the inverters - university of california, berkeley€¦ ·  · 2000-02-16cmos inverters...

67
Digital Integrated Circuits © Prentice Hall 1995 Inverter Inverter THE INVERTERS

Upload: lamhanh

Post on 23-Apr-2018

217 views

Category:

Documents


4 download

TRANSCRIPT

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

THE INVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

DIGITAL GATESFundamental Parameters

l Functionalityl Reliability, Robustnessl Areal Performance

» Speed (delay)» Power Consumption» Energy

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Noise in Digital Integrated Circuits

VDDv(t)

i(t)

(a) Inductive coupling (b) Capacitive coupling (c) Power and ground

noise

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

DC Operation:Voltage Transfer Characteristic

V(x)

V(y)

VOH

VOL

VM

VOHVOL

fV(y)=V(x)

Switching Threshold

Nominal Voltage Levels

V(y)V(x)

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Mapping between analog and digital signals

"1"

"0"

VOHVIH

VIL

VOL

UndefinedRegion

V(x)

V(y)

VOH

VOL

VIHV

IL

Slope = -1

Slope = -1

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Definition of Noise Margins

VIH

VIL

UndefinedRegion

"1"

"0"

VOH

VOL

NMH

NML

Gate Output Gate Input

Noise Margin High

Noise Margin Low

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

The Regenerative Property

(a) A chain of inverters.

v0, v2, ...

v1, v3, ... v1, v3, ...

v0, v2, ...

(b) Regenerative gate

f(v)

finv(v)

finv(v)

f(v)

(c) Non-regenerative gate

v0 v1 v2 v3 v4 v5 v6

...

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Fan-in and Fan-out

N

M

(a) Fan-out N

(b) Fan-in M

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

The Ideal Gate

Vin

Vout

g=− ∞

Ri = ∞

Ro = 0

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

VTC of Real Inverter

0.0 1.0 2.0 3.0 4.0 5.0Vin (V)

1.0

2.0

3.0

4.0

5.0

Vou

t (V

)

VMNMH

NML

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Delay Definitions

tpHL tpLH

t

t

Vin

Vout

50%

50%

tr

10%

90%

tf

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Ring Oscillator

v0 v1 v2 v3 v4 v5

v0 v1 v5

T = 2 × tp × N

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Power Dissipation

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

CMOS INVERTER

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

The CMOS Inverter:A First Glance

VDD

Vin Vout

CL

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

CMOS Inverters

Polysilicon

InOut

Metal1

VDD

GND

PMOS

NMOS

1.2 µm=2λ

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Switch Model of CMOS Transistor

Ron

|VGS | < |VT| |VGS| > |VT|

|VGS|

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

CMOS Inverter: Steady State Response

VDD VDD

VoutVout

Vin = VDD Vin = 0

Ron

Ron

VOH = VDD

VOL= 0

VM = Ronp) f(Ronn,

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

CMOS Inverter: Transient Response

VDD

Vout

Vin = VDD

Ron

CL

tpHL = f(Ron.CL)

= 0.69 RonCL

t

Vout

VDD

RonCL

1

0.5

ln(0.5)

0.36

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

CMOS Properties

l Full rail-to-rail swingl Symmetrical VTCl Propagation delay function of load

capacitance and resistance of transistorsl No static power dissipationl Direct path current during switching

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Voltage TransferCharacteristic

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

PMOS Load Lines

VDSp

IDp

VGSp=-5

VGSp=-2VDSp

IDnVin=0

Vin=3

Vout

IDnVin=0

Vin=3

Vin = VDD-VGSpIDn = - IDp

Vout = VDD-VDSp

Vout

IDnVin = VDD-VGSpIDn = - IDp

Vout = VDD-VDSp

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

CMOS Inverter Load Characteristics

In,pVin = 5

Vin = 4

Vin = 3

V in = 0

Vin = 1

Vin = 2

NMOSPMOS

Vin = 0

Vin = 1

Vin = 2Vin = 3

Vin = 4

Vin = 4

Vin = 5

Vin = 2V in = 3

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

CMOS Inverter VTC

Vout

Vin1 2 3 4 5

12

34

5

NMOS linPMOS off

NMOS satPMOS sat

NMOS offPMOS lin

NMOS satPMOS lin

NMOS linPMOS sat

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Simulated VTC

0.0 1.0 2.0 3.0 4.0 5.0Vin (V)

0.0

2.0

4.0

Vou

t (V

)

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Gate Switching Threshold

0.1 0.3 1.0 3.2 10.01.0

2.0

3.0

4.0

kp/kn

VM

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

MOS Transistor Small Signal Model

rogmvgsvgs

+

-

S

DG

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Determining VIH and VIL

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Propagation Delay

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

CMOS Inverter: Transient Response

VDD

Vout

Vin = VDD

Ron

CL

tpHL = f(Ron.CL)

= 0.69 RonCL

t

Vout

VDD

RonCL

1

0.5

ln(0.5)

0.36

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

CMOS Inverter Propagation Delay

VDD

Vout

Vin = VDD

CLIav

tpHL = CL Vswing/2

Iav

CL

kn VDD~

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Computing the Capacitances

VDD VDD

VinVout

M1

M2

M3

M4Cdb2

Cdb1

Cgd12

Cw

Cg4

Cg3

Vout2

Fanout

Interconnect

VoutVin

CLSimplified

Model

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

CMOS Inverters

Polysilicon

InOut

Metal1

VDD

GND

PMOS

NMOS

1.2 µm=2λ

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

The Miller Effect

Vin

M1

Cgd1Vout

∆V

∆V

Vin

M1

Vout ∆V

∆V

2Cgd1

“A capacitor experiencing identical but opposite voltage swings at both its terminals can be replaced by a capacitor to ground, whose value is two times the original value.”

