universidade federal de minas gerais faculdade … · faculdade de farmácia da universidade...

181
UNIVERSIDADE FEDERAL DE MINAS GERAIS FACULDADE DE FARMÁCIA PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS FARMACÊUTICAS JUÇARA RIBEIRO FRANCA DESENVOLVIMENTO E AVALIAÇÃO DA ATIVIDADE DE INSERTS POLIMÉRICOS DE QUITOSANA PARA LIBERAÇÃO DE FÁRMACOS ANTIGLAUCOMATOSOS Belo Horizonte MG 2014

Upload: buicong

Post on 04-Dec-2018

234 views

Category:

Documents


1 download

TRANSCRIPT

UNIVERSIDADE FEDERAL DE MINAS GERAIS FACULDADE DE FARMÁCIA PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS FARMACÊUTICAS

JUÇARA RIBEIRO FRANCA

DESENVOLVIMENTO E AVALIAÇÃO DA ATIVIDADE DE INSERTS

POLIMÉRICOS DE QUITOSANA PARA LIBERAÇÃO DE FÁRMACOS

ANTIGLAUCOMATOSOS

Belo Horizonte – MG

2014

JUÇARA RIBEIRO FRANCA

DESENVOLVIMENTO E AVALIAÇÃO DA ATIVIDADE DE INSERTS

POLIMÉRICOS DE QUITOSANA PARA LIBERAÇÃO DE FÁRMACOS

ANTIGLAUCOMATOSOS

Tese apresentada ao Programa de Pós-

Graduação em Ciências Farmacêuticas da

Faculdade de Farmácia da Universidade Federal

de Minas Gerais, como requisito parcial à

obtenção do título de Doutor em Ciências de

Farmacêuticas

Orientador Prof. Dr. André Augusto Gomes

Faraco – Faculdade de Farmácia – UFMG

Coorientadores: Prof. Dr. Anderson José Ferreira

– Instituto de Ciências Biológicas – UFMG

Profa. Rachel Oliveira Castilho – Faculdade de

Farmácia – UFMG

Belo Horizonte – MG

2014

Franca, Juçara Ribeiro

F814d

Desenvolvimento e avaliação da atividade de Inserts Poliméricos de Quitosana para liberação de fármacos antiglaucomatosos / Juçara Ribeiro Franca. – 2014. 179 f. il.

Orientador: André Augusto Gomes Faraco.

Coorientador: Anderson José Ferreira. Coorientadora: Rachel Oliveira Castilho.

Tese (doutorado) – Universidade Federal de Minas Gerais, Faculdade de Farmácia, Programa de Pós-Graduação em Ciências Farmacêuticas.

1. Glaucoma – Teses. 2. Glaucoma – Tratamento – Teses. 3.

Pressão intraocular – Teses. 4. Quitosana – Teses. 5. Bimatoprosta – Teses. 6. Dorzolamida – Teses. 7. Estudos farmacocinéticos – Teses. I. Faraco, André Augusto Gomes. II. Ferreira, Anderson José. III. Castilho, Rachel Oliveira. IV. Universidade Federal de Minas Gerais. Faculdade de Farmácia. IV. Título.

CDD:615.4

AGRADECIMENTOS

A Deus, pelo dom da vida e pelos pequenos grandes milagres realizados ao longo

da execução deste trabalho.

Ao meu orientador, Prof. Dr. André Augusto Gomes Faraco, pela confiança no meu

trabalho, pelo cuidado e pela parceria ao longo de todos esses anos.

Ao meu coorientador, Prof. Dr. Anderson José Ferreira, por ter aberto as portas do

seu Laboratório e por ter aceitado o desafio de me ajudar a conduzir este trabalho.

Aos Prof. Drs. Valbert Cardoso Nascimento e Simone Odília Fernandes, pela

colaboração e pela disponibilidade em ajudar nos experimentos realizados no

Laboratório de Radioisótopos.

À Prof. Dra. Rachel Oliveira Castilho, pelo carinho e pelo auxílio nos momentos de

"crise".

Ao Prof. Dr. Sebastião Cronemberger pelo auxílio na orientação do trabalho.

Aos Prof. Drs. Lucas Miranda, Christian Fernandes e José Carlos por todas as

sugestões na qualificação.

