lostandbrokeinvancouver.weebly.comlostandbrokeinvancouver.weebly.com/uploads/4/9/7/3/...web...

20
Chemistry 11 Final Examination Test Notes Matter= Anything that has mass and takes up volume Element= A pure substance, which cannot be separated into simpler substances as a result of any chemical process Silver (Ag), Copper (Cu), Hydrogen (H) Atom= Smallest possible unit of an element, which retains the fundamental properties Molecule= Cluster of 2 or more atoms held together strongly by electrical forces Ion= An atom or molecule which possesses an electrical charge Particle= A general time to describe a small bit/amount of matter, such as an atom, molecule or ion. Heterogeneous or Mechanical Mixture= Substance consisting of more than one phase or material Homogeneous or Solution= Substance of one phase or materials of the same kind (gas, in gas, liquid in gas, liquid in liquid etc) Solvent= Substance in greater quality Solute= Substance in smaller quantity Anion= Negative ion Cation= Positive ion Naming and Formula Writing for Ionic Compounds Polyatomic Ions – Formula to Name 1. Look for the left most element on the periodic table, record it as it is named on the periodic table. 2. Look for the right part of the formula on the polyatomic ions sheet 3. Write them out together (Cation positive ion then Anion negative ion) Eg. K 2 SO 4 = Potassium Sulphate *Look for a metal or NH 4 (Ammonium), this means the rest of the equation is a negative polyatomic ion. NaCH 3 COO = Sodium Acetate Fe(NO 3 ) 2 = Iron (ii) Nitrate Name to Formula *Use parentheses to denote more than one polyatomic ion Eg. Ammonium Oxide = NH 4 + O -2 (NH 4 ) 2 O Potassium Chloride= K + ClO - 3 KClO 3 Copper (ii) Dichromate= Cu 2 + Cr 2 + O 4 -2 = CuCr 2 O 4 Ionic Compounds – Element-to-Element – Formula to Name 1. List/Name the metal as it is on the periodic table 2. Change the non-metal ending (right side) to –ide 3. Metal always comes first in this case, then non-metal Eg. MgF 2 Magnesium Fluoride Al 2 O 3 Aluminum Oxide Rb 2 S Rubidium Sulphide Name to Formula 1. Metal always comes first, then the non-metal 2. Charges of the metal and non-metal must cancel out (Use Crossover Technique) Eg. Calcium Chloride Ca 2+ Cl -1 CaCl 2 Strontium Chloride Sr 2+ N -3 Sr 3 N 2 Calcium Oxide Ca 2+ O -2 CaO NOT Ca 2 O 2

Upload: lehanh

Post on 12-Mar-2018

216 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: lostandbrokeinvancouver.weebly.comlostandbrokeinvancouver.weebly.com/uploads/4/9/7/3/...Web viewChemistry 11 Final Examination Test Notes. Matter= Anything that has mass and takes

Chemistry 11 Final Examination Test Notes

Matter= Anything that has mass and takes up volumeElement= A pure substance, which cannot be separated into simpler substances as a result of any chemical process

Silver (Ag), Copper (Cu), Hydrogen (H)Atom= Smallest possible unit of an element, which retains the fundamental propertiesMolecule= Cluster of 2 or more atoms held together strongly by electrical forcesIon= An atom or molecule which possesses an electrical chargeParticle= A general time to describe a small bit/amount of matter, such as an atom, molecule or ion.Heterogeneous or Mechanical Mixture= Substance consisting of more than one phase or materialHomogeneous or Solution= Substance of one phase or materials of the same kind (gas, in gas, liquid in gas, liquid in liquid etc)Solvent= Substance in greater qualitySolute= Substance in smaller quantityAnion= Negative ionCation= Positive ion

Naming and Formula Writing for Ionic CompoundsPolyatomic Ions – Formula to Name

1. Look for the left most element on the periodic table, record it as it is named on the periodic table.2. Look for the right part of the formula on the polyatomic ions sheet3. Write them out together (Cation positive ion then Anion negative ion)

Eg. K2SO4 = Potassium Sulphate*Look for a metal or NH4 (Ammonium), this means the rest of the equation is a negative polyatomic ion.

