calibrated for the conventional reference field and

    generic correction factors not available

    msr

    msr

    msr

    msr

    msr

    msr

    f

    QwD

    f

    Q

    f

    Qw NMD ,,,

    refmsr

    msr

    refmsr

    msr

    msr

    msr

    ff

    QQ

    f

    QwD

    f

    Q

    f

    Qw kNMD,

    ,,,, 00

    refmsr

    msr

    refrefmsr

    msr

    msr

    msr

    ff

    QQ

    f

    QQ

    f

    QwD

    f

    Q

    f

    Qw kkNMD,

    ,,,,, 00

    fref==10 x 10 cm2

    Q0= 60Co

  • Equivalent square fields - msr

    WFF beams:

    BJR 25 - equivalent

    field size is energy

    independent

    FFF beams:

    equivalent field size is

    energy dependent;

    Tables are provided

    for 6 MV and 10 MV

  • Ch 3. – Formalism / equations for

    beam quality in non-standard

    reference fields

    for TPR20,10(10) = TPR20,10

    (Palmans 2012 Med Phys 39:5513)

    )(

    )()()( ,,

    sd

    sdsTPRTPR

    101

    1010

    1020

    1020

    0.55

    0.60

    0.65

    0.70

    0.75

    0.80

    0.85

    2 4 6 8 10 12

    s / cm

    TP

    R2

    0,1

    0(s

    )

    (b)4 MV

    10 MV

    8 MV

    6 MV

    5 MV

    25 MV21 MV18 MV15 MV12 MV

  • Ch 3. – Formalism / equations for

    beam quality in non-standard

    reference fields for PDD10X(10) = %dd(10)X

    11

    1

    1010

    2

    10

    110

    10

    t

    s

    t

    s

    ec

    ecsPDD

    PDD

    )(

    )(

    07510020102671

    075101010

    1010

    1010

    10.)(,.)(.

    .)(),()(

    PDDPDD

    PDDPDDPDD x

    (Palmans 2012 Med Phys 39:5513-9) 55

    60

    65

    70

    75

    80

    85

    2 4 6 8 10 12

    s / cmP

    DD

    10(s

    )

    4 MV

    10 MV

    8 MV

    6 MV

    5 MV

    25 MV

    21 MV

    18 MV

    15 MV

    12 MV

    (d)

    (TG-51)

  • Note about volume averaging in FFF

    beams

    Pantelis et al. 2009 Med Phys 37:2369

  • Volume averaging in FFF beams

  • Ch3. – Formalism / determination of

    field output factors

    • Field output factor relative to reference field (ref stands here for a

    conventional reference or msr field)

    • Field output factor relative to reference field using intermediate field or ‘daisy chaining’ method

    where

    refclin

    refclinref

    ref

    clin

    clinrefclin

    refclin

    ff

    QQf

    Q

    f

    Qff

    QQ kM

    M,

    ,

    ,

    ,

    refclin

    refclinref

    ref

    clin

    clinrefclin

    refclin

    ff

    QQf

    Q

    f

    Q

    f

    Q

    f

    Qff

    QQ KICM

    ICM

    M

    M ,,

    ,

    ,)(

    )(

    (det)

    (det) intint

    int

    int

    )((det),

    ,

    ,

    ,

    ,

    ,int

    int

    int

    detICkkK ref

    ref

    clin

    clin

    refclin

    refclin

    ff

    QQ

    ff

    QQ

    ff

    QQ

  • Ch 4 – Instrumentation

    • Required equipment, detectors, phantoms for

    msr dosimetry

    • Required equipment, detectors, phantoms for

    relative dosimetry

  • Ch 5 – Practical implementation msr

    dosimetry

    • Reference conditions for beam quality and msr

    dosimetry

    • Overall correction factors for ionization

    chambers

    • Correction for influence quantities

    • Measurement in plastic phantoms and cross-

    calibration

  • Ionization chambers,

    recombination, polarity

    LeRoy et al., PMB 56:5637-51 (2011)

    Agostinelli et al., Med Phys 35:3293-301 (2008)

  • Note on the use of plastic phantoms

    (Seuntjens et al 2005, Med. Phys. 32: 2945)

  • Ch 5 – Practical implementation msr

    dosimetry / availability data

    refmsr

    refmsr

    ff

    QQk,

    ,

  • Francescon et al: Phys. Med. Biol. 57 (2012) 3741–3758

    Correction factor data (cont’d)

  • Ch 6 – Practical implementation

    relative dosimetry

    • Required equipment, detectors, phantoms

    • Measurements of profiles and field output factors

    • Correction factors for determination of output

    factors

  • Ch 6 – Practical implementation

    relative dosimetry / correction

    factors for OF

    • Examples of different sources of correction

    factors will be further discussed in the next

    presentation (I. Das)

    • IAEA-AAPM code of practice data tables is

    based on a vetted set of correction factor from

    the literature

    • Uncertainty analysis has been performed

  • Field output factors – correction

    factors - example

    • PTW-60012 – unshielded diode

    0.92

    0.93

    0.94

    0.95

    0.96

    0.97

    0.98

    0.99

    1

    1.01

    1.02

    0.0 2.0 4.0 6.0 8.0 10.0

    co

    rre

    ctio

    n fa

    cto

    r w

    ith

    re

    f fin

    t

    square field size / cm

    Cranmer Sargison 2011 / Elekta

    Cranmer Sargison 2011 / Varian

    Krauss 2008

    Schwedas 2007

    Griesbach 2005

    Ralston et al 2011 - cones

    Ralston et al 2011 - microMLC

    Fit (exp)

