rights / license: research collection in copyright - non ......-7-inhaltsverzeichnis 1. einleitung...

117
Research Collection Doctoral Thesis Der Einfluss einiger viskositätserhöhender Stoffe auf Suspensionen Author(s): Briner, Felix Heinrich Publication Date: 1961 Permanent Link: https://doi.org/10.3929/ethz-a-000147553 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection . For more information please consult the Terms of use . ETH Library

Upload: others

Post on 23-Oct-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

  • Research Collection

    Doctoral Thesis

    Der Einfluss einiger viskositätserhöhender Stoffe aufSuspensionen

    Author(s): Briner, Felix Heinrich

    Publication Date: 1961

    Permanent Link: https://doi.org/10.3929/ethz-a-000147553

    Rights / License: In Copyright - Non-Commercial Use Permitted

    This page was generated automatically upon download from the ETH Zurich Research Collection. For moreinformation please consult the Terms of use.

    ETH Library

    https://doi.org/10.3929/ethz-a-000147553http://rightsstatements.org/page/InC-NC/1.0/https://www.research-collection.ethz.chhttps://www.research-collection.ethz.ch/terms-of-use

  • Prom. Nr. 3092

    Der Einfluss

    einiger viskositatserhöhender Stoffe

    auf Suspensionen

    Von der

    EIDGENÖSSISCHEN TECHNISCHEN

    HOCHSCHULE IN ZÜRICH

    zur Erlangung

    der Würde eines Doktors der Naturwissenschaften

    genehmigte

    PROMOTIONSARBEIT

    vorgelegt von

    FELIX HEINRICH BRINER

    dipl. Apotheker

    von Zürich

    Referent: Herr Prof. Dr. K. SteigerKorreferent: Herr Prof. Dr. J. Büchi

    Juris-Verlag Zürich

    1961

  • Leer - Vide - Empty

  • Diese Arbeit wurde auf Anregung und unter der Leitung von Herrn Prof. Dr.

    K. Steiger-Trippi an der Galenischen Abteilung des Pharmazeutischen Institutes

    der Eidgenössischen Technischen Hochschule in Zürich ausgeführt.

    Meinem verehrten Lehrer, Herrn Prof. Dr. K. Steiger-Trippi, möchte ich auch

    an dieser Stelle für sein mir immer dargebrachtes Interesse und Wohlwollen herzlich

    danken.

  • Leer - Vide - Empty

  • - 7 -

    INHALTSVERZEICHNIS

    1. Einleitung 11

    2. Rheologie 22

    3. Sedimentation 57

    4. Aufschüttelbarkeit 97

    5. Schlussfolgerungen 111

    6. Literaturverzeichnis 116

    1.'

    Einleitung 11

    1.1. Problemstellung 11

    1.2. Bisherige Untersuchungen 13

    1.3. Planung der eigenen Untersuchungen 14

    1.3.1. Auswahl der Substanzen 14

    1.3.1.1. Substanzen der dispersen Phase 14

    1.3.1.2. Substanzen der kontinuierlichen Phase 14

    1.3.2. Auswahl der Konzentrationen 15

    1.3.2.1. Konzentrationen der dispersen Phase 15

    1.3.2.2. Konzentrationen der kontinuierlichen Phase 15

    1.3.3. Auswahl der Untersuchungsgebiete 16

    1.3.3.1. Rheologie 16

    1.3.3.2. Sedimentation 16

    1.3.3.3. Aufschüttelbarkeit 16

    1.4. Wichtigste Eigenschaften der Substanzen 17

    1.4.1. Substanzen der dispergierten Phase 17

    1.4.2. Substanzen der kontinuierlichen Phase 17

    1.5. Vorbereitung der Untersuchungsarbeiten 20

    1.5.1. Herstellung der Schleimlösungen 20

    1.5.2. Herstellung der Suspensionen 20

    1.5.3. Konservierungsmittel 20

    1.5.4. Arbeitsablauf 21

    2. Rheologie 22

    2.1. Allgemeiner Teil 22

    2.1.1. Faktoren, die die Fliesseigenschaften bestimmen 22

  • 2.1.2. Fliesskurven 23

    2.1.3. Newton'sche Flüssigkeiten 23

    2.1.4. Plastische Flüssigkeiten 24

    2.1.5. Apparate-bedingte Abweichungen der Fliesskurven vonder Geraden 24

    2.1.6. Pseudoplastische Flüssigkeiten 25

    2.1.7. Vergleich von plastischen und pseudoplastischenFlüssigkeiten 26

    2.1.8. Dilatante Körper 28

    2.2. Experimenteller Teil 28

    2.2.1. Messapparat 28

    2.2.2. Normierung der Messmethode 29

    2.2.3. Messgenauigkeit 29

    2.3. Resultate 30

    2.4. Beurteilung 38

    2.4.1. Einfluss der Teilchenkonzentration auf die plastischeViskosität 38

    2.4.2. Einfluss der Teilchenkonzentration auf die Fliessgrenze 39

    2.4.3. Fliessverhalten von reinen Schleimlösungen 40

    2.4.4. Einfluss des Schleimzusatzes auf die plastischeViskosität 40

    2.4.5. Einfluss des Schleimzusatzes auf die Fliessgrenze 45

    2.4.6. Ursachen der Aenderungen der Fliessgrenzen 48

    2.4.7. Folgen der Aenderungen der Fliessgrenze 49

    2.4.8. Mikrofotografische Aufnahmen 49

    2.5. Zusammenfassung 55

    2.5.1. Die zahlenmässige Erfassung der Fliesseigenschaftenvon Suspensionen 55

    2.5.2. Die Fliesseigenschaften von Suspensionen in Wasserohne Schleimzusatz 56

    2.5.3. Der Einfluss des Schleimzusatzes auf die Fliess¬

    eigenschaften von Suspensionen 56

    3. Sedimentation 57

    3.1. Allgemeiner Teil 57

    3.1.1. Faktoren, die Veränderungen an Suspensionen bewirken 57

    3.1.1.1. Kräfte, die zwischen den Teilchen wirken 57

    3.1.1.2. Thermodynamische Kräfte 58

    3.1.1.3. Gravitation 59

  • - 9 -

    3.1.2. Verschiedene Arten der Sedimentation 59

    3.1.2.1. Absinkende Sedimentation 60

    3.1.2.2. Aufstockende Sedimentation 60

    3.1.3. Sediment 61

    3.1.4. Zahlenmässige Erfassung der Sedimentation 61

    3.1.4.1. Sedimentationsgeschwindigkeit 61

    3.1.5. Graphische Darstellung der Sedimentation 62

    3.1.5.1. Sedimenthöhe als Funktion der Zeit 62

    3.1.5.2. Sedimenthöhe als Funktion der Schleimkonzentration 62

    3.1.5.3. Konzentration als Funktion der Zeit 63

    3.1.5.4. Konzentration als Funktion der Schleimkonzentration 63

    3.1.6. Werte zur Beurteilung der Sedimentation 63

    3.1.6.1. Endvolumen 63

    3.1.6.2. Halbwertszeit 64

    3.2. Experimenteller Teil 64

    3.2.1. Messmethoden 65

    3.2.1.1. Ablesen der Sedimenthöhe 65

    3.2.1.2. Bestimmung der Konzentration 65

    3.2.1.3. Bestimmung der Sedimenthöhe durch Neigen des

    Zylinders 66

    3.2.2. Ermittlung der Halbwertszeit 66

    3.3. Resultate 67

    3.4. Beurteilung 77

    3.4.1. Endvolumen als Funktion der Teilchenkonzentration 77

    3.4.2. Halbwertszeit als Funktion der Teilchenkonzentration 78

    3.4.3. Endvolumen als Funktion der Schleimkonzentration 79

    3.4.4. Halbwertszeit als Funktion der Schleimkonzentration 83

    3.4.5. Aufstockende oder absinkende Sedimentation 88

    3.4.6. Bilder der praktischen Auswirkungen der Schleimzusätze 89

    3.5. Zusammenfassung 94

    3.5.1. Grössen zur Beurteilung der Sedimentation 94

    3.5.2. Haupteigenschaften der Schleime, die die Sedimentationbeeinflussen 94

    3.5.3. Wirkung der Schleime auf Zinkoxyd 94

    3.5.4. Wirkung der Schleime auf Talk 95

    3.5.5. Wirkung der Schleime auf Titandioxyd 95

    3.5.6. Aufstockende oder absinkende Sedimentation 95

  • - 10 -

    Aufschüttelbarkeit 96

    Allgemeiner Teil 96

    Begriffsbestimmung 96

    Einwirkungen auf das Sediment 96

    Faktoren, die die Aufschüttelbarkeit beeinflussen 97

    Experimenteller Teil 98

    Messmethoden 98

    Messgenauigkeit 102

    Resultate 102

    Beurteilung 105

    Aufschüttelbarkeit als Funktion der Konzentrationder innern Phase 105

    Aufschüttelbarkeit als Funktion der Schleimkonzentration 106

    Aufschüttelbarkeit als Funktion der Lagerzeit 108

    Zusammenfassung 109

    Schlussfolgerungen 110

    Die fünf Messgrössen zur Charakterisierung von Suspensionen 110

    Plastische Viskosität 110

    Fliessgrenze 111

    Halbwertszeit der Sedimentation 111

    Sediment-Endvolumen 111

    Aufschüttelbarkeit 112

    Haupteinflüsse des Schleimzusatzes 112

    Elektrostatische Verhältnisse 112

    Viskosität 112

    Auswirkung dieser Einflüsse 113

    Folgerungen für die Praxis 114

    Literaturverzeichnis 115

  • - 11 -

    1. EINLEITUNG

    1.1. PROBLEMSTELLUNG

    1.2. BISHERIGE UNTERSUCHUNGEN

    1.3. PLANUNG DER EIGENEN UNTERSUCHUNGEN

    1.4. WICHTIGSTE EIGENSCHAFTEN DER SUBSTANZEN

    1. 5. VORBEREITUNG DES UNTERSUCHUNGSMATERIALS

    1.1. PROBLEMSTELLUNG

    Die Suspensionen gehören zu den galenischen Präparaten, die den Apotheker seit

    jeher nicht ganz zu befriedigen vermochten. Als heterogene Systeme, als Mischung

    von fest und flüssig, von schwer und leicht, entfernen sich diese Arzneizubereitungen

    immer wieder von dem Zustand, in den man sie ursprünglich gebracht hat, sobald die

    homogenisierenden Bewegungen eingestellt werden. Diese Tatsache ist vor allem dann

    störend, wenn ein solches Präparat in die Hände des Patienten gegeben wird. Es ist

    keine Gewähr gegeben, dass dieser die Umschüttel-Gebrauchsanweisung wirklich be¬

    folgt und dass das Medikament die gewünschte Wirkung entfalten kann. Bei oralen

    Suspensionen kann diesem Problem geradezu lebenswichtige Bedeutung zukommen,

    weil bei einer Sedimentation die Wirkstoffverteilung im Präparat und damit die Do¬

    sierung sehr ungleichmässig wird.

    Schon früh wurde deshalb nach Mitteln gesucht, um diesen Zustand zu verbes¬

    sern. Nach dem Stokes sehen Gesetz ist die Sedimentationsgeschwindigkeit umge¬

    kehrt proportional zur Viskosität der zusammenhängenden Phase der Suspensionen.

    Man versuchte deshalb, durch einen Zusatz von Verdickungsmitteln die Sedimentation

    zu verlangsamen.

    Um die weitverbreitete Verwendung von solchen Hilfsstoffen zu erkennen, seien

    einige Suspensionen aus Arzneibüchern und Vorschriften-Sammlungen zusammenge¬

    stellt, die zur Verhinderung oder Verlangsamung der Sedimentation besondere Zu¬

    sätze enthalten:84)

    Die USP XV ' schreibt für Calamine Lotion einen Zusatz von Bentonit (ca.

    1, 25%) vor. Bei den weiter unten aufgeführten Suspensionen wird die Wahl des Hilfs¬

    stoffes für die Stabilisierung freigestellt (suitable suspending or dispersing agents):

  • - 12 -

    Sterile Cortisone Acetate Suspension

    Sterile Hydrocortisone Acetate Suspension

    Sterile Benzathine Penicillin G Suspension

    Sterile Procain Penicillin G Suspension

    (Oral Oxytetracycline for Suspension)

    Bei den übrigen Suspensionen der USP wird kein stabilisierender Zusatz erwähnt.

    Von den im NF X ' enthaltenen Suspensionen ist für

    Para-nitrosulfathiazol Suspension

    Sulfacetamid, Sulfadiazine and Sulfamerazine Suspension

    ein Zusatz von Stabilisatoren (suspending agents) vorgesehen.

    In der BP 1958 ' ist für Calamine Lotion ein stabilisierender Zusatz von Bento-

    nit (3%) vorgeschrieben.

    Der BPC 1959 ' führt folgende Suspensionen mit Schleimzusätzen auf:

    Mixture of Acetylosalicylic Acid

    Mixture of Sulfadimidine for Infants

    Als Quellstoff wird hier das Compound Tragacanth Powder BP (Tragacantha 15%,

    Starch 20%, Acacia20%, Saccharose 45%) in einer Konzentration von 2,3% verwendet.

