mel314 jan2012

Upload: vineet-agarwal

Post on 05-Apr-2018

231 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/2/2019 MEL314 Jan2012

    1/82

    FUNDAMENTALSOFNOISE

    Dr.ASHISHKDARPE

    ASSOCIATEPROFESSOR

    DEPARTMENTOFMECHANICALENGINEERING

    IITDELHI

  • 8/2/2019 MEL314 Jan2012

    2/82

    Soundisasensationofacousticwaves(disturbance/pressurefluctuationssetup

    name um

    Unpleasant,unwanted,disturbingsoundisgenerallytreatedasNoiseandisa

    highlysubjectivefeeling

  • 8/2/2019 MEL314 Jan2012

    3/82

    Soundisadisturbancethatpropagatesthroughamediumhavingproperties

    .

    transmittedisair.

    Basicallysoundpropagationissimplythemoleculartransferofmotional

    . .

    Guesshowmuchisparticle

    displacement??

    .

    Frequency:Numberofpressure

    cycles/time

    alsocalledpitchofsound(inHz)

  • 8/2/2019 MEL314 Jan2012

    4/82

  • 8/2/2019 MEL314 Jan2012

    5/82

  • 8/2/2019 MEL314 Jan2012

    6/82

    Providesdefinitequantitiesthatdescribeandrate

    sound Permitprecise,scientificanalysisofannoyingsound

    (objectivemeansforcomparison)

    HelpestimateDamagetoHearing

    program:Airports,Factories,Homes,Recording

    , , .

  • 8/2/2019 MEL314 Jan2012

    7/82

    Quantifying Sound

    AcousticVariables:PressureandParticleVelocity

    RootMeanSquareValue(RMS)ofSoundPressure

    Meanener associatedwithsoundwavesisits fundamentalfeature

    energyisproportionaltosquareofamplitude

    1

    221

    [ ( )]

    T

    p p t dtT

    = 0.707p p=

    7

  • 8/2/2019 MEL314 Jan2012

    8/82

    SpeedofSoundTherateatwhichthedisturbance(soundwave)travels

    Propertyofthemedium

    0P Tc =Alternativel ,0

    c Speedofsound P0,0 PressureandDensity Ratioofspecificheats R UniversalGasConstant

    empera ure n o ecu arwe g

    1 =0

    2731

    += ccc.25

    smc /35540 =

    SpeedofLight:299,792,458m/s Speedofsound344m/s

  • 8/2/2019 MEL314 Jan2012

    9/82

    RangeofRMSpressurefluctuationsthatahumanearcandetectextendsfrom

    0.00002 N m2 Pascal

    (thresholdofhearing)to

    20N/m2 (Pascal)(sensationofpain)1,000,000timeslargerpeakpressureofloudestsoundis3500timessmallerthanatm.pressure

    9

  • 8/2/2019 MEL314 Jan2012

    10/82

    Verylargerangeof

    soundintensitywhich

    theearcan

    accommodate,

    fromtheloudest

    (1watt/m2)

    tothequietest

    (10 watts/m ),

    10energyreceivedfroma50wattbulb

  • 8/2/2019 MEL314 Jan2012

    11/82

    Levels

    Aunitofalo arithmicscaleof owerorintensit calledthepowerlevelorintensitylevel.

    Thedecibelisdefinedasonetenthofabel

    One

    bel

    represents

    a

    difference

    in

    level

    between

    two

    intensities(oneofthetwoistentimesgreaterthantheother

    Thus,theintensitylevelisthecomparisonofoneintensitytoanotherandmaybeexpressed:

    Intensitylevel=10log10 (I1 /Iref)(dB)

    11

  • 8/2/2019 MEL314 Jan2012

    12/82

    lowones

    Theotherreason:Equalrelativemodificationsofthestrengthofa

    physicalstimulusleadtoequalabsolutechangesinthesalienceof

    thesensoryevents(WeberFechnerLaw)andcanbeapproximated

    byalogarithmiccharacteristics

    (Earrespondslogarithmicallytostimulus)

    12

  • 8/2/2019 MEL314 Jan2012

    13/82

    dB SCALE

    Acoustic parameters are expressed as logarithmic ratio of themeasured value to a reference value

    The Bel (B) is a unit of measurement invented by Bell Labs and

    named after Alexander Graham Bell.