À aluna de pós-doutorado, Giselle Fourreaux, pelo companheirismo, pelo auxílio nos

experimentos e pelo apoio na realização das etapas mais difíceis deste trabalho.

Ao aluno de doutorado, Leonardo Lima Fuscaldi, pela amizade e pelo auxílio na

execução dos experimentos.

Ao Dr. Gustavo Fulgêncio, pelo auxílio nos experimentos de tonometria.

À aluna de doutorado, Tatiana Gomes Ribeiro pela amizade e pelo auxílio na

execução dos experimentos e na revisão dos textos.

Às alunas de iniciação científica, Renata Bravo, Lilia Daher e Bárbara Nogueira, pelo

auxílio na execução dos experimentos.

Aos colegas do Laboratório de Tecnologia Farmacêutica, do Laboratório de Biologia

Cardíaca e do Laboratório de Radioisótopos, pelo companheirismo, pela amizade,

pela acolhida, pelo carinho e pelo auxílio em todos os momentos.

Aos amigos da ANVISA, pelo apoio na etapa de conclusão deste trabalho.

Aos amigos da "Panelinha Democrática", pela amizade e pelo apoio incondicional

em todos os momentos.

Aos amigos do Ministério Universidades Renovadas, do Crisma, do Ministério de

Comunicação Social, da RCC-BH e da CNP por me ajudarem a não me afastar de

Deus, mesmo em meio à correria e às dificuldades do dia-a-dia.

À Rosa e ao Aires, meus "pais de BH" por terem cuidado tão bem de mim ao longo

de todo esse tempo.

Às minhas vizinhas Poliane e Dulce, pelo carinho e pelo cuidado.

À Stefânia, pela companhia e pela paciência ao logo desses seis anos de

convivência.

Ao meu irmão e a toda minha família, por cuidarem de mim e me apoiarem sempre,

mesmo à distância.

Aos meus pais, por sempre acreditarem em mim mais do que eu mesma e por nunca me deixarem desistir.

"O correr da vida embrulha tudo.

A vida é assim: esquenta e esfria,

aperta e daí afrouxa,

sossega e depois desinquieta.

O que ela quer da gente é coragem"

(João Guimarães Rosa)

RESUMO

O glaucoma é a segunda maior causa de cegueira no mundo e o único método

clinicamente estabelecido para evitar a progressão desta doença é a redução da

pressão intraocular (PIO). Vários fármacos são usados na forma de colírio para

reduzir a PIO. No entanto, a instilação diária e os eventuais efeitos adversos

sistêmicos podem reduzir a adesão do paciente ao tratamento. Sistemas de

liberação controlada podem prolongar a concentração adequada do fármaco no

tecido alvo e limitar a exposição sistêmica e os efeitos adversos aumentando a

adesão do paciente ao tratamento. O objetivo deste trabalho foi desenvolver e

avaliar sistemas à base de quitosana para liberação controlada de bimatoprosta e

dorzolamida na forma de inserts. Também foram avaliadas características

farmacocinéticas e os efeitos da esterilização por calor úmido nos inserts. Os

dispositivos foram produzidos pelo método de solubilização e evaporação do

solvente e esterilizados por calor úmido. A caracterização físico-química dos inserts

foi feita por potencial de hidratação, espectrometria de absorção na região do

infravermelho, análise térmica, pH de superfície, uniformidade de conteúdo,

microscopia eletrônica de varredura e perfil de liberação in vitro. A esterilização foi

confirmada por inoculação direta dos inserts em meios de cultura adequados. Os

estudos farmacocinéticos foram realizados por meio de radiomarcação do quitosana,

bimatoprosta e dorzolamida com tecnécio-99m na forma de colírios e inserts. As

formulações radiomarcadas foram avaliadas após administração ocular em ratos

Wistar por imagens cintilográficas e biodistribuição ex vivo. A atividade

antiglaucomatosa dos dispositivos foi testada em ratos Wistar glaucomatosos. O

glaucoma foi induzido por injeção semanal de ácido hialurônico na câmara anterior.