    In den Vorschriften des DAK-50 ' sind folgende Suspensionen mit Viskositäts¬

    erhöhenden Hilfsstoffen versehen:

    Mixtura bismuthi hydroxidi (Gummi arabicum 0,3%)

    Mixtura chloramphenicol! (Methylzellulose 1%)

    Mixtura sulfacombini (Tragant 0,5%)

    Injectabile hydrocortisoni acetatis (Polivinyl-pyrrolidon)

    Die Praescriptiones Magistrales schlagen für die Suspensionen zu äusserli-

    chem Gebrauch einen Zusatz von 2% Bentonit vor. Im Aqua Kummerfeldi PM werden

    0, 5% Gummi arabicum und 2% Bentonit als Verdickungsmittel verwendet.

    Nun traten aber Fälle auf, wo die erwünschte stabilisierende Wirkung ausblieb;

    ja manchmal musste man feststellen, dass sich die Verhältnisse unter dem EinflüsseOl \

    dieser Schleimstoffe verschlechterten . Dass ein Verdickungsmittel die Sedimentation

    fördern kann, scheint zunächst unerklärlich. Es soll die Aufgabe der vorliegenden Ar¬

    beit sein, diese Erscheinung bei einigen, in der Pharmazie häufig verwendeten, vis-

    kositätserhöhenden Stoffen zu studieren. Zu diesem Zweck sollen Prüfungsmethoden

    angewandt werden, die es erlauben, die physikalischen Eigenschaften von Suspensionen

    zahlenmässig zu erfassen.

    Aus den Ergebnissen sollen sich Schlüsse ableiten lassen, ob und in welchen

    Konzentrationen sich ein entsprechender Schleimstoff für die Stabilisation von Suspen¬

    sionen eignet.

  • - 13 -

    1.2. BISHERIGE UNTERSUCHUNGEN

    Die theoretischen Grundlagen für die Beziehungen zwischen der dispersen Phase

    und dem Dispergiermittel in Suspensionen wurden schon früh gelegt. Erwähnt seien

    die Publikationen von Einst ein38*"40), Buzàgh13'ff, C lay ton32'"35' und Ost¬wald . Die pharmazeutischen Gesichtspunkte der Suspensions-Fragen wurden von

    Baeschlin'" 'und Sager 'bearbeitet.

    In neuerer Zeit wurde auch der Rheologie der Suspensionen vermehrte Bedeutung47)

    zugemessen. Higuchi'beschäftigte sich mit dem Fliessverhalten von konzentrier-

    57)

    ten Suspensionen. Mill' stellte die Vorträge des Rheologie-Kongresses von London

    im Jahre 1959 zusammen.

    Seitdem in vermehrtem Masse halbsynthetische oder vollsynthetische Verdickungs¬

    mittel für pharmazeutische und kosmetische Zwecke zur Verfügung stehen, befassen

    sich viele experimentelle Arbeiten mit solchen stabilisierenden Hilfsstoffen:

    Mühlemann und Sager stellten fest, dass Bentonit in Konzentrationen von

    2, 5-4,0% eine gute stabilisierende Wirkung auf Suspensionen ausübt.74)

    m

    S ta witz'erhält durch Zusatz von 2% Tylose SL 100 gute, dickflüssige Sus¬

    pensionen.

    Naumann ' berichtet über Verdickungsmittel, die die Sedimentation verzögern

    oder verhindern. Günstige Eigenschaften haben Pektine (VEB Pektinwerk, Gotha),

    Ultraamylopektin (VEB Medingen), Ultraquellzellulose (VEB Medingen), Aethoxose

    (VEB Agfa-Wolfen).55)

    Lesshafft beurteilt für die Stabilisierung von Suspensionen als günstig:

    Tragant, Methocel, Veegum, als ungünstig: Gelloid 50, Natrium-Zellulose-Sulfat,

    Natrium-Karboxymethylzellulose.

    Willits und Holshin ' erhielten eine Verbesserung von Calamin-Schüttel-

    mixturen durch Zusatz von 1-1, 5% Veegum und 0,1% Pluronic F 68. Die Verbesserung

    wirkte sich auf Sedimentation, Benetzungs- und Resuspensionsvermögen aus. Voraus¬

    setzung dabei ist eine feinste Vermahlung von Calamin und Zinkoxyd.

    Swafford und Nobles beschrieben einige pharmazeutische Anwendungen

    von Carbopol 934 zur Herstellung nicht sedimentierender Suspensionen. Mit einer 0, 5%-

    igen wässerigen Lösung, die mit Natriumkarbonat auf pH 7 - 8 neutralisiert wurde, konn¬

    ten stabile Suspensionen hergestellt werden.81)

    Eine ungünstige Beeinflussung der Stabilität von Suspensionen fand Steiger'

    durch Zusatz von kleinen Mengen von Carbopol, Bentonit und Karboxylmethylzellulose

    Fischei

    Polymeren fest

    44)Fischer stellte die Bildung von Agglomeraten bei kleinen Zusätzen von Hoch-

  • - 14 -

    1.3. PLANUNG DER EIGENEN UNTERSUCHUNGEN

    1.3.1. Auswahl der Substanzen

    1.3.1.1. Substanzen der dispergierten Phase

    Für die Stoffe, die in die feste, disperse Phase verarbeitet werden, fiel die Wahl

    auf Zinkoxyd, Talk und Titanoxyd. Diese werden in der Pharmazie häufig verwendet

    und ihre Eigenschaften und Anwendungen werden in der Literatur '' '''" ' ein¬

    gehend besprochen. Dadurch, dass sie sich in wichtigen Grössen, wie spez. Gew.,

    Teilchengrösse und pH in Wasser unterscheiden (vergl. Tab. 1, pag. 18), werden

    die Untersuchungen mit diesen drei Stoffen Einblick in verschiedenste Verhältnisse er¬

    möglichen.

    1.3.1.2. Substanzen der kontinuierlichen Phase

    Bei der flüssigen, kontinuierlichen Phase beschränkten wir uns auf das wässerige

    Milieu, dem verschiedene Verdickungsmittel beigesetzt wurden. Von den vielen, in

    grossen Mengen verwendeten, halbsynthetischen Zellulosederivaten wurden Methyl¬

    zellulose (= MC) und Karboxymethylzellulose (= CMC) ausgewählt. Diese Schleimstoffe

    sind in hinreichender Normierung in Bezug auf Substitutions- und Polymerisationsgrad

    im Handel erhältlich. Der Unterschied in ihrem ionogenen Charakter (CMC ionogen,

    MC nicht ionogen) ermöglicht zudem auch dieses Problem etwas zu studieren.

    Von MC und CMC gelangen je eine hochviskose und eine niedrigviskose Form zur

    Untersuchung. Zum Vergleich wird Tragant als dritter Schleimstoff herangezogen.

    Tragant hat sich in manchen Fällen als den synthetischen Quellstoffen überlegen ge¬

    zeigt. So verwendet z.B. der DAK-50' für die Mixtura chloramphenicol! mit Erfolg

    Tragant als Verdickungsmittel.

  • - 15 -

    1.3.2. Auswahl der Konzentrationen

    1.3.2.1. Konzentrationen der dispergierten Phase

    Zum Studium des Einflusses der Konzentration der dispergierten Pulver werden

    2-40%ige ( 2, 5,10, 20, 30,40 Gewicht pro Gewicht Prozente ) Suspensionen von Zinkoxyd,

    Talk und Titandioxyd in Wasser ohne Schleimzusätze hergestellt. Der Einfluss der

    Schleimzusätze wird an Suspensionen mit einem Gehalt von 5, 10 und 20% Zinkoxyd,

    sowie bei je 20%igen Talk- und Titandioxyd-Suspensionen untersucht. Diese Konzentra¬

    tionen ermöglichen ein praktisches Arbeiten, und die Veränderungen, die durch den Zu¬

    satz von Quellstoffen auftreten, sind, wie die Vorversuche ergeben haben, in diesem

    Konzentrationsbereich besonders ausgeprägt.

    1.3.2.2. Konzentrationen der kontinuierlichen Phase

    Da es sich in Vorversuchen gezeigt hat, dass schon ganz kleine Schleimzusätze

    verändernd auf Suspensionen einwirken können, bilden hier vor allem diese niedrigen

    Konzentrationen Gegenstand der Untersuchung.

    Um ein möglichst grosses Konzentrations-Gebiet überblicken zu können, werden

    annähernd logarithmische Abstände gewählt, in der Weise, dass jede Konzentration um

    den Faktor 4 oder 5 grösser ist als die vorangehende. Wir erhalten so die folgenden

    Schleimstoff-Konzentrationen:

    0,0001 0,0005 0,002 0,01 0,05 0,2 1,0 %

    Jeder Schleimstoff wird also in diesen Konzentrationen zu jeder der oben erwähn¬

    ten Suspensionen zugesetzt. Nur in einzelnen Fällen wird die Konzentration von 1% über¬

    schritten.

  • - 16 -

    1.3.3. Auswahl der Untersuchungsgebiete

    Alle Suspensionen werden auf drei Gebieten untersucht:

    1. Rheologie

    2. Sedimentation

    3. Aufschüttelbarkeit

    1.3.3.1. Rheologie

    Die Rheologie prüft, wie sich die Veränderungen der Konzentrationen und der Stoffe

    auf die Fliesseigenschaften der Suspenionen auswirken. Man versucht aber auch, damit

    Einblick in die Art der Kräfte zwischen den dispergierten Partikeln selbst und gegenüber

    dem Dispersionsmittel zu gewinnen.

    1.3.3.2. Sedimentation

    Die auffallendste Erscheinung bei Suspensionen ist die Sedimentation. Der Einfluss

    der Teilchenkonzentration und des Schleimzusatzes auf die Art und die Geschwindigkeit

    der Sedimentation sowie die Bildung des Sedimentes ist hier zu untersuchen. Die Resul¬

    tate dieser Messungen sollen über die Stabilität der Suspensionen Auskunft geben. (Un¬

    ter Stabilität wird hier die Stabilität im Sinne von Sager'

    verstanden, d.h. eine sta¬

    bile Suspension zeigt keine oder höchstens eine verzögerte Sedimentation. Eine andere3)

    Art von Stabilität beschreibt Baeschlin ', wo unter Stabilisation eine Verhinderung

    der Koagulation von suspendierten Teilchen in Suspensionen verstanden wird).

    Noch in vermehrtem Masse als bei den Theologischen Untersuchungen erwartet man

    hier Aufschluss über die Kräfte, die zwischen den suspendierten Teilchen untereinander

    und gegenüber den flüssigen Phase wirken.

    1.3.3.3. Aufschüttelbarkeit

    Die Aufschüttelbarkeit endlich beschäftigt sich mit der Dispergierbarkeit des Se¬

    dimentes.

    Auf allen drei Gebieten werden Messmethoden ausgearbeitet, die eine zahlenmäs-

    sige Erfassung der Untersuchungsergebnisse erlauben.

  • 17 -

    1.4. WICHTIGSTE EIGENSCHAFTEN DER SUBSTANZEN

    1.4.1. Substanzen der d isper gier ten Phase

    Die Daten der suspendierten Substanzen sind in Tab. 1 (pag. 18) enthalten.

    1.4.2. Substanzen der kontinuierlichen Phase

    Methylzellulose (= MC) und Karboxymethylzellulose (= CMC) sind Verätherungs-

    produkte der pflanzlichen Zellulose.

    1^ CH2-°-CH2 COtTN^I

    CMC

    Der Verätherungs- oder Substitutionsgrad gibt an, wieviele Methyl- bzw. Karboxy-

    methylgruppen pro Glukoserest in die Zellulose eingeführt sind. Nach Stawitz' sind

    nur Stufen mit mittlerem Verätherungsgrad wasserlöslich (z.B. bei MC 1,5-2,0 Me-

    thoxylgruppen pro Glukoserest). Die Wasserlöslichkeit beruht auf der Oxoniumbindung

    des Aethersauerstoffes mit Wasser '.

    CMC ist als freie Zellulose-Glykolsäure schlecht wasserlöslich. Meistens ver¬

    steht man unter der Bezeichnung CMC das wasserlösliche Natriumsalz. Man hat also

    einen Kolloid-Elektrolyten vor sich '.

    Die Molekeln der MC weisen hydrophile und lipophile Gruppen auf (-OH, bzw. -CH,).

    Dadurch reichert sich die MC an Grenzflächen an und bewirkt eine Herabsetzung der Ober¬

    flächenspannung. Die Aenderungen der Oberflächenspannung durch CMC-Zusatz bleiben

    bis zu einer Konzentration von 1, 5% innerhalb der Fehlergrenze. Bei Messungen ist zu

    berücksichtigen, dass bei MC durch die Bildung einer Oberflächenhaut leicht zu hohe Wer¬

    te für die Oberflächenspannung vorgetäuscht werden (Zeit- und Membraneffekt) .

    Die Viskosität der Schleimlösungen ist neben den molekelspezifischen Eigenschaf¬

    ten, der Temperatur und der Konzentration auch von der "Vorgeschichte" z.B. Art des

    Auflösens, Intensität des Rührens, Art der Aufbewahrung, abhängig. Bei Messungen ist75)

    auch das Auftreten von Thixotropie zu beachten . Für die Normierung der Schleimstoffe1 O CO OQ^

    werden Substitutionsgrad, Polymerisationsgrad und Molekulargewicht angegeben' '

  • - 18 -

    Tabelle 1

    Wichtigste Eigenschaften der suspendierten Substanzen

    Zinkoxyd Talk Titandioxyd

    Chemische Formel ZnO Mg3H2Si4012 Ti02

    Spez. Gew. ' 5,48 2,43 3,71

    Durchschnittl.