NaCH3COO = Sodium AcetateFe(NO3)2 = Iron (ii) Nitrate

Name to Formula*Use parentheses to denote more than one polyatomic ionEg. Ammonium Oxide = NH4 + O-2 (NH4)2OPotassium Chloride= K+ ClO-

3 KClO3

Copper (ii) Dichromate= Cu2 + Cr2 + O4-2 = CuCr2O4

Ionic Compounds – Element-to-Element – Formula to Name1. List/Name the metal as it is on the periodic table2. Change the non-metal ending (right side) to –ide3. Metal always comes first in this case, then non-metal

Eg. MgF2 Magnesium FluorideAl2O3 Aluminum OxideRb2S Rubidium Sulphide

Name to Formula1. Metal always comes first, then the non-metal2. Charges of the metal and non-metal must cancel out (Use Crossover Technique)

Eg. Calcium Chloride Ca2+ Cl-1 CaCl2

Strontium Chloride Sr2+ N-3 Sr3N2

Calcium Oxide Ca2+ O-2 CaO NOT Ca2O2

Covalent CompoundsNote: No charges to consider

No crossover techniqueNo metals!

Formula to Name1. Name the left most element in the formula 2. Name the second element, ends in –ide3. Add the prefix to each element’s name in order to indicate the number of atoms of each element in the compound.

Eg. N2O2 Dinitrogen Dioxide*If the first element doesn’t have more than one atom, do not add a prefix

Prefix Numbers ListMono =1 Hexa =6Di =2 Hepta =7Tri =3 Octa =8Tetra =4 Nona =9Penta =5 Deca =10

Page 2: lostandbrokeinvancouver.weebly.comlostandbrokeinvancouver.weebly.com/uploads/4/9/7/3/...Web viewChemistry 11 Final Examination Test Notes. Matter= Anything that has mass and takes

Eg. NI3 Nitrogen Triiodide

Name to Formula1. Name the left most element of the formula by using the atomic symbol that corresponds to it on the periodic table2. Add a prefix if there is more than one atom of this element.3. Name the element on the right side using the atomic symbol for it on the periodic table4. Add a prefix to denote that there is more than one atom

Eg. Carbon Monoxide C + O Carbon Monoxide

Diatomic Elements These elements always exist in groups of 2 atoms and must be treated as such. This is shown as a subscript 2 beside the diatomic element H O F Br I N Cl Hydrogen, Oxygen, Fluorine, Bromine, iodine, Nitrogen, ChlorineNaming Hydrides-When a crystal of an ionic compound is grown from evaporation from an aqueous solution, it is frequently found that the crystal structure will include water molecules.-Molecules, which include water molecules in their crystal structures, are called Hydrates

Prefix List denoting the number of water moleculesMonohydride = 1 Hexahydride =6Dihydride =2 Heptahydride =7Trihydride =3 Octahydride =8Tetrahydride =4 Nonahydride =9Pentahydride =5 Decahydride =10

Types of ReactionsSynthesis Reaction

- A reaction that involves the combination of two or more substances- A + B = AB-

Decomposition Reaction- A reaction that involves breaking down a molecule into simpler substances- AB A + B-

Single Replacement- A reaction that involves replacing one atom in a compound with another- A + BX AX + B-

Double Replacement- A reaction that involves an exchange of atoms or groups between two different compounds- AB + XY AY + XB-

Special Type of Double Replacement : NeutralizationAcid + Base = Salt + Water

Combustion (Anything with H and C in it or C5H12)- Reaction of the hydrocarbon with oxygen to produce Carbon Dioxide and Water- Hydrocarbon + O2 CO2 + H2O -

Balancing Chemical Equations1. Quickly scan the equation to identify atoms which occur only in one species on each side of the equation

You must pick one of these atoms to be your starting point2. Metal atoms are often the leader of the reaction, meaning that they should be balanced first

If there are no metal atoms, look for something other than H and OHydrogen and Oxygen are often found several times throughout an equation and cannot be balanced until most of the others are

Eg. CuSO4 5H2O

Copper Sulphate Pentahydride

Page 3: lostandbrokeinvancouver.weebly.comlostandbrokeinvancouver.weebly.com/uploads/4/9/7/3/...Web viewChemistry 11 Final Examination Test Notes. Matter= Anything that has mass and takes

3. When a coefficient is put in front of a particular species to balance a particular atom, at least one other atom in the species now has the same coefficient.Look on the other side of the equation to see if this atom appears more than once without a coefficient in front of it and balance it. Continue until a coefficient has been put in front of every molecule, even ones.