Os inserts com fármaco foram administrados no saco conjuntival, após a

confirmação da hipertensão ocular. Colírios contendo fármaco foram usados como

controle positivo, enquanto inserts placebo e animais glaucomatosos não tratados

foram usados como controles negativos. A PIO foi monitorada por quatro semanas

consecutivas após o início do tratamento. Ao final do experimento, as células

ganglionares retinianas (CGs) e a escavação do nervo óptico foram avaliadas em

secções histológicas do olho. O processo de esterilização não modificou,

significativamente, a estrutura polimérica. Tanto o bimatoprosta como a dorzolamida

interagiram com a matriz polimérica. Os inserts liberaram o bimatoprosta

controladamente in vitro durante 8 h, enquanto 75% da dorzolamida incorporada nos

inserts foi liberada em 3 h. A quantidade de 99mTc-bimatoprosta e 99mTc-dorzolamida

que permaneceu no olho após a instilação do colírio foi significativamente menor do

que após a aplicação dos inserts. Os inserts contendo bimatoprosta reduziram a PIO

por quatro semanas, após única aplicação, enquanto a PIO se manteve

significativamente alta para os grupos placebo e não tratado. Os inserts de

dorzolamida também reduziram a PIO por duas semanas. Os colírios somente foram

efetivos durante o período de tratamento diário. As variações na PIO foram

acompanhadas de por alterações na contagem de CGs e na escavação do nervo

óptico. Juntos, esses resultados revelam o potencial dos inserts poliméricos para

aplicação no tratamento do glaucoma.

Palavras-chave: Glaucoma, inserts oftálmicos, quitosana, bimatoprosta,

dorzolamida, estudos farmacocinéticos, liberação controlada.

ABSTRACT

Glaucoma is the second leading cause of blindness around the world and the only

clinically established method to prevent the development of the disease is lowering

intraocular pressure (IOP). A lot of drugs are used as eye drops in order to lower

IOP. Nevertheless, chronic daily instillation and the eventual systemic side effects

may reduce patient compliance to treatment. Sustained-release drug delivery

systems can achieve prolonged therapeutic drug concentrations in ocular target

tissues while limiting systemic exposure and side effects and improving patient

adherence to therapy. The purpose of the present study was to develop and assess

novel chitosan-based drug delivery systems, as inserts, for sustained release of

bimatoprost and dorzolamide. So, we also evaluated the pharmacokinetic

characteristics and the effects of stem sterilization on the inserts. Inserts were

produced by solvent/casting method and sterilized by saturated steam.

Characterization of the inserts was proceeded by swelling studies, infrared

spectrometry, thermal analysis, surface pH, drug content, scanning electron

microscopy and in vitro drug release. Sterilization was confirmed by direct inoculation

of the inserts in suitable microbiological growth media. Pharmacokinetic studies were

performed by radiolabeling of chitosan, bimatoprost and dorzolamide with

technetium-99m. The destination of the radiolabeled eye drops and inserts after

ocular administration in Wistar rats was accessed by gamma scintigraphy and ex vivo

biodistribution studies. The effectiveness of the inserts was tested in glaucomatous

Wistar rats. Glaucoma was induced by weekly intracameral injection of hyaluronic

acid. Drug-loaded inserts were administered, once, into the conjunctival sac, after

ocular hypertension confirmation. Drug-loaded eye drop was used as positive control,

while placebo inserts and untreated glaucomatous animals served as negative

controls. IOP was monitored for four consecutive weeks after treatment beginning. At

the end of the experiment, retinal ganglion cells (RGC) and optic nerve head cupping

damage were evaluated in histological eye sections. Steam sterilization changed the

arrangement of the matrix, but did not modified the structure of the main polymeric

chain. The inserts remained in the eye until six hours after administration and began

to migrate to the abdominal cavity after twelve hours. Both bimatoprost and

dorzolamide physically interacted with the polymeric matrix. Inserts sustainedly

released bimatoprost in vitro during 8 h, while 75% of the dorzolamide loaded in the

inserts was released during 3 h. The amount of 99mTc-bimatoprost and 99mTc-

dorzolamide which remained in the eye was significantly lower after eye drops

instillation than after insert implantation. Bimatoprost-loaded inserts lowered IOP

during four weeks, after one application, while IOP values remained significantly high

for placebo and untreated groups. Dorzolamide inserts also lowered IOP during two

weeks. Eye drops were only effective during the daily treatment period. IOP results

were reflected in RGC counting and optic nerve head cupping damage. Together, the

findings from this study reveal the potential application of polymeric-based inserts on

glaucoma management.

