k ] o d z v } o } p ] ( } z ^ u ' o k ] v À v Á Á Á x ... · & µ µ d v } v k ] o d z...

17
AWE 2017 Oct 19 th Munich Optical Technologies for AR Smart Glasses Khaled Sarayeddine CTO & Co-Founder Optinvent www.optinvent.com

Upload: others

Post on 13-Jul-2020

22 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: K ] o d Z v } o } P ] ( } Z ^ u ' o K ] v À v Á Á Á X ... · & µ µ d v } v K ] o d Z v } o } P ] ( } Z À ] í ð •> ] P Z P µ ] u Z } Á ] o o } u ] v

AWE 2017Oct 19

thMunich

Optical Technologies for AR Smart GlassesKhaled SarayeddineCTO & Co-Founder

Optinventwww.optinvent.com

Page 2: K ] o d Z v } o } P ] ( } Z ^ u ' o K ] v À v Á Á Á X ... · & µ µ d v } v K ] o d Z v } o } P ] ( } Z À ] í ð •> ] P Z P µ ] u Z } Á ] o o } u ] v

Basic Ergonomics & Photometric parameters for Near To Eye devices

AR and VR On-Eye classification & Related Optical technologies

Focus on AR Optical technologies:

Benchmarking/Advantages/Drawbacks

Future trend in optical technologies for Smart glasses

Light Field Approach

2

SUMMARY

Page 3: K ] o d Z v } o } P ] ( } Z ^ u ' o K ] v À v Á Á Á X ... · & µ µ d v } v K ] o d Z v } o } P ] ( } Z À ] í ð •> ] P Z P µ ] u Z } Á ] o o } u ] v

Basic Ergonomics and photometry

ORA-2

Page 4: K ] o d Z v } o } P ] ( } Z ^ u ' o K ] v À v Á Á Á X ... · & µ µ d v } v K ] o d Z v } o } P ] ( } Z À ] í ð •> ] P Z P µ ] u Z } Á ] o o } u ] v

Définition et introduction aux systèmes de visualisation oculaire

4

• Eye Relief ~20 to 25mm to accommodate using user’s glasses• Eye-Box >10mm x 7mm to accommodate large population IPD• Transparency (T>30%) or dynamic transparency• Light Weight<100g, distributed weight over the glasses/HMD Frame• Ophthalmic Correction mandatory

FOV Micro display

F

Perceived enlarged Virtual image

D

Eye Pupil

CollimatingLens

Eye Relief

Basic Ergonomics

Eye-Box

Eye-Pupil

Ophthalmic lens

Page 5: K ] o d Z v } o } P ] ( } Z ^ u ' o K ] v À v Á Á Á X ... · & µ µ d v } v K ] o d Z v } o } P ] ( } Z À ] í ð •> ] P Z P µ ] u Z } Á ] o o } u ] v

Définition et introduction aux systèmes de visualisation oculaire

5

• Virtual image position is important for indoor use case

• Medical use case requirements: 0.5 to 2m focus distance

• Industrial use case: 2 to 4meters

• Discomfort if virtual image location is different from working distance

• Monocular situation (Right/Left Eye Rivality!):

• Discomfort if image location is located at short distance (<2 m)

• Fair and comfortable if Image location is >6m

• Flip-Vu is an elegant solution to avoid user discomfort

• Binocular situation (convergence issue):

• Discomfort on both eyes if image location is different from working distance

• Convergence issue is more annoying than focus issue

Image position & Convergence issue

Focus issue Convergence Issue

Page 6: K ] o d Z v } o } P ] ( } Z ^ u ' o K ] v À v Á Á Á X ... · & µ µ d v } v K ] o d Z v } o } P ] ( } Z À ] í ð •> ] P Z P µ ] u Z } Á ] o o } u ] v

Définition et introduction aux systèmes de visualisation oculaire

6

Brightness: Near to eye system works with Brigthness not with light flux!Required Brigthness: 3 to 5kCd/m² (nits) to allow outdoor use case

• Clear daytime sky Brightness: ~10,000Nits (Cd/m²)

• Moonless Dark Sky: 10E-3 nits

High Brightness display -> More power consumption. The quality of the display is its intrinsic Brightness efficiency: Example: 10knits/w

Light Sensor is able to adjust the Image Brightness by a factor of 2000!

The use of Photochromic lens (ORA-1) is an elegant solution

To overcome this difficulty, some Smart Glasses manufacturers are cheating a little bit by adding a sun glasses filter to an additional visor:

• To reduce outdoor scene Brightness & increase image contrast

Example:

Intrinsic Display Brightness of 500nits

Sun glasses filter of 10% transmission

Yields an Equivalent Brightness of ~5000nits without visor

Basic photometric

Page 7: K ] o d Z v } o } P ] ( } Z ^ u ' o K ] v À v Á Á Á X ... · & µ µ d v } v K ] o d Z v } o } P ] ( } Z À ] í ð •> ] P Z P µ ] u Z } Á ] o o } u ] v

AR and VR On-Eye classification & Related Optical Technologies

Page 8: K ] o d Z v } o } P ] ( } Z ^ u ' o K ] v À v Á Á Á X ... · & µ µ d v } v K ] o d Z v } o } P ] ( } Z À ] í ð •> ] P Z P µ ] u Z } Á ] o o } u ] v

