network on chip (noc)

32
1 Evgeny Bolotin – ClubNet Nov 2003 Network on Chip Network on Chip (NoC) (NoC) Evgeny Bolotin Supervisors: Israel Cidon, Ran Ginosar and Avinoam Kolodny ClubNet - November 2003 EE Department, Technion, Israel

Upload: eydie

Post on 23-Mar-2016

75 views

Category:

Documents


1 download

DESCRIPTION

ClubNet - November 2003 EE Department, Technion, Israel. Network on Chip (NoC). Evgeny Bolotin Supervisors: Israel Cidon, Ran Ginosar and Avinoam Kolodny. Outline. Motivation – SoC Communication Current Solutions NoC Concept QNoC Arch. & Design Process QNoC Example NoC Cost - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Network on Chip  (NoC)

1 Evgeny Bolotin – ClubNet Nov 2003

Network on Chip Network on Chip (NoC)(NoC)Evgeny Bolotin

Supervisors:

Israel Cidon, Ran Ginosar and Avinoam Kolodny

ClubNet - November 2003EE Department, Technion, Israel

Page 2: Network on Chip  (NoC)

2 Evgeny Bolotin – ClubNet Nov 2003

Outline

Motivation – SoC Communication

Current Solutions

NoC Concept

QNoC Arch. & Design Process

QNoC Example

NoC Cost

Summary

Page 3: Network on Chip  (NoC)

3 Evgeny Bolotin – ClubNet Nov 2003

Growing Chip Density

1998Asic - 0.35 m

2003SoC - 0.1 m

Memory, I/O

P

• Design complexity - high IP reuse • Efficient high performance interconnect• Scalability of communication architecture

Page 4: Network on Chip  (NoC)

4 Evgeny Bolotin – ClubNet Nov 2003

The Growing Gap: Computation vs. Communication

Taken From ITRS, 2001

Page 5: Network on Chip  (NoC)

5 Evgeny Bolotin – ClubNet Nov 2003

The Gap: Something to think about

Taken from W.J. Dally presentation: Computer architecture is all about interconnect (it is now and it will be more so in 2010) HPCA Panel February 4, 2002

Page 6: Network on Chip  (NoC)

6 Evgeny Bolotin – ClubNet Nov 2003

SoC Interconnect • Interconnect Dominates Delay and Power in VDSM

• Doesn’t Scale with Technology: interconnect power + delay more dominant as the

technology improves

• Globally Asynchronous Locally Synchronous (GALS ) Systemsdistributed systems on single silicon substrate

Page 7: Network on Chip  (NoC)

7 Evgeny Bolotin – ClubNet Nov 2003

“Bus Inheritance”

From Board level into Chip level…

P

P

Page 8: Network on Chip  (NoC)

8 Evgeny Bolotin – ClubNet Nov 2003

Typical Solution-BusShared Bus

B

B

Segmented Bus

Page 9: Network on Chip  (NoC)

9 Evgeny Bolotin – ClubNet Nov 2003

Original bus features:• One transaction at a time• Central Arbiter• Limited bandwidth• Synchronous• Low cost

Typical Solution-Bus

Multi-Level Segmented

BusB

B

Segmented Bus

New features:• Versatile bus architectures• Pipelining capability• Burst transfer • Split transactions • Transaction preemption and resume • Transaction reordering…

B

B

Is it still?

Page 10: Network on Chip  (NoC)

10 Evgeny Bolotin – ClubNet Nov 2003

Well-known Industry Solutions

• AMBA (Advanced Microcontroller Bus Architecture)Ownership: ARM

• SiliconBackplane NetworkOwnership: Sonics

• Core-ConnectOwnership: IBM

Page 11: Network on Chip  (NoC)

11 Evgeny Bolotin – ClubNet Nov 2003

Traditional SoC Nightmare

Variety of dedicated interfaces Poor separation between computation and communication.