4. Try to balance entire groups such as: SO4, PO4, NO3 etc.5. If an atoms is part of a diatomic element, such as O in O2

Notice that: 2 O-atoms = 1 O2

1 O-atom = ½ O2

5 O-atoms = 5/2 O2

6. If a fraction occurs (Eg. ½) during the balancing, multiply the equation by the denominator (Eg. 2), which eliminates the fraction.

Exothermic and Endothermic ReactionsExothermic -Gives off heat to its surroundings-Heat is released from the reactantsLess energy to break bonds than is given off to form bonds A + B C + Heat

Total Heat = Negative Value

Endothermic-Absorbs heat from its surroundings -Heat enters the reaction insteadTakes in more energy to break bonds than is given off to produce bonds A + B + Heat C

Total Heat = Positive Value

H = Change in enthalpy during a reactionTotal heat contained in a system

H = HProducts + HReactants

Bohr DiagramsFirst shell = Maximum of 2 atomsSecond shell = Maximum of 8 atomsThird shell = Maximum of 8 atomsContinue with 8 atoms for more shellsThe outermost shell of electrons are called valence electrons

Example:Neon Atom Sodium Atom Potassium Atom

When making Bohr diagrams for ions, we put a square bracket around the entire diagram and put the charge in the top right cornerExampleOxygen Ion Potassium Ion

Lewis diagrams only show valence electrons compared to Bohr diagramsExampleBoron Aluminum

Page 4: lostandbrokeinvancouver.weebly.comlostandbrokeinvancouver.weebly.com/uploads/4/9/7/3/...Web viewChemistry 11 Final Examination Test Notes. Matter= Anything that has mass and takes

Use of Significant FiguresRules for Significant Figures in General:

1. Any non-zero number ALWAYS counts456 = 3 sig figs 71567 = 5 sig figs

2. Zeroes to the left of a decimal SOMETIMES count690. = 3 sig figs 690 = 2 sig figs

3. Any zeroes IN BETWEEN count67.0001 = 6 sig figs 7001.1 = 5 sig figs

4. Leading zeroes are NEVER significant0.00005 = 1 sig fig 0.00302 = 3 sig figs

Multiplying with sig figs:1. Never round off until all you calculations are finished2. Round off to the smallest number of significant digits

Addition and Subtraction with sig figs:1. Use all known digits in the calculation2. Round off to the last decimal place that both numbers have in common

The MoleSingle Step Mole Conversions

Mole to grams = Molar mass 1 mol

Mole to particles/molecules = 6.02 x 10 23 1 mol

Mole to liters = 22.4 L 1 mol

*BE CAREFUL OF DIATOMIC MOLECULES (H, O, F, Br, I, N, Cl) They are 2 times worth.

Multi Step Mole Conversions (The Mole Bridge) or Stoichiometry

This is or gases only and When the volume needs to be found

Used when particles of a substance needs to be found

Mass of a substanceAtomic mass of the atom

Page 5: lostandbrokeinvancouver.weebly.comlostandbrokeinvancouver.weebly.com/uploads/4/9/7/3/...Web viewChemistry 11 Final Examination Test Notes. Matter= Anything that has mass and takes

a) Grams, b) Molecules, c) Particles to Moles Moles to Moles Moles to a) Grams, b) Molecules, c) ParticlesWhat you’re looking for is on the top of the equation (Numerator)After you cancel out, what you’re left with is the unit you should be looking for

Example: The combustion of Propane (C3H8) produces CO2 and H2OC3H8 + 5 O2 3 CO2 + 4 H2O

What is the mass of CO2 produced by reacting 2.00 mol of O2?Central Calculation:

Moles of O2 to moles of CO2

5 Mols O2 = 3 Mols CO2

First convert moles of O2 to moles of CO2

Then convert moles of CO2 to mass of CO2

IsotopesThe isotope number comes from the number of protons and neutrons

Isotope % (Percent) Total60Ga (Gallium) 60 60/100 3671Ga (Gallium) 71 40/100 28.4

Adding a proton to an element, creates a new elementAdding a neutron to an element creates a heavier version of the element

If you want to calculate the molar mass of an isotope, Multiply the isotope number with the percent given.