    Teilchendurch¬

    messer 2)3,09 fi 12,2p 0,95 fi

    Streuung des Durch-messers^) 42,1% 81,0% 57,2%

    pH einer wässe¬

    rigen Suspensionca. 8 ca. 7 6-6,5

    deklariert

    Qualität

    geprüft

    Ph.H.V.

    crudum ad un-

    guentum, ge¬beutelt

    Ph.H.V. crudum

    Ph.H.V.

    konform

    Ph.H.V.

    konform.

    konform

    der Vor¬

    schrift 4)

    LieferantSiegfriedAG,

    Zofingen

    SiegfriedAG,

    Zofingen

    SiegfriedAG,

    Zofingen

    1) Werte ermittelt in einem Pyknometer nach der Methode für Balsame und Teere derPh.H.V. Die Zahlen gelten für das mit einem Pistill angeriebene Pulver ohne Va-cuumentlüftung.

    2) Werte bestimmt unter dem Mikroskop anhand von 100 Einzelteichen. Messung desDurchmessers derjenigen Teilchen die auf der Okularmikrometerskala liegen inder Richtung dieser Skala.

    3) Als Streuung wird hier die relative Standardabweichung (srei) des Durchmessersder Teilchen vom Durchschnittswert bezeichnet. Sie berechnet sich nach folgenderFormel:

    s- -\Zttt t 2 • ^N = Zahl der gemessenen Teilchen

    Xi = Durchmesser jedes EinzelteilchensX = durchschnittlicher Durchmesser

    4) Prüfungsvorschrift nach Steiger und Beuttner ' für Titandioxyd.

  • - 19 -

    DS DP Mol. Gew

    *)

    Tylose SL' 25 (niedrigviskos) 1,5 270 50'000

    Tylose SL 1000 (hochviskos) 1,5 730 135'000

    Tylose KN*) 25 (niedrigviskos) 1,5 250 55'000

    Tylose KN 2000 (hochviskos) 1,5 500 HO'OOO

    73)Für die hier untersuchten Stoffe gelten folgende Angaben :

    MC

    CMC

    DS = durchschnittlicher Substitutionsgrad

    DP = durchschnittlicher Polymerisationsgrad

    Bei der Normierung wird die Viskosität einer Lösung durch die Herstellerfirma

    auf 2% + 0,1% eingestellt. Die Herstellerfirma teilte uns mit, dass die hier verwen¬

    deten Methylzellulosen zu besseren Löslichkeit einen kleinen Anteil an Hydroxyläihyl-

    gruppen, und die Natrium-CMC ca. 7% gebundenes Natrium enthalten.

    Ueber die Eigenschaften des Tragant gibt die Literatur erschöpfend Aus-59 69 85)

    kunft ' ' '. Die hier verwendete Tragantqualität war ein Ph.H.V.-konformes69)

    Handelsmuster in Pulverform. Es wurde eine Normierung nach Schaub' durch¬

    geführt. Diese ergab für die Steigungskonstante den Wert 2,5.

    *) Tylose SL und Tylose KN sind markengeschützte Bezeichnungen der Firma Kalle AG& Co., Wiesbaden-Biberach für MC, bzw. CMC. Es sei der Firma Kalle an dieserStelle für die Ueberlassung der Untersuchungsmuster bestens gedankt.

  • - 20 -

    1.5. VORBEREITUNG DES UNTERSUCHUNGSMATERIALS

    1.5.1. Herstellung der Schleimlösungen

    Für jede Versuchsserie wird von den Schleimstoffen jeweils eine 2%ige (Ge¬

    wichtsprozente unter Berücksichtigung des Feuchtigkeitsgehaltes) Stammlösung her¬

    gestellt, aus der dann die Verdünnung durch Zufügen von Wasser gewonnen wird. Die

    Schleimstoffe werden bei Raumtemperatur (20 ) ins Wasser eingetragen und durch

    Umschwenken im Erlenmeyerkolben verteilt. Die 2%ige Stammlösung wird nun im

    Kühlschrank (ca. +6^ unter anfangs häufigem, später zeitweisem Umschwenken

    48 Stunden (Tragant 96 Std.) quellen gelassen. Nach dem Verdünnen auf die gewün¬

    schten Konzentrationen überlässt man die Lösungen nochmals 16 Stunden der Ruhe.

    1.5.2. Herstellung der Suspensionen

    Wie sich aus den Vorversuchen ergab, ist auch die Normierung der Herstel¬

    lungsart der Suspensionen sehr wichtig. Dies gilt besonders für Zinkoxyd.

    Das Pulver wird mit der entsprechenden Schleimlösung in einer Porzellanreib¬

    schale mit dem Pistill angerieben. Pro 1 Teil Pulver werden zuerst 0, 7 Teile Flüs¬

    sigkeit dazugegeben und während 2 Minuten mit dem Pistill in einer Porzellanreib¬

    schale zu einer Paste verarbeitet. Dann fügt man nochmals in 2 Malen je 0, 7 Teile

    Flüssigkeit dazu und verreibt jedes Mal während einer Minute gleichmässig. Dann

    gibt man den Rest der Flüssigkeit dazu und mischt nochmals während 1 Minute günd-

    lich mit dem Pistill.

    Die Suspension wird in einen 250 ml fassenden Messzylinder gegossen und unter

    mehrmaligem Umschwenken 24 Stunden lang bei Raumtemperatur (20 ) aufbewahrt.

    1.5.3. Konservierungsmittel

    Konservierungsmittel werden keine zugefügt. Nur in einem einzigen Fall, einer

    Tragant-Talk-Suspension, konnte nach dreimonatigem Stehen ein Geruch festgestellt

    werden, der auf einen Bakterienbefall hindeutete.

  • - 21 -

    1.5.4. Arbeits ablauf

    Es ergibt sich also folgender Zeitplan für die Arbeiten an einer Suspension:

    Herstellung der Schleim-Stammlösung

    Quellen lassen (+6°) 48 Std.

    Verdünnen auf die geforderte Konzentration

    Stehen lassen 16 Std.

    Rheologische Messung der Schleimlösung

    Herstellen der Suspension

    Stehen lassen (zeitweises Umschwenken) 24 Std.

    Rheologische Messung der Suspension

    Sedimentation (Stehen lassen) (20°) 48 Std.

    Prüfung der Aufschüttelbarkeit

  • - 22 -

    RHEOLOGIE

    2.1. ALLGEMEINERTEIL

    2.2. EXPERIMENTELLER TEIL

    2.3. RESULTATE

    2.4. BEURTEILUNG

    2.5. ZUSAMMENFASSUNG

    2.1. ALLGEMEINER TEIL

    Die Kenntnis des Fliessverhaltens der Suspensionen ist in zweierlei Hinsicht

    wichtig: Einerseits ist das Fliessverhalten einer Suspension als einheitliches Ganzes

    für die Praxis von Bedeutung, anderseits soll versucht werden, daraus Einblick in

    die Art der Beziehungen der dispergierten Partikel untereinander und gegenüber dem

    Dispersionsmittel zu gewinnen.

    2.1.1. Faktoren, die die Fliesseigenschaften bestimmen

    Die Fliesseigenschaften einer Suspension resultieren aus zwei Hauptfaktoren:

    aus dem Fliessverhalten der flüssigen, äusseren Phase und aus den Eigenschaften

    einer darin dispergierten Substanz. Auf welche Art der Zusatz eines dispergierten

    Stoffes zu einer Flüssigkeit deren i'liesseigenschaften beeinflusst, hängt von verschie-15)

    denen weiteren Faktoren ab ':

    1. Dispersitätsgrad

    2. Gestalt der Teilchen

    3. Konzentration

    4. Wechselwirkung zwischen dispergiertem Anteil und Dispersionsmittel (z.B.Solvathülle)

    5. Kraftwirkung zwischen den dispergierten Teilchen.

    Verschiedene Autoren haben Formeln angegeben, aus denen sich die Viskositäts-8 14

    änderung einer ï lüssigkeit bei Zusatz von dispergierten Stoffen ausrechnen lässt' '

    33, 38 - 40, 54, 64)^ sämtliche dieser Formeln gelten jedoch nur mit grossen Ein¬

    schränkungen in Bezug auf Teilchenform, Konzentration, usw. Sie gelten auch nur für

    New ton sehe Flüssigkeiten. Bei hohen Konzentrationen ist das Theologische Verhalten

    von Suspensionen höchst komplex, und das Problem einer Berechnung blieb bis jetzt47)

    wegen der grossen Zahl unbekannter Faktoren unlösbar'.

  • - 23 -

    2.1.2. Fliesskurven

    Da Suspensionen sehr oft Flüssigkeiten sind, deren Fliessverhalten nicht new-59 79)

    tonsch ist, kann nur eine Fliesskurve genauere Kenntnisse vermitteln' '. Man er¬

    hält solche Kurven mit Viskosimetern, deren Geschwindigkeitsgefälle sich verändern

    lässt. Für jedes Geschwindigkeitsgefälle D - auch als Geschwindigkeitsgradient be¬

    zeichnet - (rate of shear) (angegeben in sec. ) wird die entsprechende Schubspannung

    (shear stress) (angegeben in dyn • cm ) in ein Koordinatensystem eingetragen. Durch

    Verbinden dieser Punkte erhält man das Rheogramm.

    2.1.3. Newtonsche Flüssigkeiten

    Bei New ton sehen Flüssigkeiten genügt für die Viskositätsangabe eine einzige30)

    Zahl. Sie ist gleich der Konstanten xj in der Newtonschen Gleichung ':

    X = \} D

    und berechnet sich 17 = — = cotg ex

    Abb. 1

    Fliesskurve einer Newtonschen Flüssigkeit

  • 24

    2.1.4. Plastische Flüssigkeiten

    Die theoretische Fliesskurve einer plastischen Substanz wird definiert durch die

    beiden Werte '

    T - fPlastische Viskosität U = ——— = cotg c<

    und Fliessgrenze = f

    Abb. 2

    Fliesskurve einer plastischen Substanz

    Diese als plastisch bezeichnete Fliesskurve zeigt die gleichen Eigenschaften wie

    diejenige von New ton sehen Flüssigkeiten mit dem Unterschied, dass sie parallel

    um den Wert f verschoben ist. Die Kraft (pro cm ), welche durch den Abstand vom Ko¬

    ordinatenursprung bis zum Schnittpunkt der Fliesskurve mit der T -Achse dargestellt

    wird, muss überwunden werden, bevor die Flüssigkeit zu fliessen beginnt. Diese Grösse

    f wird als Fliessgrenze (yield value) plastischer Stoffe bezeichnet.

    2.1.5. Apparate-bedingte Abweichungen der Fliesskurven

    von der Geraden

    Die experimentell ermittelten Fliesskurven plastischer Substanzen zeigen je¬

    doch höchst selten dieses Bild. In den meisten Fällen wird die Fliesskurve bei nie¬

    drigen Geschwindigkeitsgefällen gegen den Koordinatenschnittpunkt hingebogen (siehe

    Abb. 3).

  • - 25

    experimentelle I liesskurve

    korrigierte Fliesskurve

    Abb. 3

    Apparate-bedingte Abweichungen der Fliesskurve von der Geraden

    Eine Ursache für diese Erscheinung ist im Konstruktionsprinzip vieler Rotations-

    viskosimeter begründet. Die plastische Substanz wird nur geschert, wenn die Schub¬

    spannung grösser ist als die Fliessgrenze. Da nun das Geschwindigkeitsgefälle im

    Messspalt zwischen Spindel und Messbecher von innen nach aussen abnimmt, reicht

    es bei kleinen Werten nicht mehr aus, um die gesamte Substanz bis zur Messbecher¬

    wand hinaus in fliessende Bewegung zu versetzen. Dadurch werden die Werte verfälscht

    und müssen korrigiert werden. Die korrigierten Werte liegen auf der Fortsetzung der

    Geraden und ergeben beim Auftreffen auf die T-Achse die Grösse f für die Fliessgren-

    ze42>.

    2.1.6. Pseudoplastische Flüssigkeiten

    Ausser dieser apparatebedingten Kurvenablenkung können gewisse Flüssigkeiten

    bei niedrigen Geschwindigkeitsgefällen auch tatsächlich gebogene Fliesskurven zeigen,

    die stoffbedingt sind. Man nennt solche Flüssigkeiten, deren Fliesskurven mit steigen¬

    der Schubspannung immer steiler werden, "pseudoplastisch". Die bekanntesten Ver¬

    treter dieses Flüssigkeitstypes sind - in bestimmten Konzentrationen - die Lösungen

    hochpolymerer Stoffe, die Schleime. Diese Viskositätsabnahme mit steigender Schub¬

    spannung beruht auf einer Aenderung der innern Struktur dieser Flüssigkeiten. Auf

    diese Verhältnisse soll jedoch weiter unten genauer eingegangen werden.