    The Bel was too large, so the deciBel(dB), equal to 0.1 B,

    became more commonl used as a unit for measurin sound

    intensity

    Power Ratio of 2 = dB of 3

    Power Ratio of 10 = dB of 10

    Power Ratio of 100 = dB of 20

    13

  • 8/2/2019 MEL314 Jan2012

    14/82

    Sound Pressure Level

    Inlinearvibroacoustics,timeaveragedpowervaluesareproportional

    tot esquare rmsamp itu eso t e ie varia es e.g.,pressure,

    particlevelocity)

    Thustocalculatelogarithmiclevelsfromthefieldvariables,itisthese

    squaredrmsamplitudesthatmustbeused.

    21

    10 210 rms

    pSPL Log dB=

    11020

    rmspSPL Log dB=

    In acoustics, the reference pressure

    refre

    Pref=2e-5 N/m2 or 20Pa (RMS) loudest sound pressure that a

    normal person can barely perceive at 1000Hz

    14

  • 8/2/2019 MEL314 Jan2012

    15/82

    Sound Pressure Level

    Corresponding to audio range of Sound Pressure

    2e-5 N/m2 - 0 dB

    20 N/m2 - 120 dB

    Normal SPL encountered are between 35 dB to 90 dB

    For underwater acoustics different reference pressure is used

    Pref= 0.1 N/m2

    15

  • 8/2/2019 MEL314 Jan2012

    16/82

    16

  • 8/2/2019 MEL314 Jan2012

    17/82

    Typical average decibel levels (dBA) of some common sounds.

    Threshold of hearing 0 dB Motorcycle (30 feet) 88 dB

    Rustling leaves 20 dB Foodblender (3 feet) 90 dB

    Quiet home 40 dB Diesel truck (30 feet) 100 dB

    Quiet street 50 dB Power mower (3 feet) 107 dBNormal conversation 60 dB Pneumatic riveter (3 feet) 115 dB

    Inside car 70 dB Chainsaw (3 feet) 117 dB

    Automobile (25 feet) 80 dB Jet plane (100 feet) 130 dB

    17

  • 8/2/2019 MEL314 Jan2012

    18/82

    18

  • 8/2/2019 MEL314 Jan2012

    19/82

    Sound Power

    n ens y : verage a e o energy rans er per un area

    2W 2

    2

    4 r0

    attr rc

    = =

    Sound Power Level:1010log

    ref

    WSWL

    W= dB

    Reference Power Wref=10-12

    Watt

    Peak Power out utPeak Power out ut:

    Female Voice 0.002W, Male Voice 0.004W,

    -9 v Large Orchestra 10-70W, Large Jet at Takeoff 100,000W

    15,000,000 speakers speaking simultaneously generate 1HP

    19

  • 8/2/2019 MEL314 Jan2012

    20/82

    Sound Intensity

    1

    T

    I p u dtT

    = 2

    PI

    c=

    For plane progressive waves;

    Hold true also for spherical

    1010

    I

    IL Log=

    waves far away from source

    = -12 2re

    2/ c

    re

    10 10 20

    20 102 5 (2 5) /( )

    SPL Log dB Log dBe e c

    = =

    10 10 1012 2 2

    0 0

    10 1010 10 10

    10 (2 5) /( ) (2 5) /( )ref

    I ISPL Log dB Log Log

    e c I e c

    = = +

    For air, 0c 415Ns/m3 so that 0.16 dBSPL IL= +

    20

  • 8/2/2019 MEL314 Jan2012

    21/82

    21

  • 8/2/2019 MEL314 Jan2012

    22/82

    Intensity&pressure measuredusing

    Poweriscalculated

    Powerisbasicmeasureofacousticenergyit

    canproduce

    &isindependentofsurroundings

    22

  • 8/2/2019 MEL314 Jan2012

    23/82

    SoundPressure:

    evaluationofharmfulnessand

    location&ratingofnoisesourcesrateofenergyflowperunitarea

    SoundPower:

    fornoiseratingofmachinesuniquedescriptorofnoisinessof

    source

    23

  • 8/2/2019 MEL314 Jan2012

    24/82

    Soundintensitymeasurementallowsinsitu

    estimationofnoisesourceranking

    24

  • 8/2/2019 MEL314 Jan2012

    25/82

    Sound Intensit

    Time averaged rate

    of energy flow per

    25

  • 8/2/2019 MEL314 Jan2012

    26/82

    Sound Intensity

    Timeaveragedrateof

    energyflowperunitarea

    1

    T

    0

    T

    26

  • 8/2/2019 MEL314 Jan2012

    27/82

    easur ngsoun owerfrom

    intensity

    2W/mW

    I=4 r

    27

  • 8/2/2019 MEL314 Jan2012

    28/82

    Steadybackgroundnoise

    isnotaproblem

    28

  • 8/2/2019 MEL314 Jan2012

    29/82

    RANKING

    29

  • 8/2/2019 MEL314 Jan2012

    30/82

    30

  • 8/2/2019 MEL314 Jan2012

    31/82

    Lp1Lp22 2 2

    1 2totp p p= +% % %2

    110 2

    10 rms

    ref

    pSPL Log dB

    p=

    12

    1 102

    10pp

    p=

    %

    %

    1 2

    2 2 10 1010 10p pL L

    tot ref p p = + % %

    1 22

    10 1010lo 10 lo 10 10

    p pL L

    totp

    = +%

    refp %

    nLpN

    31

    10

    1

    tot

    n=

    =

  • 8/2/2019 MEL314 Jan2012

    32/82

    COMBINATIONS OF SOURCES

    ntens ty eve s o eac o t e sources s same,1

    10

    L

    T

    og=

    1T og=

    us or en ca sources, o a n ens y eve s og

    i.e., 3dB greater than the level of the single source

    For 2 sources of different intensities: L1 and L2

    L1=60dB, L2=65.5dB

    =

    L1=80dB, L2=82dB

    LT=84dB

    32

  • 8/2/2019 MEL314 Jan2012

    33/82

    C rr l t n n rr l t r

    33

  • 8/2/2019 MEL314 Jan2012

    34/82

    Whichsourceto

    firsttakecare?

    34

  • 8/2/2019 MEL314 Jan2012

    35/82

    FREQUENCY & FREQUENCY BANDS

    Fre uenc of sound ---- as im ortant as its level

    Sensitivity of ear

    Sound insulation of a wall

    Attenuation of silencer all vary with freq.

    < z z to z > z

    Infrasonic Audio Range Ultrasonic

    35

  • 8/2/2019 MEL314 Jan2012

    36/82

    2 1.0

    1.2

    0

    1

    Amplitude =

    Amplitude

    0.4

    0.6

    0.8

    0

    0.05 30

    40-1

    F 0 10 20 30 40 50 60

    0.0

    0.2

    .

    0.15

    0.20

    10

    requency

    TimeFrequency (Hz)

    F C i i f S d

  • 8/2/2019 MEL314 Jan2012

    37/82

    Frequency Composition of Sound

    Pure tone

    Musical

    Instrument

    37For multiple frequency composition sound, frequency spectrum isobtained through Fourier analysis

  • 8/2/2019 MEL314 Jan2012

    38/82

    Complex Noise Pattern

    produced by exhaust of Jet Engine, water at base of

    Niagara Falls, hiss of air/steam jets, etc

    tud

    e(dB)

    A1

    Ampli

    No discrete tones, infinite frequencies

    Better to group them in frequency bands total strength in

    each band gives measure of sound

    Octave Bands commonly used (Octave: Halving / doubling)

    38

  • 8/2/2019 MEL314 Jan2012

    39/82

    Octave Filters

    39

  • 8/2/2019 MEL314 Jan2012

    40/82

    40

  • 8/2/2019 MEL314 Jan2012

    41/82

    Octave and 1/3rd Octave

    an ers

    mostly to analyse relatively

    smooth varying spectra

    If tones are present,

    1/10th

    Octave or Narrow-bandfilter be used

    41

  • 8/2/2019 MEL314 Jan2012

    42/82

    42

    R di ti f S

  • 8/2/2019 MEL314 Jan2012

    43/82

    Radiation from Source

    22 24 4 Watt

    pW r I r = =

    Point Source (Monopole)

    0c

    W: is acoustic power output of the source;

