synthetic polymer fibers

27
Global production of manufactured fibres was 36.0million metric tons in 2002, an increase of 155%from the 14.1 million tons produced in 1982. Over the past twenty years synthetic types, e.g. polyester, have shown strong long-term growth, while cellulosics have declined. Synthetics now account for 94% of worldwide production. SYNTHETIC POLYMER FIBERS Charts from 2002

Upload: haines

Post on 23-Feb-2016

56 views

Category:

Documents


1 download

DESCRIPTION

Synthetic Polymer Fibers. Charts from 2002. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Synthetic Polymer Fibers

Global production of manufactured fibres was 36.0million metric tons in 2002, an increase of 155%from the 14.1 million tons produced in 1982. Over the past twenty years synthetic types, e.g. polyester, have shown strong long-term growth, while cellulosics have declined. Synthetics now account for 94% of worldwide production.

SYNTHETIC POLYMER FIBERS

Charts from 2002

Page 2: Synthetic Polymer Fibers

All synthetic fibres are produced using polymers from petroleum based chemicals or coals. These polymers start out as monomers and are joined together to create polymers. Depending on which is used their properties differ.

Crude oil is a naturally occurring, flammable liquid found in rock formations in the earth consisting of a complex mixture of hydrocarbons of various molecular weights, plus other organic compounds. A hydrocarbon is a compound that consists of carbon and water.Its the organic compounds that form the monomers used for plastics and fibres.

http://www.fibersource.comhttp://fabriclink.com/

Excellent study resource- All you need to know and much more!

Page 3: Synthetic Polymer Fibers

http://www.youtube.com/watch?v=Jpv2RUjNFjo

What is a Monomer?

A monomer is an organic compound used to make a chain of polymers.

The Trolleymer

There are two ways in which synthetic polymerization takes place. These are:•Addition polymerisation •Condensation Polymerisation ( monomers that create a by product such as polyester and polyamide)

Polymers

Page 4: Synthetic Polymer Fibers

What is a Polymer?

http://www.youtube.com/watch?v=7nCfbZwGWK8

Polymerization of polyamide/nylon

A polymer is a high-molecular-weight organic compound, natural or man-made, consisting of many repeating simpler chemical units or molecules called monomers.Examples of natural polymers are proteins (polymer of amino acids) and cellulose (polymer of sugar molecules).An example of synthetic polymer is PVC (a polymer of vinyl chloride).

Page 5: Synthetic Polymer Fibers

ElastomericsElastomerics are made from polyurethane via the process of polyaddition. That means that monomers are joined without creating a by-product. It was first discovered in the 1940’s and was used in combination with nylon to create the first lightweight stretch garments. It was replacing rubber and it is widely used for upholstery, carpets and even bedding.

1. The basic polyurethane you are most likely to encounter in foam for furniture or filling for bedding it can also be used for waterproof coatings, imitation leather and suede.

2. Elastane, Spandex and Lycra are the same family of fibre produced by different companies.

Why do elastomerics stretch and recover shape? The polymer chain is a segmented block copolymer containing long, randomly coiled, liquid, soft segments that move to a more linear structure. The hard segments act as “virtual cross-links” that tie all the polymer chains together into an infinite network. This network prevents the polymer chains from slipping past each other and taking on a permanent set or draw. When the stretching force is removed, the linear soft segments move back to the preferred randomly coiled causing the fibre to recover to its original shape and length.

Page 6: Synthetic Polymer Fibers

1. A manufactured elastomeric fibre that can be repeatedly stretched over 500% without breaking, and will still recover to its original length.

2. It is made from a long-chain synthetic polymeric fibre.

Only 3% of this elastomer is necessary to have these amazing stretch capabilities. The rest can be made from another fibre.

3. It is lightweight and flexible. It resists deterioration from perspiration,

detergent and body oils. It is characterized by its strength and durability.