Key words: Glaucoma, ophthalmic inserts, chitosan, bimatoprost, dorzolamide,

pharmacokinetic studies, controlled release

LISTA DE FIGURAS REVISÃO DE LITERATURA Figura 1 - Anatomia do olho humano (BURSCHKA et al., 2005) ......................... 22 Figura 2 - Imagem histólógica (a) e representação esquemática (b) da retina do olho humano. ........................................................................................................... 23 Figura 3 - Oftalmoscopia do disco óptico humano de indivíduos sem glaucoma contendo uma área pálida (copo) que ocupa cerca de metade ou menos do disco óptico, rodeado por um aro laranja de tecido nervoso (A). Com glaucoma, o copo passa a ocupar um porção maior do disco óptico, o aro desaparece e o copo começa a se escavar com aprofundamento e um aro indeterminado (B) (QUIGLEY, 2011). ..................................................................... 23 Figura 4 - Classificação do glaucoma (CASSON et al., 2012) .............................. 25 Figura 5 - Representação esquemática da obstrução da passagem de humor aquoso pela pupila no glaucoma de ângulo fechado (a), e do aumento da quantidade de humor aquoso no glaucoma de ângulo aberto (b) (COLEMAN, A. L., 1999) .................................................................................................................... 26 Figura 6 - Estruturas envolvidas na produção e drenagem do humor aquoso (VAAJANEN; VAPAATALO, 2011) .......................................................................... 28 Figura 7 - Mecanismos de morte de CGs na lesão glaucomatosa (DESAI, P. V.; CAPRIOLI, 2008) ...................................................................................................... 30 Figura 8 - Estrutura química de representantes das principais classes de fármacos utilizados na terapia do glaucoma: betabloqueador: (maleato de timolol; a), análogos de prostaglandinas (latanoprosta, bimatoprosta e travoprosta; b, c e d, respectivamente), inibidor de anidrase carbônica (cloridrato de dorzolamida; e) e do agonista α-2 seletivo (tartarato de brimonidina; f). ......................................... 35

Figura 9 - Diagrama de sequência do tratamento clínico do GPAA (PARANHOS et al., 2009). .............................................................................................................. 35

Figura 10 - Inserts oftálmicos para liberação prolongada de fármacos: (a) Ocusert® pilo; (b) Ocusert® no olho do paciente; (c) Lacrisert®; (d) Lacrisert® no olho do paciente; (e) Ocufit® SR; (f) minidisco ocular. Fontes: sites comerciais das empresas. ......................................................................................................... 46 Figura 11 - Estágios envolvidos no mecanismo de mucoadesão (CARVALHO, F. C. et al., 2010) ...................................................................................................... 47 Figura 12 - Estrutura molecular simplificada da celulose, quitina e quitosana. 50

Figura 13 – Representação esquemática da natureza mucoadesiva do quitosana, em virtude das interações iônicas (WADHWA et al., 2009) .............. 52 Figura 14 - Filme de quitosana obtido pelo método de solvent casting (RIBEIRO, 2010) ....................................................................................................... 54 Figura 15 - Esquema de produção e resultados de liberação de bimatoprosta em inserts de quitosana ....................................................................................... 149

Figura 16 - Resumo gráfico de liberação de dorzolamida em inserts de quitosana/hidroxietilcelulose. .............................................................................. 151

MANUSCRITO 1 Figure 1. 1 - Swelling index of PI and BI in a buffered solution medium (PBS; pH 7.4). Values expressed as mean ± SD. ................................................................... 69 Figure 1. 2. ATR-FTIR spectra of PI (a) and BI (b). BIM shifted first band to a higher frequency (from 3258 to 3264 cm-1) and widened. .................................... 70 Figure 1. 3 - DSC curves of PI and BI. (a) First run; (b) second run. ................... 71 Figure 1. 4 - Representative SEM photomicrographs of Bimatoprost-loaded inserts. (a) surface; (b) lateral. Bar indicates the thickness of the insert. ......... 72