    10 10

    1 110log 10 log

    W WIL

    = =

    10lo 20lo

    refr r

    W

    IL r

    = 4 10

    Constant term Depends on distanceInverse S uare Law

    rom source

    When distance doubles (r=2r0) ; 20log 2 + 20log r0 means 6dB difference in the Sound Intensity/pressure

    Level

  • 8/2/2019 MEL314 Jan2012

    44/82

    If the point source is placed on ground,

    it radiates over a hemisphere,

    the intensity is then doubled and

    1W = 10 22ref

    r I

    W

    =

    Pressurelevelgetsdoubled10 10122 10 att esamepoint

    20log 8PL L r dB= Vs 20log 11PL L r dB= Forsourcenoton

    44

    ground

    VALIDITY OF POINT SOURCE

  • 8/2/2019 MEL314 Jan2012

    45/82

    VALIDITY OF POINT SOURCE

    In free field condition,

    the wavelength of the sound generated is considered a point

    source

    Alternatively a source is considered point source if the receiver is

    Some small sources do not radiate sound equally in all directions

    Directivity of the source must be taken into account to calculate

    power from the sound pressure

    45

  • 8/2/2019 MEL314 Jan2012

    46/82

    46

    DIRECTIVITY OF SOUND SOURCE

  • 8/2/2019 MEL314 Jan2012

    47/82

    oun sources w ose mens ons are sma compare o e wave eng o

    the sound they are radiating are generally omni-directional;

    ,

    power Wsoundradiatingsourceldirectionaa

    fromrdistanceatandangleanatIntensitySound

    =Q

    47power Wsoundsametheradiatingsource

    rec ona-omnaromrs ancean ens youn

    Directivity Factor & Directivity Index

  • 8/2/2019 MEL314 Jan2012

    48/82

    DirectivityFactor&DirectivityIndex

    Directivity Factor Directivity Index

    2

    p

    I

    IQ

    ==

    thus

    QDI = 10log10

    Q

    Ir24

    =

    pSp LLDI = Rigid boundaries force an omni-directional source to radiate sound in preferential direction

    48

  • 8/2/2019 MEL314 Jan2012

    49/82

    49

    EFFECT OF HARD REFLECTING GROUND

  • 8/2/2019 MEL314 Jan2012

    50/82

    EFFECT OF HARD REFLECTING GROUND

    Radiated Sound Power of the source can be affected by a

    ri id reflectin lanes

    Strength and vibrational velocity of the source does not

    pressure and four-fold increase in sound intensity compared to

    monopole (point spherical source) in free space

    If source is sufficiently above the ground this effect is reduced

    50

    SoundFields

  • 8/2/2019 MEL314 Jan2012

    51/82

    ISO3745

    51ISO3741

    MWLLab,KTHSweden

  • 8/2/2019 MEL314 Jan2012

    52/82

    ,

    Finding

    sound

    power

    (ISO

    3745)

  • 8/2/2019 MEL314 Jan2012

    53/82

    Measurements made in semi-reverberant and free field conditions

    are in error of 2dB

    53

    SoundPowerEstimationfromPressure

  • 8/2/2019 MEL314 Jan2012

    54/82

    eve

    measurements

    Free

    e

    con t ons

    r= 2I 12 1210 10

    11 20logIL L r = + +ogPL L r B = + + I Pwith L L

    equation changes to

    54

    ogI

    r = + +

    Measurement of Power in Reverberant

  • 8/2/2019 MEL314 Jan2012

    55/82

    MeasurementofPowerinReverberant

    Room

    4

    10lo

    Q

    L L

    = + +4 r R

    ( )1avg

    avg

    S

    R

    =

    constant team used todescribe acoustic

    c arac er s c o a room

    ,L

    =Lp +10logV 10logT60 14

    55

  • 8/2/2019 MEL314 Jan2012

    56/82

    ensoun e sne t erfreenorcompletelydiffuse.

    Usecalibratedsoundsourcew t nownpower

    spectrum.