Oculus

8

VR Immersive Non See-Through Devices

Various Devices and Smart-Glasses

Fully Immersive for VR Applications

Sony

Samsung

• Classical optics, with a low barrier to entry• Large distortion corrected by software• Low resolution• Non AR capable & cumbersome• Software making convergence & low latency for real time

video

Micro Display

Optics

Smartphone screen

Optics

FOV: 110degResolution:12pixels/deg

FOV: 45degResolution:~60 pixels/deg

Page 9: K ] o d Z v } o } P ] ( } Z ^ u ' o K ] v À v Á Á Á X ... · & µ µ d v } v K ] o d Z v } o } P ] ( } Z À ] í ð •> ] P Z P µ ] u Z } Á ] o o } u ] v

9

Non See-Through optical Devices

Various Devices and Smart-Glasses

See Around, don’t allow True AR Applications

Vuzix M100 Recon Jet

SonyTelepathy

Brothers• Classical optics, with a low barrier to entry• Low FOV (<14deg)• Low resolution• Small Eye Box• Non AR Capable

Page 10: K ] o d Z v } o } P ] ( } Z ^ u ' o K ] v À v Á Á Á X ... · & µ µ d v } v K ] o d Z v } o } P ] ( } Z À ] í ð •> ] P Z P µ ] u Z } Á ] o o } u ] v

Focus on AR Optical Technologies

ORA-C

Page 11: K ] o d Z v } o } P ] ( } Z ^ u ' o K ] v À v Á Á Á X ... · & µ µ d v } v K ] o d Z v } o } P ] ( } Z À ] í ð •> ] P Z P µ ] u Z } Á ] o o } u ] v

11

True AR See-Through Devices, Free air propagation Optics

Various Devices and Smart-Glasses

LasterSee-Thru

VuzixWRAP1200

Laster

ODG• Cumbersome• Low efficiency (<10%)• Low barrier to entry for optics• Subject to dust deposition

FOV:30degResolution:45pixels/deg

Page 12: K ] o d Z v } o } P ] ( } Z ^ u ' o K ] v À v Á Á Á X ... · & µ µ d v } v K ] o d Z v } o } P ] ( } Z À ] í ð •> ] P Z P µ ] u Z } Á ] o o } u ] v

12

GoogleGlass

True AR See-Through devices using Light guide technology

Various Devices and Smart-Glasses

EpsonMoverio

Lumus

Sony

OptinventHololensMicrosoft

Page 13: K ] o d Z v } o } P ] ( } Z ^ u ' o K ] v À v Á Á Á X ... · & µ µ d v } v K ] o d Z v } o } P ] ( } Z À ] í ð •> ] P Z P µ ] u Z } Á ] o o } u ] v

Future trend in AR Optical Technologies for AR

Devices

Page 14: K ] o d Z v } o } P ] ( } Z ^ u ' o K ] v À v Á Á Á X ... · & µ µ d v } v K ] o d Z v } o } P ] ( } Z À ] í ð •> ] P Z P µ ] u Z } Á ] o o } u ] v

Future Trends on Optical Technologies for AR Devices

14

• Light guide method will dominate Better clearance in front of the eye Smaller footprint and good looking Diffractive technology still limited in FOV Light Field feature to be integrated into Future light guide development

• Field Of View (FOV) Informative/Industrial will be satisfied with monocular moderate FOV; 20 to 30deg Medical will seek binocular with a moderate FOV; 30 to 40 deg AR/Games/Video will seek larger FOV; ~50deg Larger FOV will enable transformation of VR Market to AR; FOV > 60deg Generally Speaking Fovation methods will help optics

• Micro-display Lcos will dominates for the next 5 years Oled technology for low Brightness devices (<2000nits); means indoor use case Mems technology offer the best foot print, but still related to Laser beam quality and cost Led based Microdisplay is the best technology for the future: Expected Brightness: >200,000nits

• Light source White Led (for CF display) has the best ratio Efficiency/cost RGB leds mandatory for Lcos Color Sequential suffers from Color Breakup phenomena and from limited frame frequency

rate for the Microdisplay Laser source could be a good alternative for high end display system with very high brightness requirement

Page 15: K ] o d Z v } o } P ] ( } Z ^ u ' o K ] v À v Á Á Á X ... · & µ µ d v } v K ] o d Z v } o } P ] ( } Z À ] í ð •> ] P Z P µ ] u Z } Á ] o o } u ] v

Light Field

Page 16: K ] o d Z v } o } P ] ( } Z ^ u ' o K ] v À v Á Á Á X ... · & µ µ d v } v K ] o d Z v } o } P ] ( } Z À ] í ð •> ] P Z P µ ] u Z } Á ] o o } u ] v

• General Requirements:• High speed image generation at pixel level:

• Computing challenge for high resolution display• Use of micro display stack

• Ability to display at least a tenth of focus planes to have realistic rendering:• Optical system footprint and integration feasibility in question for consumer product for known development• Optics is the key!

• Hide virtual information when displayed behind real opaque objects

Light Field

16

Focus distance

A (xi,yi,di)

Display virtual information in real time at different focus distances to fit natural rendering vision

B (xj,yj,dj)

Page 17: K ] o d Z v } o } P ] ( } Z ^ u ' o K ] v À v Á Á Á X ... · & µ µ d v } v K ] o d Z v } o } P ] ( } Z À ] í ð •> ] P Z P µ ] u Z } Á ] o o } u ] v

THANK YOU!

Kayvan [email protected] : +33 (0)6 83 15 02 13

Khaled [email protected]