  • - 26 -

    Es hat sich gezeigt, dass auch bei gewissen Suspensionen ein ähnliches Ver¬

    halten der Fliesskurve auftritt. Diese Suspensionen beginnen schon bei kleiner Schub¬

    spannung zu fliessen, und die Viskosität nimmt mit steigender Fliessgeschwindigkeit

    ab. Solche Flüssigkeiten, meistens sind es verdünnte Suspensionen, bilden eigentlich

    einen Spezialfall der als typisch plastisch bekannten Pasten (die konzentrierte Suspen¬

    sionen sind), und müssten daher ebenfalls als plastisch bezeichnet werden. Ihre Ei¬

    genschaften weichen aber stark von denjenigen der im ursprünglichen Sinne des Wor¬

    tes als plastisch bekannten Stoffe ab und zeigen eher ein pseudoplastisches Verhalten.

    Es soll nun versucht werden, die drei erwähnten Flüssigkeitstypen mit nicht-

    newtonscher Fliesskurve, nämlich die plastischen Körper, die pseudoplastischen

    Flüssigkeiten und die Suspensionen mit pseudoplastischer Fliesskurve, in ein gemein¬

    sames Schema zu bringen, das ein einfaches zahlenmässiges Erfassen ihrer Fliess¬

    eigenschaften und damit einen Vergleich untereinander ermöglicht.

    2.1,7. Vergleich von plastischen und pseudoplastischen

    Flüssigkeiten

    Suspensionen und Schleimlösungen sind beides disperse Systeme, mit dem Un¬

    terschied, dass im letzteren Falle die dispergierten Teilchen submikroskopische

    Grösse haben, während sie im ersteren Falle mikroskopisch sichtbar sind. Bei bei¬

    den beruht die Viskositätsabnahme bei Vergrösserung des Geschwindigkeitsgefälles

    auf einer Veränderung der inneren Struktur der Dispersion. Diese Aenderung ist

    hauptsächlich durch die allmähliche Ueberwindung von Adhäsionskräften zwischen

    den dispergierten Teilchen durch die zunehmende Schubspannung und Scherwirkung

    bedingt. Durch die Scherkräfte werden Partikel, die an Agglomeraten oder Netzbil¬

    dungen beteiligt sind, aus diesen herausgerissen. Der Endzustand ist erreicht, wenn

    die Zahl und Grösse der Agglomerate, Vernetzungen oder andere Behinderungen des

    Fliessens auf ein Minimum reduziert worden sind. Bei weiterem Anstieg der Schub¬

    spannung kann (bis zu einer gewissen Grenze) keine Strukturänderung mehr eintreten,

    denn die Partikel bewegen sich als unabhängige Einzelteile.

    Eine andere Theorie erklärt die Viskositätsabnahme mit zunehmender Schub¬

    spannung dadurch, dass die langen Fadenmolekel der Hochpolymeren durch das Flies¬

    sen in einen gerichteten Zustand gebracht werden, in dem sie der Strömung den klein¬

    sten Widerstand bieten.

  • - 27 -

    Wie sich die Dispersionen beim Fliessen tatsächlich verhalten, kann hier nicht

    entschieden werden. Bestehen bleibt die Tatsache, dass bei zunehmender Schubspan¬

    nung eine Strukturänderung auftritt, die sich in einer Viskositätsabnahme äussert.

    Wenn die Veränderung der inneren Struktur ihr grösstmöglichstes Ausmass ange¬

    nommen hat (dieser Zustand wird asymtotisch erreicht), bleibt bei weiterem Anstieg

    der Schubspannung die Viskosität konstant und die Fliesskurve verläuft in einer Ge¬

    raden. Sowohl von plastischen wie von pseudoplastischen Flüssigkeiten lässt sich nun

    die Viskosität mit Hilfe dieser Geraden (bzw. Asymtoten) in diesem Dispersionszu¬

    stand bestimmen. Die Berechnung erfolgt analog der Bingham sehen Formel für9 42)

    plastische Körper ' '. Das gerade Stück der Kurve wird bis zum Schnittpunkt mit

    der T-Achse extrapoliert (siehe Abb. 4) und man erhält für die plastische Viskosität:

    T- fU = ——- = cotg ex.

    Abb. 4

    Fliesskurve einer struktur-viskosen î lüssigkeit

    Erfolgt die Bestimmung der Viskosität auf diese Weise, so wird zugleich auch

    die messapparatbedingte Kurvenverschiebung (vergl. Kapitel 2.1.5., pag. 24) kom¬

    pensiert, denn die Gerade der Fliesskurve wird aus Messpunkten ermittelt, bei denen

    das Geschwindigkeitsgefälle genügend gross ist, damit die gesamte im Messbecher

    befindliche Flüssigkeit geschert wird.o

    Der auf der X -Achse gefundene Wert f gibt die zusätzliche Kraft (pro cm ) an,

    die die Umwandlung der Struktur des Ruhezustandes einer Dispersion in eine Struktur

    des Fliessens erfordert. Diese Fliessstruktur muss bei jedem Geschwindigkeitsgefälle

    aufrechterhalten werden. Die Schubspannung T setzt sich also in jedem Punkt der

    Fliesskurve aus zwei Grössen zusammen:

    21. aus der Kraft (pro cm ), die es braucht, um die Dispersion von einer "Ruhestruk¬

    tur" in eine "Fliessstruktur" zu bringen (= f)

    2. aus der Schubspannung (T '), die dann in der so vorbereiteten Flüssigkeit das Ge¬

    schwindigkeitsgefälle D erzeugt (siehe Abb. 4).

  • - 28 -

    Der Wert f wird damit zu einem Mass der gegenseitigen Be¬

    hinderung der dispergierten Teilchen in einem heterogenen Sy¬

    stem.

    Der Unterschied zwischen plastischen und pseudoplastischen Flüssigkeiten be¬

    steht lediglich in der Grösse jenes Geschwindigkeitsgefälles, bei dem die Veränderung

    der innern Struktur ihr grösstmögliches Ausmass angenommen hat (D' in Abb. 4). Bei

    einer plastischen Substanz müsste D' theoretisch gleich Null werden (vergl. Abb. 2,

    pag. 24), doch kann wegen der bereits erwähnten Apparate-bedingten Kurvenablenkung

    (Kap. 2.1.5., pag. 24) dieser Zustand nie eintreten.

    Die Fliesseigenschaften der plastischen und der pseudoplastischen Flüssigkeiten

    lassen sich somit durch die beiden Grössen U und f charakterisieren. Die plastische

    Viskosität U soll für alle besprochenen dispersen Systeme die Viskosität der Flüssig¬

    keit in dem Zustand bedeuten, in dem die Fliesskurve in einer Geraden verläuft. Mit

    Fliessgrenze f wird für dieselben Flüssigkeiten die Kraft (pro cm ) bezeichnet, die

    zur Erreichung und Aufrechterhaltung derjenigen Struktur des Systems notwendig ist,

    die dem Fliessen den kleinsten Widerstand entgegen stellt.

    2.1.8. Dilatante Körper

    Nicht besprochen werden hier die dilatanten Körper, deren Eigenschaften durch

    eine besondere Art von Teilchenreibung in konzentrierten Systemen erklärt werden

    können '.

    2.2. EXPERIMENTELLER TEIL

    Die Herstellung und Vorbereitung der Schleimlösungen und Suspensionen erfolgte

    in der Weise wie bereits angegeben wurde (Kap. 1.5., pag. 20).

    2.2.1. Messapparat

    *)Als Viskosimeter wurde ein Epprecht-Rheomat-15 verwendet ', dessen Konstruk¬

    tion- und Messprinzip bereits beschrieben ist' ' ' '. Spindeln mit verschieden¬

    en Durchmessern und dazu gehörige Messbecher, sowie die in 15 Stufen verstellbare

    *) Hersteller: Contraves AG, Zürich.

  • - 29 -

    Rotationsgeschwindigkeit erlaubten das Geschwindigkeitsgefälle von 0 bis ca. 1500

    sec. zu variieren. Bei den im Folgenden untersuchten Substanzen wurden Schub-_2

    Spannungen von 0 bis ca. 1300 dyn- cm abgelesen,

    2.2.2. Normierung der Messmethode

    Die Temperatur wurde auf 20 Î 0,5 konstant gehalten.

    Da manche Suspensionen sehr rasch sedimentierten, war eine Normierung der

    Messzeit wichtig. Vor dem Einfüllen in den Messbecher wurde die Suspension durch

    kräftiges Umschwenken homogenisiert. Dann wurde der Rotationskörper eingetaucht

    und sofort die Geschwindigkeit innerhalb von 15 Sekunden von Stufe 0 bis 15 zur grös-

    sten Umdrehungszahl geschaltet. Nach weiteren 15 Sekunden wurde die Schubspannung

    abgelesen und auf die nächst niedrigere Drehzahl geschaltet. In gleichen Messinter¬

    vallen von 15 Sekunden wurde wieder abgelesen und so Stufe um Stufe bis zur Geschwin¬

    digkeit 0 herunter geschaltet. Nur so liess es sich vermeiden, dass gegen Ende der

    Messung schon der grösste Teil des Pulvers sedimentiert war. Wenn man mit der grös-

    sten Geschwindigkeit begann, wurde durch das schnelle Fliessen die Suspension aufge¬

    rührt und die Sedimentation verlangsamt. Auf diese Weise erhielt man zwar immer nur

    die Abwärtskurve des Rheogramms, doch musste man sich aus Gründen der genaueren

    Reproduzierbarkeit auf diese Werte beschränken.

    Jede Viskositätsmessung einer Suspension wurde zweimal ausgeführt. Vor der

    Wiederholung musste die Substanz im Messbecher nochmals gründlich durchgemischt

    werden. Schwierigkeiten beim Messen zeigten sich bei Substanzen, die eine sehr grosse

    Fliessgrenze haben. Bei einer 40%igen Zinkoxyd-Suspension in reinem Wasser z.B.

    bildete sich bald um die rotierende Spindel eine verdünntere Zone, in der nur noch eine

    kleine Schubspannung bestand. Da sich die Spindel gleichsam ein Loch in die Substanz

    gefressen hatte, wurde die Fliessbewegung nur noch ungenügend auf die übrigen Teile

    übertragen.

    2.2.3. Messgenauigkeit

    Die Messgenauigkeit wurde anhand von je zehn Messungen an einer l,0%igen

    Lösung von Tylose SL 25 und einer 20%igen Zinkoxydsuspension in Wasser ohne

    Schleimzusatz ermittelt. Die grössten Abweichungen vom Durchschnittswert betru¬

    gen für ein und dieselbe Suspension ± 1%, für zwei gleiche, jedoch separat herge-

  • - 30 -

    stellte Suspensionen t 3%. Für reine Schleimlösungen betrugen diese Abweichungen

    t 0,5%, bzw. + 2%. Die Extremwerte bei der Bestimmung der Fliessgrenze lagen

    für ein und dieselbe Flüssigkeit bei t 1%, für zwei gleiche, getrennt hergestellte

    Schleimlösungen oder Suspensionen je nach Charakter der Kurve zwischen + 3 und

    + 6%. Am grössten war der Fehler beim Bestimmen der Fliessgrenze aus Rheogram-

    men, bei denen knapp die obersten drei Punkte auf einer Geraden lagen, z.B. bei

    verdünnten Tragant-Schleimen.

    2.3. RESULTATE

    Die Resultate der Theologischen Messungen sind in Tabellen zusammengestellt.

    Tabelle 2 (pag. 31) gibt die Werte für die Zinkoxyd-, Talk- und Titandioxyd-

    Suspensionen in Wasser ohne Schleimzusatz.

    Die Resultate der reinen Schleimlösungen finden sich in Tabelle 3 (pag. 31).

    Tabelle 4 (pag. 32) gibt die Werte für 5, 10, 20 und 40%ige Zinkoxyd-Suspen¬

    sionen mit den Zusätzen von Tylose SL 25, Tylose KN 25 und Tragant in Konzentra¬

    tionen von 0 - 1% wieder.

    Die Ergebnisse der 10%igen Zinkoxyd-Suspensionen mit Zusatz von Tragant

    0,2 - 1,0% undvonTyloseSLlOOOundTylose KN 2000 werden in den Tabellen 5, bzw.

    6 (pag. 33) erwähnt.

    Die Resultate von Talk- und Titandioxyd-Suspensionen finden sich in Tabelle 7

    und 8 (pag. 34).

    Ausserdem sind einige charakteristische Rheogramme in Abb. 5-9 wiederge¬

    geben (pag. 35 -37 ).

    Zur Beurteilung werden die Resultate in den graphischen Darstellungen (Abb. 10-

    23, pag. 38, 39, 41- 44, 45 - 47) ausgewertet.

    Einige mikroskopische Aufnahmen (Abb. 24 - 35, pag. 49-55) geben ein Bild

    von den verschiedenen innern Strukturen der Suspensionen.

  • - 31 -

    Tabelle 2

    Plastische Viskosität U und Fliessgrenze f von Zinkoxyd- Talk- und Titandioxyd-Sus-_2

    Pensionen in Wasser ohne Schleimzusatz. U ist in cP, f in dyn • cm angegeben.

    Substanz ZnO Talk Ti02

    Konzentration U f U f U f

    5%

    10%

    20%

    30%

    40%

    1,2 5,2

    1,9 21,2

    5,5 145

    ca. 70 ca.700

    1.0 0

    1.1 1,5

    1,4 5,0

    3,8 10,2

    67,5 93,0

    1,0 0

    1,0 0

    1,2 0

    1,8 0

    Tabelle 3

    Plastische Viskosität U und Fliessgrenze f von Lösungen der Schleime Tylose SL 25,_2

    Tylose KN 25 und Tragant. U ist in cP, f in dyn- cm angegeben.

