martin fränzl*, stefan moras, dietrich r. t. zahn

1
© J. A. Woollam Co., Inc. Characterization Spectroscopic ellipsometry, reflectance and transmittance measurements: Analysis with the WVASE® software Modeling of porous silicon by effective medium theories [3] Imaging by scanning electron microscopy Motivation 1D photonic crystals + metal nanoparticle arrays: Tuning the photonic bandgap to the plasmonic resonance: Interaction of Porous Silicon 1D Photonic Crystals and Plasmonic Nanostructures for Surface- Enhanced Raman-Spectroscopy Martin Fränzl*, Stefan Moras, Dietrich R. T. Zahn Summary Fabrication of metal nanoparticle arrays on top of 1D photonic crystals: Electrochemical etching of porous silicon Nanosphere lithography of silver nanoparticle arrays Interaction if the plasmonic resonance coincides with the photonic bandgap of the photonic crystal The already very strong Raman enhancement of the silver nanoparticle arrays [4] is further enlarged by a factor of 1000 References [1] Sailor, M. J., Porous Silicon in Practice, Wiley (2012) [2] Weekes, S. M. et al., Macroscopic Arrays of Nanostructures form Self-Assembled Nanosphere Templates, Langmuir 23, (2007) 1057 [3] Petrik, P. et al., Optical Models for the Ellipsometric Characterization of Porous Silicon Structures, Phys. Stat. Sol. 2, (2005) 3319 [4] Ludemann, M. et al., Surface-Enhanced Raman Effect in Ultra-Thin Films Employing Periodic Silver Nanostructures, J. Nanopart. Res. 13, (2011) 5855 + Sample Preparation Porous silicon: Electrochemical etching of p-type silicon in hydrofluoric acid: [1] Results 500 nm + Power Supply Platinum Electrode HF (50 %) : Ethanol = HF (15 %) Aluminum Electrode Viton (100) Silicon (0.01 Ωcm) Teflon Periodic etching current leads to a periodic change in the porosity: Nanosphere lithography: Self-assembly of polystyrene spheres as mask for evaporation [2] Substrate Glass Silver evaporation + removal of the spheres: Polystyrene Water 100 nm 250 nm VASE® (J.A. Woollam Co., Inc.) 100 nm 15 min at 250 C° 250 nm 500 nm D = 450 nm L ≈ 100 nm Ag 500 nm = 15° d 1 ≈ 130 nm d 2 ≈ 75 nm 1 μm H ≈ 50 nm 500 nm 1 μm d 1 = 4 n 1 λ PBG d 2 = 4 n 2 λ PBG n 1 ≈ 1.3 n 2 ≈ 2.2 *[email protected] www.tu-chemnitz.de/~fraem www.tu-chemnitz.de/physik/hlph Glass Silver Porous Silicon 1D Photonic Crystals Plasmonic Nanostructures Plasmonic Nanostructures on Top of Porous Silicon 1D Photonic Crystal Surface-Enhanced Raman Spectroscopy E PBG = 2.0 eV

Upload: others

Post on 24-Oct-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Martin Fränzl*, Stefan Moras, Dietrich R. T. Zahn

© J. A. Woollam Co., Inc.

Characterization • Spectroscopic ellipsometry, reflectance and transmittance

measurements:

• Analysis with the WVASE® software

• Modeling of porous silicon by effective medium theories [3]

• Imaging by scanning electron microscopy

Motivation • 1D photonic crystals + metal nanoparticle arrays:

• Tuning the photonic bandgap to the plasmonic resonance:

Interaction of Porous Silicon 1D Photonic Crystals and Plasmonic Nanostructures for Surface-Enhanced Raman-Spectroscopy

Martin Fränzl*, Stefan Moras, Dietrich R. T. Zahn

Summary • Fabrication of metal nanoparticle arrays on top of 1D photonic crystals:

Electrochemical etching of porous silicon Nanosphere lithography of silver nanoparticle arrays

• Interaction if the plasmonic resonance coincides with the photonic bandgap of the photonic crystal

• The already very strong Raman enhancement of the silver nanoparticle arrays [4] is further enlarged by a factor of 1000

References [1] Sailor, M. J., Porous Silicon in Practice, Wiley (2012)

[2] Weekes, S. M. et al., Macroscopic Arrays of Nanostructures form Self-Assembled Nanosphere Templates, Langmuir 23, (2007) 1057

[3] Petrik, P. et al., Optical Models for the Ellipsometric Characterization of Porous Silicon Structures, Phys. Stat. Sol. 2, (2005) 3319

[4] Ludemann, M. et al., Surface-Enhanced Raman Effect in Ultra-Thin Films Employing Periodic Silver Nanostructures, J. Nanopart. Res. 13, (2011) 5855

+

Sample Preparation

• Porous silicon: Electrochemical etching of p-type silicon in hydrofluoric acid: [1]

Results

500 nm

+ →

Power Supply

Platinum Electrode HF (50 %) : Ethanol = HF (15 %)

Aluminum Electrode

Viton

(100) Silicon (0.01 Ωcm)

Teflon

• Periodic etching current leads to a periodic change in the porosity:

• Nanosphere lithography: Self-assembly of polystyrene spheres as mask for evaporation [2]

Substrate Glass

• Silver evaporation + removal of the spheres:

Polystyrene

Water

100 nm 250 nm

→ VASE® (J.A. Woollam Co., Inc.)

100 nm

15 min at 250 C°

250 nm

500 nm

D = 450 nm

L ≈ 100 nm

Ag

500 nm

𝜗 = 15°

d1 ≈ 130 nm

d2 ≈ 75 nm

1 µm

H ≈ 50 nm

500 nm 1 µm

d1 = 4 n1

λPBG d2 =

4 n2

λPBG

n1 ≈ 1.3 n2 ≈ 2.2

*[email protected]

www.tu-chemnitz.de/~fraem www.tu-chemnitz.de/physik/hlph

Glass

Silver

Porous Silicon 1D Photonic Crystals

Plasmonic Nanostructures

Plasmonic Nanostructures on Top of Porous Silicon 1D Photonic Crystal

Surface-Enhanced Raman Spectroscopy

EPBG = 2.0 eV