Design Complexity Unpredictable performance

Page 12: Network on Chip  (NoC)

12 Evgeny Bolotin – ClubNet Nov 2003

Solution – Network on ChipNetworks are preferred over buses:

• Higher bandwidth • Concurrency, effective spatial reuse of resources• Higher levels of abstraction• Modularity - Design Productivity Improvement• Scalability

Page 13: Network on Chip  (NoC)

13 Evgeny Bolotin – ClubNet Nov 2003

Solution – Network on ChipRequirements:

• Different QoS must be supported• Bandwidth• Latency

• Distributed deadlock free routing• Distributed congestion/flow control • Low VLSI Cost

Page 14: Network on Chip  (NoC)

14 Evgeny Bolotin – ClubNet Nov 2003

NoC vs. “Off-Chip” NetworksWhat is Different?

• Routers on Planar Grid Topology• Short PTP Links between routers• Unique VLSI Cost Sensitivity:

Area-Routers and LinksPower

Module

M odule M odule

M odule M odule

M odule M odule

M odule

M odule

M odule

M odule

M odule

Page 15: Network on Chip  (NoC)

15 Evgeny Bolotin – ClubNet Nov 2003

NoC vs. “Off-Chip Networks”• No legacy protocols to be compliant with …• No software simple and hardware efficient protocols• Different operating env. (no dynamic changes and failures)• Custom Network Design – You design what you need!

M odule

M odu le M odule

M odu le M odule

M odu le M odule

M odu le

M odule

M odu le

M odule

M odule

Replace

M odule

M odule M odule

Module M odule

Module M odule

M odule

Module

M odule

M odule

M odule

Example1: Replace modules

Page 16: Network on Chip  (NoC)

16 Evgeny Bolotin – ClubNet Nov 2003

NoC vs. “Off-Chip Networks”

M odule

M odule M odule

M odule M odule

M odule M odule

M odule

M odule

M odule

M odule

M odule

Example2: Adapt Links

Adapt Links

M odule

M odule M odule

M odule M odule

M odule M odule

M odule

M odule

M odule

M odule

M odule

Example3: Trim Unnecessary (ports, buffers, routers, links)

Page 17: Network on Chip  (NoC)

17 Evgeny Bolotin – ClubNet Nov 2003

QNoC: QoS NoC

Define Service Levels (SLs):• Signaling • Real-Time • Read/Write (RD/WR) • Block-Transfer

Different QoS for each SL

Page 18: Network on Chip  (NoC)

18 Evgeny Bolotin – ClubNet Nov 2003

QNoC Architecture• Mesh Topology

• Fixed shortest path routing (X-Y)Simple Router (no tables, simple logic)Power efficient communicationNo deadlock scenario

Page 19: Network on Chip  (NoC)

19 Evgeny Bolotin – ClubNet Nov 2003

S

D

C om m and

Address

Payload

Wormhole Packet:

Flit

Flit

Flit

QNoC Architecture• Wormhole Routing

For reduced buffering

Flit (routing info)

Flit

Flit

Page 20: Network on Chip  (NoC)

20 Evgeny Bolotin – ClubNet Nov 2003

QNoC Wormhole Router

R outer

Module

Moduleor

another router

CR

OS

S-B

AR

SchedulerControlRouting CREDIT

B u ffe rsSIG NAL

RT

RD/W R

BLO CK

SIGNAL

RT

RD/W R

BLO CK

CREDIT

SchedulerControlRouting CREDIT

SIG NAL

RT

RD/W R

BLO CK

SIGNAL

RT

RD/W R

BLO CK

CREDIT

O utput portsInput ports

Page 21: Network on Chip  (NoC)

21 Evgeny Bolotin – ClubNet Nov 2003

QNoC Design Process

CharacterizeTraffic

M ap Trafficto G rid

Q NoCArch itecture

O ptim ize

Estim ate cost

M odules w ithIdeal Netw ork

P lacem odules

Take full network and customizeusing a-priori known parameters

Page 22: Network on Chip  (NoC)

22 Evgeny Bolotin – ClubNet Nov 2003

QNoC Design Process - Optimization

• Trim Unnecessary Resources• Adjust each link capacity according to its load

Equal link utilization across the chip

Example: (Uniform mesh)

Page 23: Network on Chip  (NoC)

23 Evgeny Bolotin – ClubNet Nov 2003

QNoC Design Process - Cost est.

QNoC Cost : Total wire-length and FF-count • Wire cost ~ wire-length

• Dynamic Power ~ wire-length and U

where: 0P -constant coefficient,U -utilization of the links, f i -frequency of the link i.