    Schleim Tylose SL 25 Tylose KN25 Tragant

    Konzentration U f U f U f

    0 %

    0,002 %

    0,01 %

    0,05 %

    0,2 %

    1,0 %

    1,0 0

    1,0 0

    1.0 0

    1.1 0

    1,7 0

    10,9 0

    1,0 0

    1.0 0

    1.1 0

    1,5 0

    3,0 0

    12,0 0

    1,0 0

    1.0 0

    1.1 0

    1,8 2,0

    3,5 6,0

    36,5 72,0

  • - 32 -

    Tabelle 4

    Plastische Viskosität U und Fliessgrenze f von Zinkoxyd-Suspensionen mit den Zu¬

    sätzen von Tylose SL 25, Tylose KN 25 und Tragant in den Konzentrationen von 0 bis

    1,0%. U ist in cP, f in dyn • cm angegeben.

    ZnO Schleim Tylose SL 25 Tylose KN 25 Tragant

    Konzentration U f U f U f

    5%

    0 %

    0,002%

    0,01 %

    0,05 %

    0,2 %

    1,0 %

    1,2 5,2

    1,2 5,0

    1,2 4,8

    1,2 4,8

    1,8 1,9

    11,2 0

    1,2 5,2

    1.2 3,0

    1.3 0

    1,6 0

    3,0 0

    12,5 0

    1.2 5,2

    1.3 5,0

    1,3 5,0

    2,0 4,5

    2,8 4,2

    39,0 76,0

    10%

    0 %

    0,002%

    0,01 %

    0,05 %

    0,2 %

    1,0 %

    1,9 21,2

    1,8 18,0

    1.8 15,3

    1.9 14,1

    2,3 9,7

    12,9 0,9

    1,9 21,2

    1,9 8,0

    2,0 1,0

    2,2 0

    3,2 0

    14,0 0

    1,9 21,2

    1,9 18,0

    1,9 15,0

    1,9 10,0

    3,1 3,8

    42,0 83,0

    20%

    0 %

    0,002%

    0,01 %

    0,05 %

    0,2 %

    1,0 %

    5,5 145

    6,0 138

    6,9 131

    8,2 118

    9,7 84,0

    21,0 22,2

    5,5 145

    4,5 101

    4,1 48,4

    2,5 2,0

    3,5 0

    18,3 0

    5,5 145

    5,5 90,0

    5,5 50,0

    5,0 20,0

    6,5 8,0

    60,0 94,0

    40%

    0 %

    0,05 %

    0,2 %

    1,0 %

    ca. 70 ca.700

    130 760

    ca. 70 ca.700

    ca. 50 ca. 300

    10 31

    33 5

    ca.70 ca.700

    32 110

    210 128

  • - 33 -

    Tabelle 5

    Plastische Viskosität U und Fliessgrenze f reiner Tragantschleime in den Konzentra¬

    tionen von 0, 2 bis 1,0%, sowie von 10 %igen Zinkoxyd-Suspensionen mit den Tragant-

    Zusätzen in den selben Konzentrationen. U in cP, f in dyn • cm

    TragantTragantrein

    Tragant+ ZnO10%

    0,2%

    0,4%

    0,6%

    0,8%

    1,0%

    U f U f

    3,5 6

    9,0 10

    15,0 32

    23,0 57

    36,5 72

    3,1 4

    10,2 7

    17,7 34

    27,5 70

    42,0 83

    Tabelle 6

    Plastische Viskosität U und Fliessgrenze f der Lösungen der Schleime Tylose SL 1000

    und KN 2000, sowie von 10%igen Zinkoxyd-Suspensionen mit Zusätzen dieser Schleime

    in Konzentrationen von 0 bis 1%. U ist in cP, f in dyn • cm angegeben.

    Schleim TyloseSL 1000

    rein

    Tylose SL 1000

    + ZnO 10%

    0 %

    0,002%

    0,01 %

    0,05 %

    0,2 %

    1,0 %

    U f U f

    1,0 0

    1,5 0

    1,5 0

    2,0 0

    3,0 0

    117 22,0

    1,9 21,2

    1,8 17,7

    2,2 13,0

    3,6 5,7

    115 22,0

    Tylose KN 2000rein

    Tylose KN 2000+ ZnO 10%

    0 %

    0,01 %

    0,05 %

    0,2 %

    1,0 %

    1,0 0

    2,6 0

    3,8 0

    7,0 0

    58,0 25,0

    1,9 21,2

    2,7 0

    3,9 0

    8,0 0

    60,0 25,0

  • - 34 -

    Tabelle 7

    Plastische Viskosität und Fliessgrenze von 20%igen Talk-Suspensionen mit den Schleim¬

    zusätzen in den Konzentrationen von 0 bis 1,0%. U ist in cP, f in dyn-cm"^ angegeben.

    Talk 20 %

    Schleim Tylose SL 25 Tylose KN 25 Tragant

    0 %

    0,002 %

    0,01 %

    0,05 %

    0,2 %

    1,0 %

    U f U f U f

    1,4 5,0

    1.4 5,5

    1.5 5,1

    1.6 3,7

    2,6 1,8

    17,5 0

    1,4 5,0

    1,6 3,8

    2,1 2,1

    4,1 0

    19,8 0

    1,4 5,0

    1,6 4,0

    1,8 2,6

    4,0 2,4

    10,0 6,0

    70,0 78,0

    Tabelle 8

    Plastische Viskosität U und Fliessgrenze f von 20 %igen Titandioxyd-Suspensionen

    mit Schleimzusätzen in den Konzentrationen von 0-1,0%. U ist in cP, f in dyn- cm

    angegeben.

    Titandioxyd 20 %

    Schleim Tylose SL 25 Tylose KN 25 Tragant

    0 %

    0,01 %

    0,05 %

    0,2 %

    1,0 %

    U f U f U f

    1,2 0

    1,4 0

    2,0 0

    13,0 2,0

    1,2 0

    1,7 0

    2,2 1,5

    16,3 3,0

    1,2 0

    1,2 0

    1,5 0

    3,2 2,2

    112 158

  • - 35 -

    t IID

    -'

    600 H—

    -3

    i r600

    5 /

    400 -

    I ZnO in

    lIIIIh

    / r«inemWasser: !/ 1=0% i

    iil

    / 2=2%200 / 3=5% 11

    \/ < = 10%/ 6 = 20%

    100

    /1 "

    Abb. 5

    Fliesskurven von Zinkoxyd-Suspensionen in Wasser ohneSchleimzusätze. Die extrapo¬lierten Geraden (unterbro¬chene Linien) dienen zur Be¬

    stimmung der plastischen Vis¬kosität und der Fliessgrenze.

    100 dynon-2 150

    T 1 /0 I /

    l\ /600> 1 /- I3 /u

    o

    VI /5O0- 1 IL

    400

    /300 • I /200

    j / Tylos» KN 25 :

    / 1 = 0,01%100 - / 2 = 0.05%

    / 3 = 0.2%/ < = 1.0%

    Abb. 6

    Fliesskurven von Lösungenvon Tylose KN 25 in verschie¬denen Konzentrationen.

    100 dyncm-2 150 T

  • - 36 -

    1 /i.o% 1 /(0.2%

    If- o,o57„ ,/ \m°/o

    fi

    1 /°%(0,002% ;

    / /'l II

    f hp. h/ /'/.' / *

    // / »

    /I / *

    II / '/1 ii/ ' / '/1 / i

    / ,' / ,' ZnO 20%

    1 S _i...;£^--—*"

    / l / ! *V0S*\S 1 KN 25

    ^r 1

    1 1

    Abb. 7

    Fliesskurven von 20%igenZinkoxyd-Suspensionen mitZusätzen von Tylose KN 25

    in verschiedenen Konzentra¬

    tionen. Mit Hilfe der extra¬

    polierten Geraden (unter¬brochene Linien) werden pla¬stische Viskosität und Fliess¬

    grenze bestimmt.

    100 dynon-2 150

    10%/

    oxll / 20% /40%

    in Ti02 inreinemWasser

    Abb. 8

    Fliesskurven von Titandi¬

    oxyd-Suspensionen in Was¬

    ser ohne Schleimzusätze.

    20 dyn cm-2 T -

  • - 37 -

    / 0.2%, lo,L% /0,6%

    1

    / / /0,8%

    1 / / / /1

    1 // /'

    /'II

    II

    11/

    /! / À,a%ï h /* /

    /1 /1 //

    / 's

    / /'/ 1/ /^/

    / r«in» Tragant -

    A ^i / Losung

    Abb. 9

    Fliesskurven von Tragant-Schleimen in verschiedenen

    Konzentrationen. Die extra¬

    polierten Geraden (unter¬brochene Linien) dienen zur

    Bestimmung der plastischenViskosität U und der Fliess¬

    grenze f.

    50 100 dyncm-2 150 r —>

  • - 38 -

    2.4. BEURTEILUNG

    Der Vergleich der Rheogramme zeigt, dass schon zwischen den Kurventypen

    der drei in reinem Wasser suspendierten Pulver prinzipielle Unterschiede bestehen.

    Ein Zusatz von Schleimstoff ergibt nicht nur quantitative Verschiebungen der Fliess¬

    kurven, sondern der Charakter der Kurven wird zum Teil grundsätzlich geändert.

    2.4.1. Einfluss der Teilchenkonzentration auf die

    plastische Viskosität

    Die plastischen Viskositäten U von Zinkoxyd-, Talk- und Titanoxyd-Suspensionen

    in Wasser ohne Schleimstoffzusätze werden in Abb. 10 einander gegenübergestellt.

    10- ZnOI

    OL

    Talk

    8-

    Î 6-U

    4-

    2 Ti02

    Abb. 10

    Plastische Viskosität von Suspen¬sionen in Wasser ohne Zusätze als

    Funktion der Konzentration von

    Zinkoxyd, Talk und Titandioxyd.

    10 20 30

    Konzentration in /„

    iO

    Bei allen drei nimmt die plastische Viskosität U mit der Konzentration erwar-

    tungsgemäss zu. Die Zunahme erfolgt jedoch nicht linear. Der Anstieg der Kurven

    wird steiler, je konzentrierter die Suspension ist, d.h. die Teilchen behindern sich

    gegenseitig immer mehr beim Fliessen. Deutlich tritt der Unterschied zwischen den

  • - 39 -

    drei Substanzen hervor: Die Zinkoxyd-Suspensionen bieten der Scherung den grössten

    Widerstand, weil anziehende Kräfte zwischen den Teilchen zur Bildung von Agglome-

    raten und Vernetzungen Anlass geben. (Vergl. Abb. 24, pag. 49). Die plastische Vis¬

    kosität steigt daher von 1, 2 bis 70cP, wenn die Konzentration von 5 auf 40% zunimmt.

    Beim Talk und Titandioxyd hingegen ist das Zusammenballen kaum feststellbar (Abb. 27

    und 30, pag. 51 und 52), daher bewirkt besonders beim Titandioxyd eine Konzentrations -

    erhöhungbis auf 40% nur eine Viskositätszunahme von 1 auf l,8cP.

    2.4.2. Einfluss der Teilchenkonzentration auf die Fliessgrenze

    Noch deutlicher kommen die Unterschiede beim Betrachten der Fliessgrenzen

    zum Ausdruck (Abb. 11).

    Abb. 11

    Fliessgrenze f als Funktion derKonzentration von Zinkoxyd, Talkund Titandioxyd in wässerigenSuspensionen ohne Schleimzu¬sätze.

    10 20 30

    Konzentration in %

    Dem raschen Anstieg der Fliessgrenze bei Zinkoxyd steht das vollständige Feh¬

    len einer Fliessgrenze bei Titandioxyd gegenüber. Während eine vierzigprozentige

    Zinkoxyd-Suspension schon pastenähnliches Verhalten zeigt, verhält sich eine gleich

    stark konzentrierte Titandioxyd-Suspension wie eine Newtonsche Flüssigkeit. Die

  • - 40 -

    zwischen den Titandioxyd-Teilchen herrschenden abstossenden Kräfte bewirken, dass171

    sie sich unabhängig voneinander bewegen ' (siehe auch Abb. 30, pag. 52). Talk steht

    mit seinem Verhalten zwischen diesen beiden Substanzen. Bei dieser Substanz ist aber

    zusätzlich noch zu berücksichtigen, dass sich die Talkteilchen in bezug auf Form und

    Grösse wesentlich von den beiden andern Substanzen unterscheiden. (Vergl. Abb. 27,

    pag. 51). Massgebend für den mit der Konzentration zunehmenden Fliesswiderstand

    dürften hier vor allem die relativ grossen und zum Teil beinahe nadeiförmigen Kri¬

    stalle und viel weniger die gegensetigen Anziehungskräfte sein.

    2.4.3. Das F Hess verhalten der reinen Schleimlösungen

    Während die niedrigviskosen Methylzellulosen und Karboxymethylzellulosen (Ty-

    lose SL 25 und KN 25) bis zu der höchsten untersuchten Konzentration von 1% noch

    Newtonsche Fliesseigenschaften haben (Tab. 3, pag. 31 ) (Abb. 6, pag. 35), tritt

    bei den Schleimen mit höherem Polymerisationsgrad (Tylose SL 1000 und KN 2000)

    bei einer Konzentration von 1% eine kleine Fliessgrenze auf (Tabelle 6, pag. 33).