If you want to calculate the molar mass of two isotopes,Multiply both the isotopes by their percentages respectively and add the totals together for the average mass.

Example Gallium 60 and Gallium 71TOTAL: 64.4 grams

Atomic Weight (Molar Mass)*REMEMBER MOLE BRIDGE CONVERT MOLES TO GRAMS ETCPAY ATTENTION TO THE NUMBER OF MOLES GIVEN IN THE PROBLEM

Percentage Yield

% Yield = Mass Obtained x 100 % Mass Expected

ROAD MAP

Page 6: lostandbrokeinvancouver.weebly.comlostandbrokeinvancouver.weebly.com/uploads/4/9/7/3/...Web viewChemistry 11 Final Examination Test Notes. Matter= Anything that has mass and takes

Usually a yield of 100% cannot be expected Helps you find out the actual amount of the product obtained compared to the expected amount.

Find the mass expected from the general equation after the mole bridge, conversion etcThen put the obtained mass from the equation over the expected mass. Multiply that by 100% to get a percentage

Limiting and Excess ReagentsLimiting reagents set a limit on the amount that can be formedExcess reagents are when there’s some substance left over

Coordination Compounds-Transition metals have many electrons available to form bonds; therefore they are able to form coordination compounds-Transition metals have 2 Valencies Primary Valency (Combining Capacity, Oxidation State)How many bonds are formed when the Transition metal forms with oppositely charged ions

Secondary Valency (Coordination Number)The number of bonds between a transition metal and any surrounding ion, molecule or atom

General Structure1. Metal ion

Transition metal ions have many possible combining capacities2. Ligands

Ions, atoms or molecules bonded to the central metal atom or ion Around 2-8 ligands in different shapes and ways

3. Counter IonThe ion of an opposite charge that makes up the compound to produce a charge of zero

Rules for Naming Coordination CompoundsEg. [CuCl2(en)2]Br) Cu Cl en BrOxidation state= X + (-1)2 + 0 + (-1) = 0

X - 3 = 0

Page 7: lostandbrokeinvancouver.weebly.comlostandbrokeinvancouver.weebly.com/uploads/4/9/7/3/...Web viewChemistry 11 Final Examination Test Notes. Matter= Anything that has mass and takes

X = 3 1. When naming any ionic compound, the Cation (Positive Metal) is named before the anion (Negative Metal)

Br- = Charge of -1 which is why it is in the back2. When naming a complex ion, ligands are named before the metal ion in alphabetical order

Chloro ethylene diammine (Cl + en)3. In naming ligands

Anionic Ligands= an “O” is added to the name (Eg. Fluoro, Cyano, Hyroxo, Chloro)Neutral ligands= The name of the ligand is used

4. Make sure to use prefixes of di, tri, tetra etc. for ligands to denote the number of ligandsMono = 1 Di = 2 Tri = 3 Tetra = 4 Penta = 5 Hexa = 6 Hepta = 7 Octa = 8 Nona = 9 Deca = 10If the ligand already contains a prefix, or it is a polydentate, use Bis-, Tris-, Tetrakis- etc.

5. The oxidation state of the central metal ion is designated by a roman numeral in bracketsDichloro bisethylenediammine Copper (iii)

6. When more than one type of ligand is present, they are named alphabetically (Prefixes don’t affect the order)7. If the complex ion is “-ve” or an anion, the suffix “-ate” is added to the name of the metal, or if the metal has a latin

name8. Name counter ion

Dichloro bisethylenediammine Copper (iii) Bromide*Be sure to add ion to the back of the entire name if there is a charge in the original unnamed formula

Eg. [Ru(NH3)5Cl]2+ = Pentaammine ChloroRuthenium (iii) ionEg. Fe(CN)6

-4 = HexacyanoFerrate (ii) ionEg. [Co(NH3)5Cl]Cl2 = Pentaammine ChloroCobaltChlorate (iii)

Generalized rules for naming coordination compounds

1. Identify the central metal ion2. Identify the charge on the central metal ion (Parentheses)3. Identify the ligands4. Calculate the total charge on the ligands5. Calculate the total charge on the complex ion6. Write the formula with central metal ions first, then ligands7. If more than one ligand is present, anion ligands are given before neutral ligands