• Logic Cost ~ FF-count 2

2where: # # # 2 log #FF Port SL FlitSize BufSize BufSize Port logic-area{Routers}

#i

Cost FF i

0{QNoC links}

wire areai

Cost A W i l i

0{QNoC links}

( )wire power di

Cost P PU f i W i l i

where: 0A -wire pitch , W i - width of link i (number of wires), and l i - length of link i

Page 24: Network on Chip  (NoC)

24 Evgeny Bolotin – ClubNet Nov 2003

Design Example

Page 25: Network on Chip  (NoC)

25 Evgeny Bolotin – ClubNet Nov 2003

Design ExampleRepresentative Design Example, each module contains 4 traffic sources:

Traffic Source

Traffic interpretation

Average Packet Length [flits]

Average Inter-arrival time [ns]

Total Load per Module

ETErequirementsFor 99.9% of

packets

SignalingEvery 100 cycles each

module sends interrupt to a random target

2 100 320 Mbps 20 ns(several cycles)

Real-TimePeriodic connection from each module: 320 voice

channels of 64 Kb/s40 2 000 320 Mbps

125 μs(Voice-8 KHz

frame)

RD/WRRandom target RD/WR transaction every ~25

cycles.4 25 2.56 Gbps ~150 ns

(tens of cycles)

Block-TransferRandom target Block-

Transfer transaction every ~12 500 cycles .

2 000 12 500 2.56 Gbps50 µs

(Several tx. delays on typ.

bus)

Page 26: Network on Chip  (NoC)

26 Evgeny Bolotin – ClubNet Nov 2003

Uniform Scenario - ObservationsCalculated Link Load Relations:

Page 27: Network on Chip  (NoC)

27 Evgeny Bolotin – ClubNet Nov 2003

Uniform Scenario - ObservationsVarious Link BW allocations:

Allocated Link BW

[Gbps]

Average Link

Utilization[%]

Packet ETE delay of packets [ns or cycles]

Signaling (99.9%)

Real-Time(99.9%)

RD/WR(99%)

Block-Transfer

(99%)

2560Gbps 10.3 6 80 20 4 000

850Gbps 30.4 20 250 80 50 000

512Gbps 44 35 450 1 000 300 000

Desired QoS

Page 28: Network on Chip  (NoC)

28 Evgeny Bolotin – ClubNet Nov 2003

Uniform Scenario - Observations

Fixed Network Configuration -Uniform TrafficNetwork behavior under different traffic loads?

BLOCK

ETEDelay

Traffic Load

Real-Time

RD/WRSignaling

Page 29: Network on Chip  (NoC)

29 Evgeny Bolotin – ClubNet Nov 2003

QNoC vs. Alternative Solutions(4x4 mesh, uniform traffic)

Uniform scenario (Same QoS):

45.0

3.8

1.0 1.0

2.9

0.8

0.1

1.0

10.0

100.0

BUS NoC PTP

Wire-Length(Area) and Power

Wire Length

Power

Arch. Frequency Utilization Av. Link Width

QNoC 1GHz 30% 28

Bus 50 MHz 50% 3 700

PTP 100MHz 80% 6

BUS QNoC PTP

Cos

t

Page 30: Network on Chip  (NoC)

30 Evgeny Bolotin – ClubNet Nov 2003

NoC Cost Scalability vs. Alternatives

Compare the cost of:• NoC

• Non-Segmented Bus (NS-Bus)

• Segmented Bus (S-Bus)

• Point-To-Point (PTP)

n

n

dd

n

n

dd

n

n

dd

Page 31: Network on Chip  (NoC)

31 Evgeny Bolotin – ClubNet Nov 2003

NoC Cost Scalability vs. Alternatives

Arch Total Area Power Dissipation Operating Frequency N

S-B

us

3O n n O n n 2

1On

S-B

us

2O n n O n n 1On

NoC

O n O n 1O

PTP 2O n n O n n

1On

Page 32: Network on Chip  (NoC)

32 Evgeny Bolotin – ClubNet Nov 2003

Summary

• Why NoC?• What is Different in NoC• QNoC• NoC is Best