Figure 1. 5 - In vitro release profile of BIM from BI. Values expressed as mean ± SD. ............................................................................................................................ 72 Figure 1. 6 - 99mTc-BIM biodistribution profile after eye drops instillation and chitosan inserts implantation. Values are expressed as ‘mean ± SD’ (n = 5). (*p<0.05 for 8 h vs. 18 h and #p<0.05 for eye drops vs. inserts). Unpaired Student t test. .......................................................................................................... 74 Figure 1. 7 - Effects of administration of BI on IOP. (a) Glaucomatous groups; (b) non-glaucomatous groups. Treatments initiated after confirmation of the elevated IOP, i.e. after second week. Values expressed as mean ± SD. *p<0.01 vs. untreated. One-way ANOVA followed by the Tukey post test. ...................... 75 Figure 1. 8 - Figure 8. Effects of administration of BI on RGC counting. Quantification of RCG in retinas of (a) glaucomatous groups, compared to control (*p<0.05 vs. control and #p<0.05 vs. untreated glaucoma) and (b) non-glaucomatous groups. Values expressed as mean ± SD. One-way ANOVA followed by the Tukey post test. ............................................................................ 76 Figure 1. 9 - Histological analysis of retinal ganglion cells (RGC). Representative photomicrographs of retinas showing the smaller number of RCG in non-treated and PI-treated glaucomatous rats and the beneficial effect of BIM in this parameter. (a) Non-glaucomatous animals; (b) untreated glaucomatous animals; (c) PI glaucomatous animals; (d) BIM eye drops glaucomatous animals; (e) BI glaucomatous animals. ........................................ 77

Figure 1. 10 - BIM induced neuroprotection in retinas of glaucomatous rats. Representative photomicrographs of excavation of the optic nerve (arrows). (a) Non-glaucomatous animals; (b) untreated glaucomatous animals; (c) PI glaucomatous animals; (d) BIM eye drops glaucomatous animals; (e) BI glaucomatous animals. Note an exacerbation of the excavation in untreated and PI glaucomatous animals (b and c) when compared with all other groups. This effect is reverted by BIM. ................................................................................ 78

MANUSCRITO 2 Figure 2. 1 - Swelling index of placebo inserts (PI) and dorzolamide inserts (DI) in a buffered solution medium (PBS; pH 7.4). Values are expressed as mean ± SD.*p<0.05. ............................................................................................................. 102 Figure 2. 2 - ATR-FTIR spectra of (a) placebo inserts (PI) and (b) dorzolamide inserts (DI). Dorzolamide first band was shifted to a higher frequency (from 3372 cm-1 to 3383 cm-1), while amide I (1637 cm-1) and amide II (1546 cm-1) chitosan bands decreased and increased, respectively (arrows). .................... 103

Figure 2. 3 - DSC curves of placebo inserts (PI) and dorzolamide inserts (DI). (a) run 1 and (b) run 2. ................................................................................................ 104 Figure 2. 4 - In vitro release profile of dorzolamide from dorzolamide inserts (DI). Values are expressed as mean ± SD. ........................................................... 105 Figure 2. 5 - Scintigraphic images obtained at 30 min, 4 h and 18 h after ocular administration of 99mTc-dorzolamide loaded in (a) eye drops and in (b) inserts in healthy rats. ........................................................................................................... 106 Figure 2. 6 - Biodistribution profile obtained at 18 h after ocular administration of 99mTc-dorzolamide loaded in eye drops and in inserts in healthy rats. Results are expressed as the percentage of radioactivity per gram of tissue (%cpm/g). Values are expressed as mean ± SD. *p<0.05. .................................................... 107 Figure 2. 7 - Effects of the administration of dorzolamide inserts (DI) on IOP. (a) Glaucomatous groups and (b) non-glaucomatous groups. Treatments initiated after confirmation of the elevated IOP, i.e. after the second week. Values are expressed as mean ± SD. *p<0.01 vs. untreated. PI: placebo inserts. .............. 108 Figure 2. 8 - Effects of the administration of dorzolamide inserts (DI) on MAP. Values are expressed as mean ± SD. PI: placebo inserts. ................................. 108