    Die Rheogramme der Tragantschleime (Abb. 9, pag. 37) zeigen einen deutlichen

    Unterschied dieses Quellstoffes gegenüber den Zellulosederivaten. Steigt die Tragant-

    Konzentration von 0, 2 bis 1, 0%, so fällt auf, dass neben dem Anstieg der Viskosität

    eine Fliessgrenze auftritt, die rasch hohe Werte (bei 1% 70 dyn • cm ) annimmt

    (Tab. 5, pag. 33). Diese Erscheinung ist dadurch zu erklären, dass die Tragant-

    Molekeln schon in kleineren Konzentrationen als die Molekeln der Zellulosederivate

    zur Bildung von Strukturen befähigt sind, die dem Fliessen zusätzlichen Widerstand

    entgegensetzen.

    2.4.4. Einfluss des Schleim Zusatzes auf die plastische Viskosität

    (Abb. 12-18, pag. 41-44)

    Ein Schleimzusatz bewirkt bei fast allen Suspensionen eine Erhöhung der plasti¬

    schen Viskosität. Einige Ausnahmen verlangen jedoch eine besondere Beachtung:

    Bei einer 20%igen Zinkoxyd-Suspension bewirken kleine Zusätze von Tylose KN25

    (bis 0,05%) eine Herabsetzung der plastischen Viskosität (Abb. 14, pag. 42). Ein ähn¬

    liches Verhalten ist bei einer 10%igen Zinkoxyd-Suspension bei kleinen Zusätzen von

    Tragant (bis 0,2%) festzustellen (Abb. 16, pag. 43). Diese Viskositätserniedrigungen

    lassen sich durch eine Vergrösserung der Beweglichkeit der suspendierten Teilchen

    erklären, die durch kleine Schleimzusätze bewirkt wird.

  • - 41 -

    Eine weitere Besonderheit fallt beim Studium der Verhaltnisse bei Tragant-Zu¬

    satz zu einer 20%igen Titandioxyd-Suspension auf (Abb. 17, pag. 44). Wahrend die

    plastischen Viskositäten der Titandioxyd-Suspensionen bei MC- und CMC-Zusatz

    immer kleiner als die plastischen Viskositäten der 20%igen Talk-Suspensionen blei¬

    ben (Abb. 13, pag. 42, Abb. 15, pag. 43), steigt die Viskositatskurve der Titandi-

    oxyd-Suspensionen bei Tragant-Zusatz viel steiler an. Auch fur diese Erscheinung

    ist die veränderte Beweglichkeit der suspendierten Teilchen gegeneinander verant¬

    wortlich. Ein tieferer Einblick m diese Verhaltnisse wird durch das Betrachten der

    Veränderungen der Fliessgrenze gewonnen.

    ZnO 20%

    ZnO 10%

    ZnO 5%

    lyio» r*in

    0,2 0.6 0,8 10

    % Tylos» SL25

    V

    Abb. 12

    Plastische Viskosität U als

    Funktion der Konzentration

    von Tylose SL 25 in Zink-

    oxyd-Suspensionen von ver¬schiedener Konzentration.

  • - 42 -

    Abb. 13

    Plastische Viskosität U als

    Funktion der Konzentration

    von Tylose SL 25 in 20%igenTalk- und Titandioxyd-Sus¬pensionen.

    0.2 0,4 0,6 0,8 1,0 1,2

    % Tylose SL25

    ZnO 20%

    ZnO 10%

    ZnO 5%

    // Tylose r»in

    0,2 0/ 0.6 0,8 1,0 ;2

    % Tylose KN 25

    Abb. 14

    Plastische Viskosität U als

    Funktion der Konzentration

    von Tylose KN 25 in Zink¬

    oxyd-Suspensionen von ver¬schiedener Konzentration.

  • - 43 -

    20

    io H

    Talk 20%

    Ti02 20%

    Tylose rein

    0,2 0,4 0,6 0,8 1.0 1,2

    Abb. 15

    Plastische Viskosität U als

    Funktion der Konzentration

    von Tylose KN 25 in 20%igenTalk- und Titandioxyd-Sus¬pensionen.

    % Tylose KN 25

    100J

    75

    s>^

    251

    ZnO 20°/

    ZnO 10%

    ZnO h%

    // Tragant

    Abb. 16

    Plastische Viskosität U als

    Funktion der Tragant-Kon¬zentration in Zinkoxyd-Sus¬pensionen verschiedener

    Konzentration.

    0,2 0,4 0,6 08 1,0 % Tragant

  • - 44 -

    \ Ti02 20%

    / Talk 20%

    /

    ?/

    ' Tragant rein

    y J* sy

    Abb. 17

    Plastische Viskosität U als

    Funktion der Tragant-Kon¬zentration in 20%igen Talk-und Titandioxyd-Suspen¬sionen.

    0,2 0/ 0,6 0,8 1,0 % Tragant

    TyloseSL25,

    +Talk20%/ /TyloseSL25"' '

    +ZnO 10%

    /?Tyl.SL25r«in

    1 I I i l

    2 3 < S 6

    %Schleim

    Abb. 18

    Plastische Viskosität U in

    verschiedenen Suspensionenmit höheren Schleimkonzen¬

    trationen.

  • - 45 -

    2.4.5. Einfluss des Schleimzusatzes auf die Fliessgrenze

    (Abb. 19-23, pag. 45-47)

    Zwei prinzipiell verschiedene Tendenzen sind sofort ersichtlich: Bei Stoffen,

    deren Suspensionen in reinem Wasser eine Fliessgrenze aufweisen, wird diese

    durch Schleimzusatz herabgesetzt. Zu diesen Stoffen gehören Zinkoxyd (Abb. 19-21,

    pag. 45-46) und Talk (Abb. 22, pag. 47), wobei die Auswirkungen auf die Fliess¬

    grenze von Zinkoxyd-Suspensionen ausgeprägter sind, als diejenige auf Talk-Suspen¬

    sionen. Ist dagegen bei Suspensionen ohne Schleimzusatz die Fliessgrenze gleich

    Null, so steigt sie beim Zusatz von Quellstoffen auf einen messbaren Betrag. Diese

    Erscheinung ist bei Titandioxyd zu beobachten (Abb. 23, pag. 47).

    Eine Korrektur dieser Regel wird dann notwenig, wenn bereits die flüssige

    Phase der Suspensionen eine Eigenfliessgrenze aufweist (z.B. Tragant in Konzen¬

    trationen über 0,1%). In diesen Fällen sinken die Werte der Fliessgrenzen der Su¬

    spensionen nie tiefer als die Werte der Eigenfliessgrenze (z.B. Abb. 21, pag. 46).

    Methylzellulose hat eine kleinere verändernde Wirkung auf die Fliessgrenze

    als die beiden anderen untersuchten Schleimtypen. Für 20%ige Zinkoxyd-Suspen¬

    sionen beträgt die Fliessgrenze bei einem Zusatz von 0, 2% Tylose SL 25 noch 84,0

    dyn-cm" ), während der gleich grosse Zusatz von Tragant die Fliessgrenze auf 8,0,

    Tylose KN 25 sogar auf 0 herabsetzt. (Tab. 4, pag..32).

    Abb. 19

    Fliessgrenze f als Funktion derKonzentration von Tylose SL 25in Zinkoxyd-Suspensionen ver¬schiedener Konzentration.

    0,001 Q01 0.1 \0

    % Tylose SL 25

  • - 46 -

    Abb. 20

    Fliessgrenze f als Funktionder Konzentration von Ty-lose KN 25 in Zinkoxyd-Suspensionen verschiedenerKonzentration.

    0.01 0,1

    % Tylose KN 25

    150

    1 100

    50

    ZnO

    f 20°/.

    L 10*%

    £ s%

    0 —o—. °~-—^£r

    1? 0%

    w

    Abb. 21

    Fliessgrenze f als Funktionder Tragant-Konzentrationin Zinkoxyd-Suspensionenverschiedener Konzentra¬

    tion.

    0.001 0.01 0.1

    % Tragant

    10

  • - 47 -

    Talk 20%

    Tragant

    j Tragant

    Tylos«SL25

    Abb. 22

    Fliessgrenze f als Funktion

    der Konzentration verschie¬

    dener Schleimstoffe in einer

    20%igen Talk-Suspension.

    Q001 0,01

    % Schleim

    Ti02 20%

    Tragant

    II

    Ji

    i

    ! Tragant

    rein

    Tylose KN 25

    /i /J'y/f/ ÄiSuvt SL25

    Abb. 23

    Fliessgrenze f als Funktion der

    Konzentration verschiedener

    Schleimstoffe in einer 20%igenTitandioxyd-Suspension.

    0.001 0,01 0.1 1,0

    % Schleim

  • - 48 -

    2.4.6. Ursachen der Aenderungen der Fliess grenzen

    Wie bereits im allgemeinen Teil (pag. 22) dargelegt wurde, ist die Fliessgrenze

    ein Mass für die gegenseitige Behinderung der suspendierten Teilchen. Eine Ernie¬

    drigung der Fliessgrenze muss somit auf eine erhöhte Bewegungsfreiheit der Teil¬

    chen zurückgehen; eine Vergrösserung der Fliessgrenze ist die folge einer ver¬

    mehrten gegenseitigen Hemmung der suspendierten Partikel. Werden die Suspensionen

    im Mikroskop betrachtet (Abb. 24-35, pag. 49-55) so erkennt man, dass die Teilchen

    derjenigen Dispersionen, die keine oder nur eine kleine Fliessgrenze haben, sich un¬

    abhängig voneinander bewegen können (z.B. Titandioxyd in reinem Wasser, Abb. 30,

    pag. 52, und Zinkoxyd mit Zusatz von 1% Tylose SL 25, Abb. 26, pag. 50).

    Das Bild von Suspensionen mit Fliessgrenzen zeigt die Agglomerate und Verzwei¬

    gungen und die unzähligen Haftpunkte der festen Partikel aneinander, die eine Struktur

    bilden, die beim Fliessen zuerst zerstört werden muss (z.B. Zinkoxyd in Wasser ohne

    Zusätze, Abb. 24, pag. 49, oder mit 0,05% Tylose SL 25, Abb. 25, pag. 50, sowie

    Titandioxyd mit 1% Tylose SL 25 oder KN 25, Abb. 34 und 35, pag. 54).

    Ein Schleimzusatz, der die b liessgrenze erniedrigt, hat also eine "peptisierende"

    Wirkung, d.h. durch Aufladung der Teilchen wird eine Bildung von Agglomeraten ver¬

    hindert. Dies ist der Fall bei Zinkoxyd und in kleinerem Ausmass auch bei Talk. Auf

    die Teilchen des Titandioxydes, die bereits in Wasser ohne Zusätze eine abstossende

    Ladung besitzen, wirken die Schleime entladend, und es kommt zur Bildung von Agglo¬

    meraten (Abb. 31-35, pag. 53-55).

    Alle diese Erscheinungen lassen sich dadurch erklären, dass die untersuchten

    Schleime elektrolytähnlichen Charakter haben. Diese Wirkung ist bei CMC (eigentlich

    Na-CMC) am ausgeprägtesten, denn sie stellt als Natriumsalz einen Kolloidelektroly¬

    ten dar. Aber auch die übrigen Schleime haben genügend polare Stellen (dieselben, die

    sie zur Löslichkeit in Wasser befähigen), um durch Adsorption an den suspendierten

    Teilchen diesen eine peptisierende Ladung erteilen zu können. Eine eingehendere Be¬

    sprechung dieser Verhältnisse folgt im Kapitel Sedimentation (pag. 57 ff).

  • - 49 -

    2.4.7. Folgen der Aenderungen der fliessgrenze

    Die Aenderungen der Fliessgrenzen haben auf die plastische Viskositätnur einen

    kleinen Einfluss. Wenn auch die plastische Viskosität bei einer 20%igen Zinkoxyd-Su¬

    spension durch den Zusatz von Tylose KN 25 zuerstleicht herabgesetzt wird, weil

    die Fliessgrenze stark kleiner wird, so liegt doch die Hauptveränderungauf einer Pa¬

    rallelverschiebung der Fliesskurven (Abb. 7, pag. 36). Dies hat jedocheine Herab¬

    setzung der absoluten Viskosität zur Folge, dennmit der Verkleinerung von f werden

    auch die Werte von T herabgesetzt. Diese Veränderung ist einer Suspensionäusser-

    lich anzusehen. Während eine 20%ige Zinkoxyd-Suspension in reinem Wasserschon

    beinahe cremig wirkt, wird sie durch den Zusatz von 0, 2% TyloseKN 25 in eine leicht¬

    bewegliche, weisse Flüssigkeit verwandelt.

    Ebenso wichtige Folgen haben die Aenderungen der Fliessgrenzeauf die Art und

    die Geschwindigkeit der Sedimentation, sowie auf die Sedimentfestigkeit.Diese Aus¬

    wirkungen werden weiter unten besprochen.

    Wieweit diese Veränderungen durch Schleimzusatz günstig oder ungünstigauf die

    Suspensionen als galenische Präparate wirken, kann erstim Zusammenhang mit den

    Ergebnissen der Sedimentationsanalysen und den Untersuchungenüber die Aufschüttel-

    barkeit entschieden werden (pag. 110). Das Auftreten einer prinzipiellen Veränderung

    des Fliessverhaltens beim Zusatz von Schleimstoffen muss jedoch festgehaltenwerden.