4. Main uses are athletic wear and foundation garments.

5. It is usually woven but of cause it can also be knitted.

Properties of Spandex, Elastane & Lycra

Page 8: Synthetic Polymer Fibers

EXAMPLES OF POLYURETHANE FIBER

Page 10: Synthetic Polymer Fibers

Fluorofibres

Properties of Fluorofibres:•It’s a fine micro-fibre that has fibre optic and translucent qualities. •Non stick•Resistant to heat up to 215 degrees celsius starts to decompose at 300• chemicals and solvents

Uses of TEFLON® fibre:•The ease of processing our fibres makes it the perfect choice for sewing threads where UV resistance is required.•Non stick surfaces•The temperature and chemical resistance make TEFLON® the perfect replacement for asbestos fibre and protective garments for the metal industry•They are also used as fishing tackle.•High performance sportswear (usually around 15% • It’s a fire-resistant fibre. For this reason, special garments, such as components of the clothing used by space shuttle crews for extra-vehicular activities.

Fluorofibres are developed via polymerization of tetrafluoroethylene gas, an organic compound of crude oil.It has the highest density of any organic fibre.

Page 11: Synthetic Polymer Fibers

New Patented application in a fabric:It is used to produce a lightweight protective garment made of a fabric having an exterior surface that readily sheds molten metal splash and sparks, resists burn-through caused thereby and exhibits improved dimensional heat stability. The fabric is made from woven or knit spun fluoropolymer staple yarn.

Page 12: Synthetic Polymer Fibers

PolyamidesPolyamides are made via condensation polymerisation. The compound used is polyethylene. This type of polymerisation is called step-growth polymerization. Monomers with two reactive ends join to form dimers (two “parts” joined together), then “trimers” (three “parts”), and so on. However, since each of the newly formed oligomers (short chains containing only a few parts) also has two reactive ends, they can join together; so a dimer and a trimer would form a pentamer (five repeating “parts”). In this way the chains may quickly great length achieve large size.

Trade names are Nylon and Polyester or simply Polyamide.

Page 13: Synthetic Polymer Fibers

Nylon Characteristics•Exceptionally strong •Elastic •Abrasion resistant •Lustrous •Easy to wash •Resistant to damage from oil and many chemicals •Can be pre-colored or dyed in wide range of colors •Resilient •Low in moisture absorbency •Filament yarns provide smooth, soft, long-lasting fabrics •Spun yarns lend fabrics light weight and warmth

Some Major Nylon Fiber Uses•Apparel: Blouses, dresses, foundation garments, hosiery, lingerie, underwear, raincoats, ski apparel, windbreakers, swimwear, and cycle wear •Home Furnishings: Bedspreads, carpets, curtains, upholstery •Industrial and Other Uses: Tire cord, hoses, conveyer and seat belts, parachutes, racket strings, ropes and nets, sleeping bags, tarpaulins, tents, thread, monofilament fishing line, dental floss General Nylon Fiber Care Tips

• Most items made from nylon can be machine washed and tumble dried at low temperatures. Use warm water and add a fabric softener to the final rinse cycle.

• Remove articles from dryer as soon as tumbling cycle is completed.

• If ironing is required, use warm iron. (For specific care instructions, refer to garment's sewn-in care label.)

Nylon

Page 14: Synthetic Polymer Fibers

PolyesterPolyester is also derived from the compound polyethylene terephthalate or simply called PET, via step-growth polymerization. It is melt spun and can be recycled. Many polyester based plastic bottles are used to make catanonia fleece used in high performance sportswear.

Polyester Fibre Characteristics• Strong • Resistant to stretching and shrinking • Resistant to most chemicals • Quick drying • Crisp and resilient when wet or dry • Wrinkle resistant • Mildew resistant • Abrasion resistant • Retains heat-set pleats and crease • Easily washed • Low heat resistance

Page 15: Synthetic Polymer Fibers

General Polyester fibre care tipsMost items made from polyester can be machine washed and dried. Use warm water and add a fabric softener to the final rinse cycle. Machine dry at a low temperature and remove articles as soon as the tumbling cycle is completed. If ironing is desired, use a moderately warm iron. Most items made from polyester can be dry-cleaned. (For specific instructions, refer to garment's sewn-in care label.)