Figure 2. 9- Effects of the administration of dorzolamide inserts (DI) on retinal ganglion cells (RGC) counting evaluated by histological analysis. (I) Representative photomicrographs of retinas showing the smaller number of RCG in non-treated glaucomatous rats, placebo insert (PI) treated glaucomatous rats and dorzolamide eye drops treated glaucomatous rats when compared to non glaucomatous animals and the beneficial effects of dorzolamide inserts (DI) in this parameter. (a) non-glaucomatous animals; (b) untreated glaucomatous animals; (c) PI glaucomatous animals; (d) dorzolamide eye drops glaucomatous animals; and (e) DI glaucomatous animals. (II) Quantification of RCG in retinas of (a) glaucomatous groups and (b) non-glaucomatous groups. Values are expressed as mean ± SD. *p<0.05 vs. control and #p<0.05 vs. untreated glaucomatous rats. PI: placebo inserts. ................. 110

MANUSCRITO 3 Figure 3. 1 - Swelling indexes of NCI and SCI. Values are expressed as mean ± SD. *p<0.05. Unpaired Student t test. ................................................................. 130 Figure 3. 2 - ATR-FTIR spectra of NCI (a) and SCI (b). ....................................... 131 Figure 3. 3 - DSC curves of NCI and SCI: RUN 1 (a) and RUN 2 (b) .................. 132

Figure 3. 4 - Thermograms (black lines) and first derivative of thermograms (red lines) of NCI and SCI. Percent weight loss is also show (blue lines) ........ 133 Figure 3. 5 - SEM pictures of NCI (a and c) and SCI (b and d). Lateral (a and b) and surface (c and d) views .................................................................................. 134 Figure 3. 6 - Scintigraphic images obtained 30 min, 2, 4, 6, 12 and 18 h after ocular administration of 99mTc-CI. ....................................................................... 136

Figure 3. 7 - Biodistribution profile obtained at 6 and 18 h after ocular administration of 99mTc-CI in healthy Wistar rats (n = 5). Results are expressed as the percentage of radioactivity per gram of tissue (%cpm/g). Values are expressed as mean ± SD. *p<0.05. Unpaired Student t test. ............................. 137

LISTA DE ABREVIATURAS E SIGLAS ANVISA Agência Nacional de Vigilância Sanitária

ATR-FTIR Attenuated total reflectance Fourier transformed infrared spectrometry

(espectrometria na região do infravermelho com transformada de

Fourier e reflectância total atenuada)

B-col Colírio contendo bimatoprosta

CGs Células Ganglionares

CLAE Cromatografia líquida de alta eficiência

cpm contagens por minuto

D-col Colírio contendo dorzolamida

DrTGA Derivada da termogravimetria

DPR Desvio-padrão relativo

DSC Differential scanning calorimetry (calorimetria exploratória diferencial)

F. Bras. V Farmacopéia Brasileira 5ª edição.

FDA Food and Drug Administration

GPAA Glaucoma primário de ângulo aberto

GPAF Glaucoma primário de ângulo fechado

IOP Intraocular pressure

ISNT Inferior, superior, nasal, temporal

MEV Microscopia eletrônica de varredura

NA Não aplicável

PAM Pressão arterial média

PBS Tampão fosfato básico salino

PGF2α Prostaglandina F2α

PIO Pressão intraocular

QB Inserts de quitosana contendo bimatoprosta

QBN Inserts de quitosana contendo bimatoprosta não estéreis

QBE Inserts de quitosana contendo bimatoprosta estéreis

QD Inserts de quitosana contendo dorzolamida

QI Inserts poliméricos de quitosana

QIN Inserts poliméricos de quitosana não estéreis

QIE Inserts poliméricos de quitosana estéreis

QH Inserts de quitosana contendo hidroxietilcelulose

Temp Temperatura

TG Termogravimetria

TGA Análise de termogravimetria

UFMG Universidade Federal de Minas Gerais

USP United States Pharmacopeia (Farmacopeia dos Estados Unidos)

UV Ultravioleta

LISTA DE SÍMBOLOS r² Coeficiente de correlação

°C Grau Celsius

°C/min. Grau Celsius por minuto

g Grama

h Hora

kV Kilovolt(s)

® Marca registrada

μg Micrograma(s)

μL Microlitro(s)

mg Miligrama

mL Mililitro(s)

mm Milímetro(s)

mmHg Milímetro(s) de mercúrio

min Minuto(s)