Isomers

General Formula

Coordination Number

Geometry Examples Notes Name

CM + 2L 2 -Not Common-M+L are on the same plane-Ligands are 180 degrees

Linear

CM + 3L 3 -Not Common-M+L are on the same plane-Ligands are 120 degrees

Trigonal planar

CM + 4L 4 -Very CommonComplex anions + halides-Ligands are 109 degrees-No chance of geometric isomers (Cis/Trans)M+2L are on the same plane

Tetrahedral

CM + 4L 4 -Common for Nickel (ii) and Platinum (ii)-M+4L’s on the same plane-Ligands are 90 degrees-Geometric Isomers are possible

Square Planar

Page 8: lostandbrokeinvancouver.weebly.comlostandbrokeinvancouver.weebly.com/uploads/4/9/7/3/...Web viewChemistry 11 Final Examination Test Notes. Matter= Anything that has mass and takes

CM + 5L 5 -Rare-M+3L’s are on the same plane

Trigonal Bipyramidal

CM + 6L 6 -Most Common-Ligand bonds are 90 degrees

Octahedral

There are 2 types of General IsomersStructural Isomers (Different bonds) Coordination isomers and linkage isomersand Stereoisomers (Same bonds, different arrangement) Geometric isomers and Optical isomers

Coordination isomersThe composition of the complex ion varies

Linkage IsomersThe complex ion is the same in structure, but the point of attachment of 1 or more ligand(s) differs

Geometric IsomersCis/Trans isomersOccur as square planar and octahedral complexesCis = side by sideTrans = across each other

Octahedral

Optical IsomersMirror images of each other“Left-Right Gloves” also called “Enatiomers”

Page 9: lostandbrokeinvancouver.weebly.comlostandbrokeinvancouver.weebly.com/uploads/4/9/7/3/...Web viewChemistry 11 Final Examination Test Notes. Matter= Anything that has mass and takes

Organic ChemistryAlkanesSingle bonded Carbon and Hydrogen atomsHave the general formula of: Cn + H2n+2 (Eg. C2H6)All bonds follow the tetrahedral arrangement109 degrees

C1 to C4 = GasesC5 to C15 = LiquidsC16 and above are solids (Waxes or Parrafins)

Structure and formula – 3 ways to represent a hydrocarbonEg. Propane (C3H8)

Full Structure Condensed Structure Molecular Formula

Since each carbon is bonded to the maximum number of Hydrogens available, they are known as Saturated Hydrocarbons.

Naming typical compounds – Alkanes1. Select the longest continuous chain of carbon atoms for the basic name2. Number the carbons in the chain from the end nearest the first branch (to give the lowest set of numbers)3. Identify substituents. If there are more than on substituents of the same kind present, use the prefixes “di”, “tri”,

“tetra” etc. 4. Locate the substituents by the number of the carbon to which they are attached5. Put substituents in alphabetical order6. Separate numbers from letters by a dash and write the whole name as one word with the basic name at the end

Naming Unbranched Alkanes1. Count the number of carbon atoms in the carbon backbone. Use a prefix to denote the number counted2. Add the ending “ane” to the end Eg. CH4 = Methane C5H12 = Pentane

Naming Side ChainsSome hydrocarbons have side chains = Alkyl GroupsAlkyl Groups= An alkane that has lost one hydrogen atom. To name an alkyl, use the prefix of the number of carbon atoms and add the ending “yl” Eg. CH4 CH3 = One Carbon Methyl

Functional GroupsSpecific groups can be found on organic molecules, known as functional groupsAllows for:

Acids, bases, bothPleasant or yucky smell

Saturation of molecules helps to identify possible shapes

Naming Branched Alkanes1. Identify the longest continuous chain of carbon atoms (Parent Chain)2. Identify all the side chains that branch off the parent chain3. Number the carbons on the parent chain consecutively that gives us the lowest possible number to the side chain

1= Meth 6= Hex2= Eth 7= Hept3= Prop 8= Oct4= But 9= Non5= Pent 10= Dec

Page 10: lostandbrokeinvancouver.weebly.comlostandbrokeinvancouver.weebly.com/uploads/4/9/7/3/...Web viewChemistry 11 Final Examination Test Notes. Matter= Anything that has mass and takes

4. Starting with the first side chain in alphabetical order, name the carbon number the alkyl group is attached to followed by a dash and then the name of the alkyl group (Eg. 2-methyl)