    2.4.8. Mikrofotografische Aufnahmen

    Vergrösserung: 160 - fach

    Die suspendierten Teilchen erscheinen schwarz, die Flüssigkeitweiss.

    Abb. 24

    Zinkoxyd 10% in Wasser

    ohne Schleimzusatz.

  • - 50 -

    Abb. 25

    Zinkoxyd 10 % mit Zu¬satz von Xylose SL 25

    0, 05%

    Abb. 26

    Zinkoxyd 10% mit Zu¬satz von Xylose SL 25

    1,0%.

  • - 51 -

    •^ ;*>

    >3&-

    &"

    2$ W*V3**!te

    WCS-V^ -i^/s*^i?

    \$

    CKX^iSwv* "'IS»'mir:

    Abb. 27

    Talk 20 % in Wasserohne Schleimzusatz

    S"ffl?-E * -S7 i»>

    -v^

    ^•»

    fc,

  • - 52 -

    '

    x«r-*ïrM'

    Abb. 29

    Talk 20 % mit Zusatzvon 1,0% Tragant

    Abb. 30

    Titandioxyd in Wasser

    ohne Schleimzusatz

  • - 53 -

    ;v-» *:?^V % '.»

    Abb. 31

    Titandioxyd 20% mitZusatz von 0,01%Tragant

    Abb. 32

    Titandioxyd 20 % mitZusatz von 0, 2 %Tragant

  • - 54

    Abb. 33

    Titandioxyd 20 % mit

    Zusatz von 0,05 %

    Tylose SL 25

    Abb. 34

    Titandioxyd 20 % mitZusatz von 1,0 %

    Tylose SL 25

  • - 55 -

    Abb. 35

    Titandioxyd 20 % mitZusatz von 1,0%Tylose KN 25

    2.5. ZUSAMMEN*ASSUNG

    2.5.1. Die zahlenm ässige Erfassung der Fliesseigenschaften

    von Suspensionen

    Die Fliesseigenschaften von dispersen Systemen lassen sich durch die beiden

    Grössen U (plastische Viskosität) und f (Fliessgrenze) zahlenmässig erfassen. Dieo

    Fliessgrenze f bedeutet hier die Kraft (pro cm ), die zur Aufrechterhaltung derje¬

    nigen Struktur des Systems notwendig ist, die dem Fliessen denkleinsten Widerstand

    entgegenstellt. Sie wird im Rheogramm durch die Strecke zwischen demKoordinaten¬

    ursprung und dem Schnittpunkt der extrapolierten t liesskurve mitder T -Achse dar¬

    gestellt. Die Fliessgrenze f ist somit ein Mass für gegenseitige Behinderungund Be¬

    weglichkeit der dispergierten Teilchen.

    Unter der Voraussetzung, dass die Fliesskurven bei höheren Geschwindigkeits¬

    gefällen in eine Gerade übergehen, lassen sich die Werte U undf auch bei sog. pseu¬

    doplastischen Flüssigkeiten bestimmen.

  • - 56 -

    2.5.2. Die Fliesseigenschaften von Suspensionen in Wasser

    ohne Schleimzusatz

    Die Ergebnisse der Theologischen Messungen an Suspensionen in Wasser ohne

    Schleimzusatz lassen die grundsätzlichen Unterschiede der drei Feststoffe erkennen:

    Bei Zinkoxyd- und Talk-Suspensionen steigt mit zunehmender Konzentration die pla¬

    stische Viskosität und die Fliessgrenze zuerst langsam, dann stärker an, denn die

    suspendierten Teilchen haften aneinander und stellen dem Fliessen einen immer

    grösseren Widerstand entgegen (Talk weniger als Zinkoxyd). Die Titandioxyd-Teil¬

    chen dagegen stossen sich ab; die Viskosität steigt mit zunehmender Konzentration

    nur schwach an, und selbst bei einer 40%igen Titandioxyd-Suspension ist keine Fliess¬

    grenze festzustellen.

    2.5.3. Der Einfluss des Schleimzusatzes auf die Fliesseigen¬

    schaften von Suspensionen

    Die plastische Viskosität der Suspensionen nimmt im allgemeinen mit steigender

    Schleimkonzentration zu. Bei Zinkoxyd und Talk, deren Suspensionen in Wasser eine

    Fliessgrenze besitzen, wird diese durch Schleimzusatz herabgesetzt. Bei Titandioxyd-

    Suspensionen wirkt ein Schleimzusatz auf die Fliessgrenze erhöhend. Diese Erschei¬

    nungen werden durch den elektrolyt-ähnlichen Charakter der Schleime erklärt, die eine

    peptisierende oder koagulierende Wirkung auf die suspendierten Teilchen ausüben.

  • - 57 -

    3. SEDIMENTATION

    3.1. ALLGEMEINERTEIL

    3.2. EXPERIMENTELLER TEIL

    3.3. RESULTATE

    3.4. BEURTEILUNG

    3.5. ZUSAMMENFASSUNG

    3.1. ALLGEMEINERTEIL

    Wird eine Suspension nach der Herstellung sich selbst überlassen, so wird in

    fast allen Fällen beobachtet, dass sie sich schneller oder langsamer vom ursprüng¬

    lichen Zustand einer gleichmässigen Dispersion entfernt. Die festen Partikel verlas¬

    sen ihren zugeteilten Platz in der flüssigen Phase.

    3.1.1. Faktoren, die Veränderungen an Suspensionen bewirken

    Drei prinzipiell verschiedene Faktoren, die auf die suspendierten Teilchen ein¬

    wirken, sind für dieses Verhalten verantwortlich:

    1. Anziehende oder abstossende Kräfte zwischen den Teilchen

    2. Thermodynamische Kräfte

    3. Gravitation

    3.1.1.1. Kräfte, die zwischen den Teilchen wirken

    Zwischen den Teilchen wirken zwei verschiedene Arten von Kräften:

    1. Die Coulombschen oder elektrostatischen Kräfte

    2. Die Van der Wa als sehen Kräfte49\

    Die Van der Waalsschen Kräfte entstehen durch gegenseitige Polarisationi 7\

    von neutralen Körpern '. Sie sind nur auf kurze Distanz wirksam und haben die gegen¬

    seitige Anziehung der Teilchen zur Folge. Die Coulombschen Kräfte bewirken, dass

  • - 58 -

    sich gleichsinnig geladene Teilchen abstossen. Die elektrostatische Aufladung der Par¬

    tikel entsteht durch Adsorption von polaren Molekeln oder Ionen an der Oberfläche der19)

    Teilchen '. Hat die so gebildete Solvathülle oder Lyosphäre eine negative Ladung,

    so gruppieren sich um sie die positiven Anteile des Dispersionsmittel und man erhält

    eine elektrische Doppelschicht um das Teilchen. Bei Emulsionen beträgt deren Dicke

    etwa 10 mji ', doch ist sie bei Suspensionen auch von der Form der Teilchen ab¬

    hängig '.

    Das Herbeiführen dieses Zustandes der gegenseitigen Abstossung durch Aufla¬

    dung nennt man Peptisation ' '.

    Die elektrostatische Ladung bewirkt eine direkte abstossende Kraft zwischen den

    Teilchen. Aber auch die Hülle der Doppelschicht verhindert rein mechanisch ein gegen¬

    seitiges Berühren der Partikel. Beteiligen sich kolloide Substanzen an der Bildung der

    Solvathülle, so spricht man oft von Schutzkolloiden '. Man ist sich aber noch nicht im

    klaren, ob die im elektrischen Feld feststellbare Erhöhung der Wanderungsgeschwin¬

    digkeit von suspendierten Teilchen, z.B. nach CMC-Zusatz, auf einer analogen Auf¬

    ladung durch Adsorption beruht. Die polare CMC könnte auch wie ein "Fischernetz" die77)

    festen Teilchen mitreissen '.

    Wird den Teilchen die Ladung entzogen (an Elektroden oder durch überschüssige

    Elektrolyte), so überwiegen die Van der Waal s sehen Kräfte und das System koa¬

    guliert3' 20).Eng mit der Peptisation hängt die Benetzung zusammen. Man bezeichnet damit

    22)die Adsorption von Flüssigkeit an feste Körper '. Leicht benetzbare Substanzen ver¬

    teilen sich leicht in der Flüssigkeit und neigen nicht zur Klumpenbildung.

    Durch grössere Affinität des Stoffes zu Luft als zu Flüssigkeit wird es möglich,

    dass kleine Partikel sich an ein Luftbläschen hängen und nach oben schwimmen. Diese

    Erscheinung nennt man Flotation.

    3.1.1.2. Thermodynamische Kräfte

    Die thermodynamischen Kräfte gehen in erster Linie vom flüssigen Dispersions¬

    mittel aus. Die frei beweglichen Molekeln prallen auf die festen Teilchen in der Su¬

    spension auf. Bei Teilchen, deren Durchmesser unter 3 - 5u liegt, ist die Wirkung32)

    dieser Stösse als Brown sehe Bewegung sichtbar . Durch diese Bewegungen wer¬

    den die Teilchen auch gegeneinander gebracht. Je nach der Grösse der kinetischen

    Energie (abhängig von Teilchengrösse und Geschwindigkeit) können die Solvathüllen de¬

    formiert oder die Coulombschen Kräfte überwunden werden und die Teilchen koagu¬

    lieren '.

  • - 59 -

    3.1.1.3. Gravitation

    Die auffallendste Veränderung der Suspensionen bewirkt die Schwerkraft. Sie hat,

    durch die unterschiedliche Dichte der suspendierten Teilchen und des Dispersionsmit¬

    tels bedingt, eine gegen den Erdmittelpunkt gerichtete Bewegung des schwereren An¬

    teils zur Folge. Dieses, unter dem Einfluss der Schwerkraft erfolgende, langsame Ab¬

    sinken der suspendierten Teilchen wird Sedimentation genannt. Sie erfolgt theoretischn po C-l ßl \

    nach den Prinzipien des Stokesschen Gesetzes ' ' ' , d.h. die Geschwindig¬

    keit der fallenden Teilchen ist der Dichtedifferenz fest - flüssig und dem Quadrat des

    Teilchenradius direkt und der Viskosität indirekt proportional.

    Bei vielen Suspensionen spielen aber noch andere Faktoren mit, die auf die Se¬

    dimentationsgeschwindigkeit Einfluss haben. Vor allem die Teilchenform, die gegen¬

    seitige Behinderung bei konzentrierten Suspensionen und die anziehenden oder abstos-

    senden Kräfte zwischen den Teilchen sind von Bedeutung. Während Teilchen, deren

    ime2)

    Durchmesser kleiner als 0,1 (i ist, nicht mehr zu sedimentieren pflegen ', besitzen

    zu grosse Partikel keine konstante Fallgeschwindigkeit

    Die Abhängigkeit der Sedimentationsgeschwindigkeit von der Konzentration ist

    keine lineare Funktion. Beim Ansteigen der Konzentration kommen die Teilchen näher

    zusammen. Die Wahrscheinlichkeit des Zusammentreffens und der Koagulation und da¬

    mit der schnelleren Sedimentation wird grösser. Steigt die Konzentration jedoch wei-24)

    ter, so behindern sich die Teilchen zuletzt im Fallen. Die Geschwindigkeit sinkt .

    3.1.2. Verschiedene Arten der Sedimentation

    90)

    Man kann zwei Möglichkeiten der Sedimentation unterscheiden ':

  • - 60 -

    3.1.2.1. Absinkende Sedimentation

    (Vergl. Abb. 36)

    Abb. 36

    Merkmale: 1. Sedimenthöhe nimmt ab

    2. Konzentration des Sedimentes nimmt zu

    3. Suspendierte Teilchen sinken immer mehr zusammen

    4. Ueberstehende Flüssigkeit meist klar

    V = Endvolumen

    3.1.2.2. Aufstockende Sedimentation

    (Vergl. Abb. 37)

    Abb. 37

    Merkmale: 1. Sedimenthöhe nimmt zu

    2. Konzentration in der überstehenden Flüssigkeit nimmt ab

    3. Suspendierte Teilchen fallen aus der Suspension auf den

    Grund und schichten sich zum Sediment auf

    4. Ueberstehende Flüssigkeit ist immer trüb

    V„ = Endvolumene

  • - 61 -

    3.1.3. Sediment

    Im Endzustand der Sedimentation sind die Teilchen im Sediment vereinigt. Das

    Sedimentvolumen ist von denselben Faktoren abhängig, die auch das Haften der Teil¬

    chen aneinander beeinflussen ' ':

    1. von der elektrostatischen Ladung

    2. von der Dicke der Solvathülle

    Sind die Teilchen elektrisch gleichsinnig geladen, so gleiten sie leicht aneinan¬

    der vorbei und lagern sich sehr dicht. In entladenem Zustand haften sie aneinander

    und türmen sich unter Gewölbe- und Brücken-Bildung zu lockeren Gefügen aufeinan-18 37^

    der ' ' (vergl. auch Abb. 84, pag. 108). (Ueber Sedimentfestigkeit siehe Kapitel

    4., Aufschüttelbarkeit, pag. 96).

    3.1.4. Zahlenm äs sige Erfassung der Sedimentation

    Es stellt sich nun die Frage, wie die oben besprochenen Veränderungen nach

    der Herstellung zahlenmässig erfasst werden können, um den Einfluss von zugesetzten

    Schleimlösungen zu studieren.