    Thenuse

    L

    =Lr Lpr + Lp

    56

  • 8/2/2019 MEL314 Jan2012

    57/82

    Totakecareofnearbyreflecting

    surfacesandbackgroundnoise,

    Measureatnumberoflocationson

    r

    Lpd =Lp 10log10(d/r)2

    Thenuse

    L is

    e uivalent

    sound

    ressure

    level

    at

    the

    pd+ og10 referenceradiusd,andLp ismeansoundpressurelevelmeasured

    57

    ,

    (S/2)

    Backgroundnoise

  • 8/2/2019 MEL314 Jan2012

    58/82

    Environmental

    Effects

    WindGradient

    HotSunny

    Day

    e oc y ra en

    ()

    TemperatureGradient

    Wind&Tempeffectstendto

    cancelout

    Increaseordecreaseof56dB

  • 8/2/2019 MEL314 Jan2012

    59/82

    NoiseMapping

  • 8/2/2019 MEL314 Jan2012

    60/82

    Noise

    Contours

    HUMANPERCEPTION

  • 8/2/2019 MEL314 Jan2012

    61/82

    TheHumanEar

  • 8/2/2019 MEL314 Jan2012

    62/82

    OuterEar:Pinnaandauditorycanalconcentratepressureontodrum

    MiddleEar:Eardrum,SmallBones

    connectingeardrumtoinnerear

    ,

    withbasilarmembranerespondto

    stimulusofeardrumwiththehelpof

    cells,differentportionsresponding

    differentfrequenciesofsound.

    emovemen o a rce s s

    conveyedassensationofsound to

    thebrainthroughnerveimpulses

    Masking takesplaceatthe

    membrane;Higherfrequenciesare

    maskedbylowerones,degree

    dependsonfreq.differenceand

    relative

    magnitudes

    of

    the

    two

    sounds

  • 8/2/2019 MEL314 Jan2012

    63/82

    EffectsonHumans:Hearing

    Actuallyhearwithourbrains,notourears

    Haircellssendimpulsestobrain

    Damagetohaircellscanresultinhearingloss

    Thresholdshiftseveralhours

    Noiseinducedgraduallybecomepermanent

    TheHearingMechanism

  • 8/2/2019 MEL314 Jan2012

    64/82

    gsound waves enter

    the outer eartravel through external

    auditory canalreach the tympanic

    membranemembranesand ossicles vibrate

    waves are set up in thefluids of cochlea

    basilar membranevibrates

    Sensory cells of organof corti are stimulated

    Nerve impulses aresent to the brain

    TheHearingMechanism

  • 8/2/2019 MEL314 Jan2012

    65/82

    external auditorycanal

    tympanicmembrane

    sound wavesenter the outer

    mem ranes

    and

    ossicles vibrate

    waves are set upin the fluids of

    Nerve impulsesare sent to the

    membrane

    vibrates

    organ of corti

    are stimulated

    PathogenesisofNoiseInducedHearing

  • 8/2/2019 MEL314 Jan2012

    66/82

    Transductionofvibrationduetonoiseto.

    ThehaircellsintheorganofCortimaybedamageddirectlybynoise,orindirectlyby

    very

    high

    levels

    of

    continuous

    sound

    which

    causesvasoconstrictionofthevesselsofthestriavascularisinthecochleabloodsupply.

    Thisrendersthehaircellsrelativelyanoxic

    a)

    Theamountandtypeofdirecthaircell

    damagedependsontheintensityofthesound.

    A oveacertainminimumo requencyan intensity,theouterhaircellsshowsignsofmetabolicexhaustionwithdroopingofthestereocilia.

    Highersoundlevelsdamagetheouterhaircellstereociliafurther,includingdestructionoftheintercilialbridges,andrecoverytakes

    b)

    fig. Hair cells photograph-ed with a sweeping electron. .

    hair cells. a) Normal,uninjured hair cells. b) Haircells injured by noise. (Source: Gran Bredberg,

    Hrselkliniken, Sdersjukhuset.)

    SOUNDBITS

  • 8/2/2019 MEL314 Jan2012

    67/82

    Unlessthereisa3dBdifferenceinSPL,humanbeingscan

    Soundisperceivedasdoubledinitsloudnesswhenthereis

    erence nt e .

    (Remember6dBchangerepresentsdoublingofsound

    pressure!!)

    Earisnotequallysensitiveatallfrequencies:

    highlysensitiveatfrequenciesbetween2kHzto5kHz

    lessatotherfreq.

    on

    SPL!!!!