Some Major Polyester fibre UsesApparel: Every form of clothing Home Furnishings: Carpets, curtains, draperies, sheets and pillow cases, wall coverings, and upholstery Other Uses: hoses, power belting, ropes and nets, thread, tire cord, auto upholstery, sails, floppy disk liners, and fiberfill for various products including pillows and furniture

Page 16: Synthetic Polymer Fibers

What do you know synthetic fibres?In percentages how much does the worldwide production of synthetics accounts for ? 94%

Which part of the crude oil is used for fibre production?

What is a monomer?

What is a polymer?

Elastomerics are made from which organic compound?

Give three trade names for elastomeric fibres?

How far, in percentages can elastomerics be stretched without fibre breakage?

Lycra, Spandex, Elastane

500%

Polyurethane

A polymer is a high-molecular-weight organic compound, natural or man-made, consisting of many repeating simpler chemical units or molecules called monomers.

A monomer is an organic compound used to make a chain of polymers.

The organic compounds

Page 17: Synthetic Polymer Fibers

What do you know synthetic fibres?Elastomerics have soft and hard segments. Which one accounts for the stretch qualities?

The randomly coiled, liquid, soft segments

What are the main uses of elastomerics?

At what percentage are elastane fibres used when blended with another fibre?

Polyurethane can be used as coating for furniture, clothes and swimming pools, why?

Fluorofibres are an organic compound of crude oil. What is the compound called and the polymers formed?

What makes fluorofibres so unique?

Which trade name are fluorofibres also known?

They have the highest density of any organic compound fibre.

Teflon

It’s called tetrafluoroethylene gas and is formed via polymerization

It is waterproof

Up to 3%

Sportswear and foundation garments

Page 18: Synthetic Polymer Fibers

Polyolefin'sPolyolefin's are made from the organic compound polyethylene (just like polyester) or polypropylene. However they do not look the same and are used differently! WHY?

The compound is put together with another one such as butene or ocyene which are both gases. Then a metallocene catalyst is added. Normally the polyethylene fibre is sturdy and rigid (as in polyester). Here the structure is disturbed by the catalyst creating polymers with higher elasticity.

Butene is a colourless gas that is present in crude oil as a minor constituent in quantities that are too small for viable extraction. It is therefore obtained by catalytic cracking of long chain hydrocarbons left during refining of crude oil.

Page 19: Synthetic Polymer Fibers

Method of ProductionSTRAPPING The molten polymer is extruded, with the addition of additives to improve its properties, as long lengths of flat strapping. Special drawing techniques give the high strength and tenacity needed by the product.Strapping is used for packaging industrial products, often compressing them in order to reduce their bulk.SPUNBOND NONWOVENSExtruded molten polypropylene (PP) or polyethylene (PE) filaments are collected on to a moving belt, which are then immediately transformed into a nonwoven fleece by thermal treatment. MELTBLOWN NONWOVENS They are produced by blowing high velocity air through molten polymer, spraying discontinuous very fine fibres on to a moving belt. The fibres are immediately transformed into a nonwoven fleece by thermal treatment.WOVENAs per usual!

Page 20: Synthetic Polymer Fibers

Properties :• Both polyolefin fibres have a lower density and are therefore thicker than other man-made fibres and give more cover. PP can also be produced as a very fine fibre!• They do not absorb moisture, which is an advantage in many end-uses, but without modification, • They cannot be dyed. • Their melting points are around 130 °C for polyethylene and 160 °C for polypropylene. • They have a high resistance to chemical attack and • Modern polypropylene fibres have a high resistance to UV degradation.