    Von den drei Hauptfaktoren soll vor allem der dritte, die Sedimentation, im Zu¬

    sammenhang mit der Zeit betrachtet werden. Die Auswirkungen der beiden andern

    Faktoren (Kräfte zwischen den Teilchen und thermodynamische Bewegung) erschöpfen

    sich grösstenteils im Einstellen eines Gleichgewichtes. (Nach Untersuchungen von

    Baeschlin ' erreicht die Peptisation von Zinkoxyd durch Kaliumzitrat nach 24 Stun¬

    den das Maximum).

    3.1.4.1. Sedimentationsgeschwindigkeit

    Die Sedimentationsgeschwindigkeit wird als wichtiges Kriterium für die Beur¬

    teilung der Qualität einer Suspension betrachtet. Zwei verschiedene Methoden sind zu

    ihrer Untersuchung möglich:

    1. Bestimmung der Konzentration zu verschiedenen Zeiten

    2. Ablesung der Sedimenthöhe zu verschiedenen Zeiten

  • - 62 -

    291Nach der ersten Methode arbeiten Andreasenzylinder , eine Sedimentations¬

    waage ', Pelometer ', Sedimentationspipette , um nur einige zu nennen.

    Die einfachere Methode ist die Ablesung der Sedimenthöhe in einem graduierten

    Zylinder. Sie erfordert keinen Eingriff in die Suspension und erlaubt ein rasches Ar¬

    beiten. Sie versagt, wenn keine deutliche Sedimentobergrenze sichtbar ist, noch gibt

    sie Aufschluss über die Verhältnisse in verschiedenen Höhen.

    3.1.5. Graphische Darstellung der Sedimentation

    Es gibt folgende Möglichkeiten zur graphischen Darstellung der Sedimentation:

    3.1.5.1. Sedimenthöhe als Funktion der Zeit

    Die Sedimenthöhe wird auf der Ordinate, die Zeit auf der Abszisse aufgetragen.

    Man erhält so für jedes Suspension eine individuelle Sedimentationskurve. Sie gibt

    Auskunft über die Art der Sedimentation (siehe Abb. 36 und 37 in Kapitel 3.1.2.,

    pag. 60).

    3.1.5.2. Sedimenthöhe als Funktion der Schleimkonzentration

    Die Sedimenthöhe wird auf der Ordinate, die Schleimkonzentration auf der Abszis¬

    se aufgetragen (vergl. Abb. 38 und 48 pag. 76).

    ata

    Konzentration

    m

    Abb. 38

  • - 63 -

    Mit dieser Kurve lassen sich verschiedene Suspensionen im selben Zeitpunkt

    mit einander vergleichen. Das selbe Bild erhält man, wenn die Sedimentationszylin¬

    der mit den entsprechenden Suspensionen gefüllt nebeneinander stehen (Abb. 62-71,

    pag. 89-93).

    3.1.5.3. Konzentration als Funktion der Zeit

    Die Teilchenkonzentration in einer bestimmten Höhe wird in Prozenten der ur¬

    sprünglichen Konzentration auf der Ordinate, die Zeit auf der Abszisse aufgetragen

    (z.B. Abb. 46, pag. 75).

    3.1.5.4. Konzentration als Funktion der Schleimkonzentration

    Die Teilchenkonzentration in einer bestimmten Höhe wird in Prozenten der ur¬

    sprünglichen Konzentration auf der Ordinate, die Schleimkonzentration auf der Abszis¬

    se aufgetragen.

    3.1.6. Werte zur Beurteilung der Sedimentation

    Für die Beurteilung der Sedimentation müssen aus diesen Kurven einzelne Werte

    herausgelesen werden. Es eignen sich dazu

    1. das Endvolumen

    2. die Halbwertszeit

    3.1.6.1. Endvolumen

    Das Endvolumen (V ) ist der Raum, den das Sediment einnimmt, wenn die Sedi¬

    mentation abgeschlossen ist und von aussen keine Veränderung mehr zu sehen ist.

  • - 64 -

    3.1.6.2. Halbwertszeit

    Die Halbwertszeit ist die Zeit, in der die Sediment-Obergrenze die Hälfte ihres

    Weges (von oben nach unten, oder von unten nach oben) zurückgelegt hat (Abb. 39).

    Halbwertszeit Halbwertszeit

    Zeitt

    Zeit^

    Abb. 39

    Bestimmung der Halbwertszeit

    Bei Konzentrationsbestimmungen ist die Halbwertszeit die Zeit, in welcher,

    in der über dem Sediment stehenden Flüssigkeit, die halbe Konzentration des Anfangs-

    (bei aufstockender Sedimentation), bzw. des Endzustandes (bei absinkender Sedimen¬

    tation) erreicht ist.

    Da der Zeitpunkt, in welchem die Sedimentation abgeschlossen ist, oft nur lang¬

    sam und asymptotisch erreicht wird, stellt die Halbwertszeit eine Grösse dar, die

    schneller und vor allem genauer über die Sedimentationsgeschwindigkeit Auskunft gibt.

    Eine grosse Halbwertszeit bedeutet eine langsame, eine kleine Halbwertszeit eine

    rasche Sedimentation.

    3.2. EXPERIMENTELLER TEIL

    Die Herstellung und Vorbereitung der Suspensionen wurde bereits besprochen

    (Kap. 1.5., pag. 20).

  • - 65 -

    3.2.1. Messmethoden

    Die Sedimentationsbestimmungen wurden in 250ml Messzylinder ausgeführt. Die

    Höhe bis zur 250ml-Marke betrug 23,2 cm, der Durchmesser der Zylinder 3,6 cm.

    Die Zylinder wurden in einem dunkeln Raum von möglichst konstanter Tempera¬

    tur aufgestellt. Die Temperaturschwankungen betrugen während den einzelnen Ver¬

    suchen höchstens -0,5. Während der gesamten Untersuchungszeit bewegte sich die

    mittlere Raumtemperatur zwischen 20° und 24°.

    Zur Bestimmung der Sedimentation wurden die Suspensionen nach dem Einfüllen

    in die Messzylinder durch gründliches Umschwenken homogenisiert und dann in Ruhe

    stehengelassen. Von diesem Zeitpunkt an in l/i, 1, 3, 6, 10, 24 etc. Stunden wurden

    die Beobachtungen und Bestimmungen ausgeführt, bis keine Veränderung mehr wahr¬

    nehmbar war.

    3.2.1.1. Ablesen der Sedimenthöhe

    Wenn immer möglich wurde die Ablesung der Sedimenthöhe (bzw. des Sediment¬

    volumens) als Bestimmungsmethode benützt. War die überstehende Flüssigkeit trübe,

    so bereitete das Ablesen oft beträchtliche Schwierigkeit. Bei günstiger Beleuchtung

    und mit einiger Uebung liess sich aber noch in vielen Fällen schwach, aber deutlich,

    eine Begrenzungslinie erkennen.

    Die Genauigkeit dieser Bestimmungen betrug + 2% (ermittelt aus zehn Werten

    bei einer 20%igen Zinkoxyd-Suspension in reinem Wasser).

    3.2.1.2. Bestimmung der Konzentration

    Ist ein Ablesen ganz unmöglich, oder um näheren Aufschluss über die Verhältnisse

    in verschiedenen Höhen zu erhalten, wurde die Methode der Konzentrationsbestimmung

    angewandt (Abb. 61, pag. 87).

    Die Verwendung eines Andreasenzylinders kam aus zwei Gründen nicht in Frage:

    Die Entnahmehöhe muss verändert werden können, und die entnommene Menge darf

    nicht zu gross sein. Folgende Methode erwies sich für diese Untersuchungen als ge¬

    eignete Konzentrationsbestimmung: Mit einer 2ml-Vollpipette, die durch ein Rohrstück

    im Stopfen des Zylinders geführt wurde und so in jede Höhe eingestellt werden konnte,

    wurden je 2ml der Suspension in der gewollten Höhe entnommen und in Porzellanschälchen

  • - 68 -

    bei 103-105 zur Gewichtskonstanz gebracht. Das Einführen und Herausnehmen der

    oben verschlossenen Pipette erfolgte sehr langsam (2 cm/sec), um die Suspension

    nicht zu stark zu stören. Der Unterdruck beim Ansaugen der Probe betrug 2, 5 g/cm'

    (eingestellt mit Wasserstrahlpumpe und Manometer). Das Gewicht des getrockneten

    Rückstandes wurde unter Berücksichtigung der Schleimmenge in Prozente der ur¬

    sprünglichen Konzentration umgerechnet.

    Die Genauigkeit dieser Bestimmungen betrug (ermittelt aus 10 Werten) Î 3%.

    Bei einigen dickflüssigen Suspensionen (z.B. 20% Zinkoxyd in Wasser) konnte

    die entnommene Probe nicht mehr volumetrisch abgemessen werden. Auch wäre die

    dünne Pipette rasch verstopft worden. Mit Hilfe eines 3 mm weiten Glasrohres, das

    wie die Pipette durch den Stopfen eingeführt werden konnte, wurde eine kleine Menge

    Material entnommen und vor dem Trocknen in einem Wägegläschen gewogen.

    3.2.1.3. Bestimmung der Sedimenthöhe durch Neigen des Zylinders

    Wie es sich später zeigte, stimmen die Werte für die Halbwertszeit nicht genau

    überein, wenn sie mit der Ablesemethode und der quantitativen Bestimmung ermit¬

    telt wurden (vergl. Abb. 45 und Abb. 46, pag, 75). In einigen Fällen (z.B. bei Titan¬

    dioxyd-Suspensionen) wurde darum die Sedimenthöhe so sichtbar gemacht, dass der

    ganze Zylinder sorgfältig gekippt wurde bis Sediment erkannt und bestimmt werden

    konnte. Der Nachteil dieser Methode besteht darin, dass dadurch die Sedimentation

    gestört wird und für Ablesungen in späteren Zeitpunkten wieder neue Proben angesetzt

    werden müssen. Sie ist auch nur durchführbar, wenn das Sediment genügend fest ist,

    und durch das Neigen nicht selbst verschoben wird.

    3.2.2. Ermittlung der Halbwertszeit

    Die Ermittlung der Halbwertszeit erfolgt auf graphischem Wege aus den gegen

    die Zeit aufgetragenen Sedimentationskurven.

  • - 67 -

    3.3. RESULTATE

    Die Resultate der Sedimentationsanalysen, nämlich die Zahlen für die Halbwerts¬

    zeit und das Endvolumen, sind in Tabellen zusammengestellt.

    Die Werte der wässerigen Suspensionen ohne Schleimzusätze sind in Tabelle 9

    (pag. 68) wiedergegeben. Tabelle 10 führt die Resultate auf von verschieden konzen¬

    trierten Zinkoxyd-Suspensionen, denen die drei Schleimarten in Konzentrationen von

    0,0001 - 1,0 % zugesetzt wurden.

    Die Resultate von Tragantzusätzen (0,2 - 1,0%) zu 10%igen Zinkoxyd-Suspen¬

    sionen finden sich in Tabelle 11. Tabelle 12 (pag. 70) gibt die Werte von Zusätzen

    der höherviskosen Zellulosederivaten zu 10%igen Zinkoxyd-Suspensionen.

    20%ige Talk- und Titandioxyd-Suspensionen mit den Zusätzen von Tylose SL 25

    und KN 25 sowie von Tragant sich in den Tabellen 13 und 14 (pag. 71) erwähnt.

    Für die Halbwertszeit ist als kleinster Wert 15 Minuten angegeben. Werte, die

    darunter liegen, können aus den Sedimentationskurven nicht mehr genau ermittelt

    werden.

    Ein * hinter der Zahl für das Endvolumen bedeutet, dass die Sedimentation auf¬

    stockend erfolgt.

    Ausserdem sind einige charakteristische, experimentell ermittelte Sedimenta¬

    tionskurven in Abb. 40 - 48 (pag. 72-76) wiedergegeben. Abb. 61 (pag. 87) zeigt die

    Ergebnisse der Konzentrationsbestimmungen in verschiedenen Höhen nach einer Sedi¬

    mentationsdauer von einem Monat bei 10%igen Zinkoxyd-Suspensionen mit Schleimzu¬

    sätzen in höheren Konzentrationen.

    Zur Beurteilung werden die Resultate in den graphischen Darstellungen (Abb. 49 -

    60, pag. 77, 78, 80-87) ausgewertet.

    Die fotografischen Aufnahmen von den Sedimentations-Zylindern (vergl. Abb. 62 -

    71, pag. 89-93) geben ein Bild von den praktischen Auswirkungen der Schleimzusätze

    auf die Sedimentation der Suspensionen.

  • - 68 -

    Tabelle 9

    Halbwertszeit (Hzw) und Endvolumen (Ve) von Zinkoxyd- Talk- und Titandioxyd-Su¬

    spensionen in Wasser ohne Schleimzusätze. Hwz ist in Stunden und Minuten, V in

    ml angegeben. * = Sedimentation verläuft aufstockend.

    Substanz ZnO Talk Ti02

    Konzentration Hwz V„e

    Hwz Ve

    Hwz Ve

    2%

    5%

    10%

    20%

    30%

    40%

  • &H

    h.1

    pC

    in

    **

    Na-

    B.3

    p:

    (DCL

    3<R

    3ao

    3CD3o

    3OntatP

    CD

    3-)

    g(T

    >3

    •a

    IB

    wN

    c3

    CO

    o

    ia

    W#

    -33re