    RESPONSEOFHUMANEAR

  • 8/2/2019 MEL314 Jan2012

    68/82

    LoudnessLevel

    (Phon)

    valueofSPLat

    1000Hz

    0Phon:thresholdof

    hearing

    ou ness eve

    (Phon)usefulfor

    comparingtwo

    forequalloudness

    But,60Phonisstill

    nottwiceasloudas

    30Phon

    Doublingofloudness

    EqualLoudnessContoursforpuretones,FreeField

    conditions

    correspondsto

    increaseof10Phon

    LOUDNESSINDEX

  • 8/2/2019 MEL314 Jan2012

    69/82

    DirectrelationshipbetweenLoudness

    eve ons an ou ness n ex

    (Sones)

    40

    102P

    S

    =

    8Sonesistwiceasloudas4Sones

    WeightingCharacteristics

  • 8/2/2019 MEL314 Jan2012

    70/82

    Aweighting:40Phonequalloudnesslevelcontour

    Cweighting:90Phonequalloudnesslevelcontour

    DweightingforAircraftNoise

    Micro hones

  • 8/2/2019 MEL314 Jan2012

    71/82

    measurement transducer to measure noise

    Condenser Microphone

    Ceramic Microphone

    Micro hone

  • 8/2/2019 MEL314 Jan2012

    72/82

    The change in the Smaller the diaphragm higher the

    converted into electrical signal

    sensitivity

  • 8/2/2019 MEL314 Jan2012

    73/82

    Can be used in Very expensive

    ex reme con on

    Insensitive to Sensitive to

    humidity &

    vibrations moisture

    Measurements range can be from the

    0.01 Hz to 140 KHzDynamic range up to 140 dB

    Othertypesincludedynamic/piezo microphones

  • 8/2/2019 MEL314 Jan2012

    74/82

  • 8/2/2019 MEL314 Jan2012

    75/82

    HearingDamagePotentialtosoundenergy

  • 8/2/2019 MEL314 Jan2012

    76/82

    level & durationofexposure

    EquivalentContinuous

    SoundLevel(Leq)

    jforwhichSPLofLjwas measured

    Totaltimeintervalconsideredis

    dividedinNparts

    witheachparthasconstantSPLofLj

    1010

    1

    10 10j

    eq j

    j

    L Log t dB=

    =

    100 70

    10 1010

    1 710 10 10 91

    8 8eq

    L Log dB= + =

    IntegratingSoundLevelMeterforrandomlyvarying

    sound e.g.,60secLeq

  • 8/2/2019 MEL314 Jan2012

    77/82

    Sound

    Ex osure

    Level

    SELConstantlevelactingfor1secthathas

    thesameacousticenergyasthe

    Vehiclepassingby;

    Aircraftflyingover

    Measurements

  • 8/2/2019 MEL314 Jan2012

    78/82

    Measurements

    Regulations:

    Basisof90dB(A)for8hraday.

    ISO(1999):IncreaseinSPLfrom90to

    93dB(A)mustreducetimeofexposure

    from8to4hours

    OSHA:withevery5dB(A)increase,reduce

    exposurebyhalf

    OccupationalSafetyandHealthAdministration

    NoiseRatingCurves(ISOR1996)

  • 8/2/2019 MEL314 Jan2012

    79/82

    LevelofNoise

    Annoyance

    NR78

  • 8/2/2019 MEL314 Jan2012

    80/82

    Errorsoftheorderof6dBaround400Hzduetoreflections

  • 8/2/2019 MEL314 Jan2012

    81/82

    SoundPressure,IntensityandPower

    ,

    MultipleSoundSources

    oun ourcesan soun e s

    Directivity SoundLevelMeter

    Humanresponse

    81

  • 8/2/2019 MEL314 Jan2012

    82/82

    Sources:

    VibrationandNoiseforEngineers,KPujara

    FundamentalsofAcoustics,Kinsle,Frey,Coppens andSanders

    FundamentalsofNoiseandVibrationAnalysisforEngineers,MNortonandD

    Karczub

    ,

    Measuring

    Sound,

    B&K

    Application

    NotesSoundIntensit B&KA licationNotes

    BasicConceptsofSound,B&KApplicationNotes