5. If you have more than one of the same alkyl group, list each carbon number where the repeated group is attached, separated by commas, with a dash, and ad a prefix to the alkyl group to show how many identical groups are attached (Eg. 2,3 – dimethyl)

Naming Alcohols1. Select the longest continuous chain of carbon atoms which contains the carbon bearing the hydroxyl group2. Change the ending to “-ol” from the “-ane” of the corresponding alkane3. Umber the carbons in the chain from the end nearest the carbon bearing the –OH4. Locate the position of the –OH by the number of the carbon to which it is attached5. Name substituents as with alkanes6. Hydroxyl (-OH) groups have priority over double bonds in terms of numbering

Naming Carboxylic Acids1. Select the longest continuous chain of carbon atoms which contains the carbon bearing the carboxylic grouo.2. Change the ending to “-oic” from the “-ane” of the corresponding alkane3. The carboxylic carbon atom is assigned number 14. Locate and name substituents as with alkanes.

Naming Alkynes1. Select the longest continuous chain of carbon atoms which contains both carbons of the triple bond for the basic name.2. Change the ending to “yne” from the “-ane” of the corresponding alkane3. Number the carbons in the chain from the end nearest the first carbon of the triple bond4. Locate the position of the triple bond by the number of the first carbon involves in the triple bond5. Name substituents as with alkanes.

Naming Alkenes1. Select the longest continuous chain of carbon atoms which contains both carbons of the double bond for the basic

name.2. Change the ending to “-ene” from the “-ane” of the corresponding alkane3. Number the carbon atoms in the chain from the end nearest the first carbon of the double bond4. Locate the position of the double bond by the number of the first carbon involved in the double bond5. Name substituents as with alkanes6. In cyclic system number the carbons of the double bond as 1 and 2

Esters End in “-oate”Made of alcohol and carboxylic acid

Name Functional group Name Functional groupAlkene Ether

“-oxy”Alkyne Amine

“-amino”Halide(F, Cl, Br, I)

Amide“-amide”

Alcohol“ol”

Carboxylic acid“-oic acid”

Aldehyde“-al”

Ester“-oate”

Ketone“-one”

Aromatic Ring

Alkyl HalidesThese compounds follow the same rules as branched alkanes except: The halogen groups F, Cl, Br and I are named as:Fluoro, Chloro, Bromo, Iodo

Page 11: lostandbrokeinvancouver.weebly.comlostandbrokeinvancouver.weebly.com/uploads/4/9/7/3/...Web viewChemistry 11 Final Examination Test Notes. Matter= Anything that has mass and takes

Structural IsomersBoth branched and unbranched hydrocarbons exist when given a molecular formula. Both of these have the same structure, but different arrangement of atoms. They are called structural isomers.

CycloalkanesHydrocarbons can exist in Cyclic (ring) formsThese are known as Cycloalkanes (Cyclic Hydrocarbons)Cycloalkanes have the general formula of CnH2n

Naming Substituted CycloalkanesA single substituent does not require a number to indicate the position of attachment. All carbons are considered identical.If more than one substituent is present, the first substituent is assumed to be Carbon “1” and the remaining substituents are numbered either clockwise or anticlockwise to have the lowest set of overall number values.

Trends and properties of the Groups in the Periodic TableGroup 1: Alkali Metals -1 electron on the outermost shell-More reactive than Alkali Earth Metals-Colorless ions formed-Ions have a 1+ charge-Lower melting, boiling point-Fewer properties than Alkali Earth Metals-Soft enough to cut with a knife

Group 2: Alkali Earth Metals-2 electrons on the outermost shell-Generally insoluble-Less reactive than Alkali Metals-Lose 2 electrons per atom-Ions have a 2+ charge-Not soft enough to be cut with a knife-Generally harder

Groups 3-12: Transition Metals-Good conductors of heat + electricity-Higher boiling point and melting point than group 1 and 2 elements-Form brightly colored compounds-Transition metals have multiple oxidation states or valencies-Transition metals form complex ions and coordination compounds

Page 12: lostandbrokeinvancouver.weebly.comlostandbrokeinvancouver.weebly.com/uploads/4/9/7/3/...Web viewChemistry 11 Final Examination Test Notes. Matter= Anything that has mass and takes