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Computing the Capacitances

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Impact of Rise Time on Delayt p

HL(n

sec)

0.35

0.3

0.25

0.2

0.15

trise (nsec)10.80.60.40.20

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Delay as a function of VDD

0

4

8

12

16

20

24

28

2.00 4.001.00 5.003.00

Nor

mal

ized

Del

ay

VDD (V)

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Where Does Power Go in CMOS?

• Dynamic Power Consumption

• Short Circuit Currents

• Leakage

Charging and Discharging Capacitors

Short Circuit Path between Supply Rails during Switching

Leaking diodes and transistors

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Dynamic Power Dissipation

Energy/transition = CL * Vdd2

Power = Energy/transition * f = CL * Vdd2 * f

Need to reduce CL, Vdd, and f to reduce power.

Vin Vout

CL

Vdd

Not a function of transistor sizes!

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Impact ofTechnology Scaling

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Technology Evolution

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Technology Scaling (1)

Minimum Feature Size

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Technology Scaling (2)

Number of components per chip

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Propagation Delay Scaling

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Technology Scaling Models

• Full Scaling (Constant Electrical Field)

• Fixed Voltage Scaling

• General Scaling

ideal model — dimensions and voltage scaletogether by the same factor S

most common model until recently —only dimensions scale, voltages remain constant

most realistic for todays situation —voltages and dimensions scale with different factors

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Scaling Relationships for Long ChannelDevices

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Scaling of Short Channel Devices

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

BIPOLARINVERTERS

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Resistor-Transistor Logic

Vin

Vout

Vcc

RB

R C

Q1

Vin

Vout

SaturationCutoff

F orward-active

VCE (sat )

V CC

V B E(on) V in(e o s)

VTC of nonsaturating gate

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

VTC of RTL Inverter

0.0 1.0 2.0 3.0 4.0 5.0Vin

0.0

1.0

2.0

3.0

4.0

5.0V

ou

t

FO=5

FO=2

FO=1

FO=0

VOH is function of fan-out

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Transient Response of RTL Inverter

0.00e+00 5.00e-10 1.00e-09 1.50e-09 2.00e-09t

0.0

1.0

2.0

3.0

4.0

5.0V

out

tp = 290 psec !!!!

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

The ECL Gate at a GlanceVcc

R C

Q1

V c c

R C

Q 2 VrefVin

Vout 2Vou t1

IEE

VEE

Vx

Core of gate:The differential pairor “current switch”

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Single-ended versusDifferential Logic

VinVin

Vout1 Vout2

Vout 1

Vout 2

Vo ut1Vout2 Vout2Vo ut1

DifferentialSingle-ended

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Complete ECL GateVcc

R C

Q1

V c c

R C

Q2 Vre fVin

IEE

VEE

Vx

V c cVcc

VEE

R BVout 2Vout 1

Q4Q3VC 1 V C2

Emitter-followeroutput driver

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

The Bias Network

Q5

R 1

R2R 3

D1

D2

Vre f

VC C

VEE

Issues:•Temperature variations•Device variations

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Photomicrograph of early ECLGate (1967)

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

ECL VTC

V CC – VBE(on)

VC C – VBE(on) – IEER C

Vin

Vo ut

V out2

Vout1

V ref

+/– n φT

Q 1 s a turates

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

ECL VTC

Vswing = IEE RC

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Simulated VTC of ECL Gate

–1.5 –1.3 –1.1 –0.9 –0.7 –0.5Vin (V)

–1.30

–1.20

–1.10

–1.00

–0.90

–0.80

–0.70V ou

t (V)

Vout1 Vout2

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

ECL Gate with Single Fan-outV cc

R C

Q1Vin

IE E

VE E

V x

V c c

Q 3

Vcc

RC

Q1

IEE

VEE

R B

V E E

Cd Cbe

Cc s

Cbc Cb c

CbeCd

C beVout1

FAN-O UT

VC 1C bc

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Simulated Collector Currentsof Differential Pair

0 0.1 0.2Time (nse c )

–1

0

1

Col

lect

or c

urre

nt (n

orm

aliz

ed)

10 mA 5 mA

1 mA

0.5 mA

IC 1

IC 2

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Propagation Delay of ECL Gate

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Simulated Transient Responseof ECL Inverter

0 0. 2 0.4 0.6 0. 8 1.0

t (nsec)

–1.30

–1.10

–0.90

–0.70V

(Vo

lt)

V out1V in

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Propagation Delay as aFunction of Bias Current

0 5 10 15 200

50

100

150

200

IE E (m A)

t pLH

(pse

c)

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

ECL Power Dissipation

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Scaling Model for Bipolar Inverter

Digital Integrated Circuits © Prentice Hall 1995InverterInverter

Bipolar Scaling