    Fit (exp + MC)

  • Field output factors – correction

    factors - diode

    • IBA SFD – unshielded diode

    0.950

    0.960

    0.970

    0.980

    0.990

    1.000

    1.010

    1.020

    1.030

    1.040

    1.050

    0.0 2.0 4.0 6.0 8.0 10.0

    co

    rrection f

    acto

    r w

    ith r

    ef fint

    square field size / cm

    Azangwe 2014 Lechner 2013 WFF Lechner 2013 FFF Bassinet 2013 /Novalis+muMLC Cranmer Sargison 2011 / Elekta Cranmer Sargison 2011 / Varian Sauer 2007 Ralston et al 2011 - cones Ralston et al 2011 - microMLC Fit (exp) Fit (exp + MC)

  • Field output factors – correction

    factors • PTW-31006 - Pinpoint

  • Uncertainty in correction factor

    introduced due to field size definition

    Cranmer Sargison et al Med. Phys. 38, 6592–6602 (2011) Benmakhlouf et al Med. Phys. 41, 041711 (2014)

  • Output factors – validation

    methodology

    )1(

    )2(

    )2(

    )2(

    )1(

    )1(

    )2(

    )1(

    ,

    ,

    ,

    ,

    ,

    ,

    clin

    clin

    clin

    clin

    msr

    msr

    clin

    clin

    clin

    clin

    msr

    msr

    msrclin

    msrclin

    msrclin

    msrclin

    f

    Qrel

    f

    Qrel

    f

    Q

    f

    Q

    f

    Q

    f

    Q

    ff

    QQ

    ff

    QQ

    M

    M

    M

    M

    M

    M

    k

    k

    msrclin

    msrclinmsr

    msr

    clin

    clin

    msr

    msr

    msr

    msr

    clin

    clin

    clin

    clin

    msr

    msr

    clin

    clin

    msr

    msr

    clin

    clinmsrclin

    msrclin

    ff

    QQf

    Q

    f

    Q

    f

    Q

    f

    Qw

    f

    Q

    f

    Qw

    f

    Q

    f

    Q

    f

    Qw

    f

    Qwff

    QQ kM

    M

    MD

    MD

    M

    M

    D

    D,

    ,

    ,

    ,

    ,

    ,,

    ,

    clin

    clin

    msr

    msr

    msr

    msr

    clin

    clinmsrclin

    msrclin f

    Q

    f

    Q

    f

    Qw

    f

    Qwff

    QQM

    M

    D

    Dk

    ,

    ,,

    ,Where:

  • Output factors – example CyberKnife

    0.600

    0.650

    0.700

    0.750

    0.800

    0.850

    0.900

    0.950

    1.000

    1.050

    0 5 10 15 20

    diameter / mm

    M /

    M60

    A16PinPointDiode 60008Diode 60012

    EDGEAlanineTLDEBT filmPolymer gel

    0.950

    1.000

    1.050

    1.100

    1.150

    1.200

    1.250

    1.300

    0 5 10 15 20

    diameter / mm

    (M/M

    60) 2

    /(M

    /M6

    0) 1

    PinPoint

    Diode 60008

    Diode 60012

    EDGE

    Alanine

    TLD

    EBT film

    Polymer gel

    0.950

    1.000

    1.050

    1.100

    1.150

    1.200

    1.250

    1.300

    0 5 10 15 20

    diameter / mm

    rati

    o o

    f co

    rre

    cti

    on

    fac

    tors

    (M

    C o

    r vo

    l) PinPoint

    Diode 60008

    Diode 60012

    EDGE

    Alanine

    ) 2

    ( ) 1

    ( , ,

    , , m

    sr

    clin

    msr

    clin

    msr

    clin

    msr

    clin

    f f

    Q

    Q

    f f

    Q

    Q

    k

    k

    0.85

    0.90

    0.95

    1.00

    1.05

    1.10

    1.15

    Diode 60008

    Diode 60012

    EDGE

    TLD

    EBT film

    Polymer gel

    A16

    PinP

    oint

    Diode 60008

    Diode 60012

    EDGE

    Alanine

    TLD

    EBT film

    Polymer gel

    0.50

    0.55

    0.60

    0.65

    0.70

    0.75

    detector

    Mc

    lin /

    Mre

    f

    (M

    clin

    / Mre

    f )* k

    clin

    ,ms

    r

    ExrA16 PinPoint SHD USD EDGE alanine TLD EBT GEL

    Pantelis et al.

    2010 Med Phys

    37: 2369

    Slide courtesy:

    H. Palmans

  • For what purpose is the measurement of the

    beam quality specifier required?

    1. To specify the correction factors to be applied to the output ratios measured in small fields

    2. To specify small field output factors

    3. To specify the beam quality correction factor in the msr field

    4. To ensure the beam is of adequate quality

    5. To specify the absorbed dose calibration coefficient for a small field 1. 2. 3. 4. 5.

    22%

    6%

    13%

    1%

    58%

  • • Correct answer: 3 To specify the kQmsr,Qref beam quality correction

    factor in the msr field

    • Discussion: In general, no beam quality measurement is performed

    in small fields, only in msr fields.

    • References:

    – Palmans 2012 Med Phys 39: 5513

  • Conclusions

    • Solutions to most small-field dosimetry problems

    have been described and translated in

    formalised procedures

    • The IAEA CoP will be coming out in the very

    near future – timeline < 6 months