Group 13: Boron Family-Naturally found in their elemental form-Atomic Radius increases-Ionic Radius increases-Ionization energy decreases-Boron is derived from Borax-The elements in this family are generally scarce, except for Aluminum, which is abundantAtoms have 3 electrons on the outermost shell

Group 14: Organic Chemistry (Carbon Family)-Anything that contains Carbon in it is considered Organic-Carbon is a non-metal, Silicon and Germanium are metalloids, and Tin and Lead are metals-They have 4 electrons in their outermost shells-Tend to be unreactive and form covalent compounds-Atomic Radius increases-Ionization energy decreases-Melting point decreases-Boiling point decreases

Group 15 Nitrogen Family-Atomic radius increases-Ionic radius increases-Ionization energy decreases-Electronegativity decreases-Boiling point increases-Melting point jumps from low to high-Nitrogen is most commonly found as atmospheric gas-Range from very abundant to very rare-Consist of 5 electrons on their outermost shell-Oxidation numbers of +3 and +5

Group 16 Oxygen Family-Atomic radius increases-Ionic radius increases-Ionization energy decreases-Electronegativity decreases-Boiling Point increases-Melting Point increases-Density increases-Occur naturally as elements or in a combined form-Oxidation number of -2-Exist in allotropic forms-Consist of 6 electrons in their outermost shell-Oxygen is found as a clear, colorless, odorless gas at room temperature, very reactive with most other elements

Group 17 Halogen Family-Are all non metals and found in a combined form-Atomic radius increases-Ionic radius increases-Ionization energy decreases-Electronegativity decreases-Found in the Earth’s crust and in sea water-Abundant to rare-Consist of 7 electrons on their outermost shell-Reactive-Tend to gain one electron but also share electrons and have positive oxidation states (We’ll use -1)-Boiling point increases-Melting point increases-Density increases

Page 13: lostandbrokeinvancouver.weebly.comlostandbrokeinvancouver.weebly.com/uploads/4/9/7/3/...Web viewChemistry 11 Final Examination Test Notes. Matter= Anything that has mass and takes

Lewis StructuresSimple Ionic Compounds

-Determine the charge expected for each atom-Arrange the non-metal atom symmetrically around the atom-Fill in the valence electrons for each atom-Remove the electrons from the outer shell of the metal atom to form the ion-Distribute the electrons equally to each non-metal atom to form the ion

Metal ion gives away electrons!

Covalent Compounds – Two or more gases, No metals-Count the total number of valence electrons for each atom in the molecule-Adjust the total number by subtracting an electron for every positive charge in the molecule/add an electron for every negative charge-Determine which atoms are bonded together and show this bond by drawing a line connecting 2 atoms.

This bond reflects two electrons-Subtract the number of bonding electrons from the total # of valence electrons-Place the remaining valence electrons on the terminal atoms first to complete the octet-Place all left over electrons around the central atom if necessary-If a central atom has less than an octet of electrons, the neighbor can share electrons

Nitrogen CycleThe Nitrogen cycle is important because:

-Plants depend on the nitrogen cycle; plants keep the world and us alive-Nitrogen also equals protein, no nitrogen equals no life-Ammonia helps promote plant growth and is made directly from the air + Fertilizers replenish nutrients

≥ Made by the Haber Process from Hydrogen and Nitrogen at a high temperature and high pressure in the presence of a catalyst

-Many countries depend on a limited source of Ammonia to keep food supplies up-Ammonia synthesis = basis of Nitric Acid (HNO3) used in making explosives in WW1 and WW2

Page 14: lostandbrokeinvancouver.weebly.comlostandbrokeinvancouver.weebly.com/uploads/4/9/7/3/...Web viewChemistry 11 Final Examination Test Notes. Matter= Anything that has mass and takes

Nitrogen Fixation The process of N2 becoming NH3 (Peas, Clovers, Alfalfa and Locust Trees)Nitrogen fixing bacteria = NH3 to Nitrate (NO3) (Wheat, Rice, Corn and Potatoes)Fertilizers are made from NH3 (Ammonia), obtained from Sodium Nitrate (NaNO3)

Ammonium Sulphate (NH4)2SO4

Ammonium Nitrate (NH4)NO3

Urea (NH2)2COFertilizers with Nitrogen, Phosphorous and Potassium = Complete FertilizersNitrogen stimulates overall plant growthPhosphorous promotes root growth and floweringPotassium regulates structures in leaves that allow CO2 to enter and H2O + O2 to leave