Page 21: Synthetic Polymer Fibers

Uses of Polyolefin Fibers

Artificial GrassPP or PE

Carpet backingPP

ApparelPP

Geo TextilesPP or PE

Ropes & NetsPP & PE

Furnishing & AutomotivePP or PE

Medical

Agro TextilesPP or PE

Flexible Intermediate Bulk Containers (FIBCs)PP

Page 22: Synthetic Polymer Fibers

APPAREL

• Socks and performance sportswear, where PP woven or knitted fabric has the capability to transport perspiration from the skin to the outer surface, where it evaporates. The garment itself remains dry and comfortable, and retains its insulation properties in cold climates.

• PP is also now penetrating other apparel markets, using very fine multifilament with attractive appearance and touch.

Uses of Polypropylene in Apparel & Sportswear

Page 23: Synthetic Polymer Fibers

ARAMID FIBRESAramid fibres are made from the organic compound polyethylene and belong to the family of polyamides. Aramid fibres are very strong. Much stronger than Polyester or Polyolefin’s. Imagine a fabric stronger than a wetsuit or a heavy duty outdoor nylon or Polyester coat. They have been around since the 1970’s but are becoming increasingly engineered and create a wide variety of end uses.

Kevlar Chemical StructureThey are fibres in which the chain molecules are highly oriented along the fibre axis, so the strength of the chemical bond can be exploited.

WHY OH WHY???

Page 24: Synthetic Polymer Fibers

http://www.youtube.com/watch?v=8dX3Z5CyF3c

KEVLARKevlar® is the brand name and describes a fabric so strong it is bullet proof

How is a Kevlar vest made?A bulletproof vest consists of a panel, a vest-shaped sheet of advanced plastics polymers that is composed of many layers of either Kevlar, Spectra Shield. The layers of woven Kevlar are sewn together using Kevlar thread, while the nonwoven Spectra Shield is coated and bonded with resins and then sealed between two sheets of polyethylene film.The panel provides protection but not much comfort. It is placed inside of a fabric shell that is usually made from a polyester/cotton blend or nylon. The side of the shell facing the body is usually made more comfortable by sewing a sheet of some absorbent material onto it. It may also have nylon padding for extra protection. For bulletproof vests intended to be worn in especially dangerous situations, built-in pouches are provided to hold plates made from either metal or ceramic bonded to fiber glass. Such vests can also provide protection in car accidents or from stabbing.Various devices are used to strap the vests on. Sometimes the sides are connected with elastic webbing. Usually, though, they are secured with straps of either cloth or elastic, with metallic buckles or velcro closures.

Page 25: Synthetic Polymer Fibers

Properties of Aramid Fibres such as Kevlar:

High strength

Lightweight

Flame & chemical resistant

Flexible & comfortable

5X stronger than steel

Further uses of Kevlar®:Equipment used for high risk activities like hot air ballooningHigh tension cables and robes for bridges, ships or space vehiclesGloves that protect hands and fingers against cuts and other injuriesStrong lightweight skis, helmets and tennis racquetsIndustrial end uses like tyres, car hoses, aircraft structures and boats

Page 26: Synthetic Polymer Fibers

Nomex®Nomex® is another brand name for an aramid fibre which is resistant to high temperatures.

Properties:Heat & flame resistantDurableAnti staticLow shrinkageEasy careComfortableGood aesthetic qualitiesResistant to most industrial oils, solvents & chemicalsDyes easily

Uses:Police & armed forcesFire fightersHigh risk sportsProtective overalls, head coverUnderwear to protect drivers and mechanics from flames and heat

Page 27: Synthetic Polymer Fibers

Ed Thomas, the R&D VP of BBA Fiberweb provided a wake-up call. Simple arithmetic showed that with current oil consumption at 28 billion barrels/day and rising, and with only a trillion barrels of known reserves, it would run out by 2040. Cheap polypropylene, the workhorse raw material of the nonwovens industry will be extinct long before then because propane/propylene will be more valuable in other uses. 93% of oil is used to provide fuel for transport and heating, only 7% going to petrochemicals.

Food for Thought