Regulates production of carbs and sugarProportion and percentage on package called N-P-K formulaMore sugar= K Grain = P Lawns = N in spring and P in winter

Calculations for Groups 15 and 16Percentage Composition

-If compounds have the same elements, you can use percentage composition to differentiate them -Write out the compound given-Separate it into its separate elements-Find each element’s mass (Listed on the periodic table under their atomic symbol)-Multiply the masses according to how many molecules are present in the compound-Add together all the masses for a total mass to divide with-Divide the masses of each element separately with the total mass to get the percentage

MolarityEQUATION:

Molarity (Concentration) equals moles per liter

Example: What is the molarity of a solution containing 0.20 mol of NaCl in 120.0 ml of water?

How many moles of Zinc Chloride (ZnCl) are in 200.0 ml of 0.050 M solution

Dilution50 ml of water is added to 100 ml of NaCl at 0.1M. What is the concentration of NaCl after dilution?

A student adds 25.0 ml of H2O to a 65.0 ml sample of 3.0 ml. What is the new [HCL]?

Double Dilutions

Page 15: lostandbrokeinvancouver.weebly.comlostandbrokeinvancouver.weebly.com/uploads/4/9/7/3/...Web viewChemistry 11 Final Examination Test Notes. Matter= Anything that has mass and takes

What is the [KOH] when you combine Solution A of 80.0 ml, O.15M KOH and Solution B of 50.0 ml, 0.25M KOH together?

Ions in Solutiona. L of 0.40M CaCl2 are mixed with 1.5 L of 0.2M NaCl. Find the [ ] of the ions.

Titrations-Based on neutralization reaction

Reaction between an acid and a base to produce a salt and water-Acids are compounds that begin with “H” – Hydro-Bases are compounds that end with “OH” –HydroxidesNaOH = Sodium Hydroxide (NH4)OH = Ammonium HydroxideCa(OH)2 = Calcium Hydroxide Al(OH3) = Aluminum Hydroxide-A salt is neither an acid nor a base-Titration is the process of finding the unknown concentration of a chemical in a solution based upon the results of the neutralization reaction

A solution with a known concentration is reacted with another of an unknown concentration until an equivalence point or end point is reached

The end point = when all the moles of the acid have reacted with all the moles of the base

Titration Concentration Problem Example

You use 11.2 ml in Test 1 and 11.3 ml in Test 3 to calculate the average volume because they are 0.2 ml apart.

Sodium Hydroxide [NaOH] was titrated with Sulphuric Acid (H2SO4) at 0.11M, 10.0 ml. Calculate the concentration of NaOH

Grams to MolesIf 2.5g of NaCl are dissolved in 50 ml of water, what is [NaCl]?

Rough Test 1 Test 2 Test 3Initial Volume 0 12.0 25.0 30.0Final Volume 11.6 23.2 36.6 41.3Volume Used 11.6 11.2 11.6 11.3Average Volume 11.25

Page 16: lostandbrokeinvancouver.weebly.comlostandbrokeinvancouver.weebly.com/uploads/4/9/7/3/...Web viewChemistry 11 Final Examination Test Notes. Matter= Anything that has mass and takes

Electron Configuration2 electrons in an s-type subshell6 electrons in an p-type subshell10 electrons in a d-type subshell14 electrons in an f-type subshell

1. Write out the full configuration of energy levels2. Find the noble gas closest, but lower than the atomic number given (Noble gas in the row before)3. In the full configuration, draw a line at where the noble gas configuration ends4. Write the noble gas atomic symbol (Ne, Ar, Kr, Xe, Rn) in brackets and write the remainder of the configuration

Example: Titanium 221.2.3.4.

Electron Configuration for Ions – Positive Ions

1. Write out the starting atom outside the bracket on the left (Don’t write the charge)Then write out the core notation of the atom inside the bracket

2. Write the charge in negative form in electrons in front of the whole bracket3. Cross out all other shells in the bracket if any, leaving only one

Cross out in this order ( P S D)4. Write out what’s left without the negative electron(s)

Example Tin 501.2.3.4.

Negative Ions

1. Write out the notation like in step one ^ with core notation, add an electron depending on the charge to fill up the shell2. Write the final answer with the electron number in the place of the charge on the atom and add it to the front orbital

Example Oxygen 81.2.