% Porcentagem

99mTc Tecnécio-99 metaestável

SUMÁRIO

INTRODUÇÃO GERAL E RELEVÂNCIA DO TEMA ............................................... 19

PARTE 1 – REVISÃO DE LITERATURA E OBJETIVOS ........................................ 21

1 REVISÃO DE LITERATURA ................................................................................. 22

1.1 Glaucoma ........................................................................................................... 22

1.1.1 Epidemiologia do glaucoma .......................................................................... 24

1.1.2 Classificação do glaucoma ........................................................................... 25

1.1.3 Modelos animais para estudo de glaucoma ............................................... 39

1.2 Administração ocular de fármacos .................................................................. 41

1.3 Mucoadesão ....................................................................................................... 46

1.4 Quitosana ........................................................................................................... 49

1.4.1 Quitosana como polímero mucoadesivo ..................................................... 51

1.4.2 Quitosana como inserts poliméricos de liberação controlada .................. 53

2 OBJETIVOS ........................................................................................................... 55

2.1 Objetivo geral .................................................................................................... 55

2.2 Objetivos específicos........................................................................................ 55

PARTE 2 – TRABALHO EXPERIMENTAL: MATERIAIS E MÉTODOS, RESULTADOS E DISCUSSÃO ................................................................................ 56

BIMATOPROST-LOADED OCULAR INSERTS AS SUSTAINED RELEASE DRUG DELIVERY SYSTEMS FOR GLAUCOMA TREATMENT: IN VITRO AND IN VIVO EVALUATION ........................................................................................................... 58

Abstract .................................................................................................................... 58

Introduction ............................................................................................................. 59

Materials and Methods ............................................................................................ 61

Materials ................................................................................................................... 61

Preparation of BIM-loaded inserts ......................................................................... 61

Characterization studies ......................................................................................... 62

In vivo studies ......................................................................................................... 64

Statistical analyses ................................................................................................. 67

Results ..................................................................................................................... 68

Characterization studies and in vitro drug release .............................................. 68

Biodistribution studies ........................................................................................... 72

In vivo efficacy ......................................................................................................... 74

Discussion ............................................................................................................... 79

Conclusions ............................................................................................................. 83

Acknowledgements ................................................................................................. 83

References ............................................................................................................... 83

NOVEL POLYMERIC-BASED OCULAR INSERTS FOR SUSTAINED-RELEASE OF DORZOLAMIDE FOR GLAUCOMA TREATMENT: IN VITRO AND IN VIVO EVALUATION ........................................................................................................... 91

Abstract .................................................................................................................... 91

Introduction ............................................................................................................. 92

Experimental Section .............................................................................................. 95

Materials ................................................................................................................... 95

Preparation of inserts ............................................................................................. 96

Characterization of the inserts ............................................................................... 96

In vivo studies ......................................................................................................... 98

Statistical analyses ............................................................................................... 101

Results ................................................................................................................... 101

Characterization studies ....................................................................................... 101

Scintigraphic images and ex vivo biodistribution studies ................................ 105

In vivo efficacy ....................................................................................................... 107

Discussion ............................................................................................................. 111

Acknowledgment ................................................................................................... 115

Abreviations ........................................................................................................... 115

References ............................................................................................................. 116

THE USE OF CHITOSAN AS PHARMACEUTICAL EXCIPIENT IN OCULAR DRUG DELIVERY SYSTEMS: STERILIZATION AND PHARMACOKINETICS ................ 122

Abstract .................................................................................................................. 123

1 Introduction ........................................................................................................ 123

2 Material and Methods ......................................................................................... 125

2.1 Material ............................................................................................................. 125

2.2 Preparation of CS-based inserts .................................................................... 125

2.3 Sterilization of CS-based inserts ................................................................... 125

2.4 Characterization studies of NCI and SCI ....................................................... 126

2.5 In vivo pharmacokinetic studies .................................................................... 128

2.6 Statistical analysis .......................................................................................... 129

3 Results ................................................................................................................ 129

4 Discussion .......................................................................................................... 137

Acknowledgements ............................................................................................... 141

References ............................................................................................................. 142

DISCUSSÃO GERAL ............................................................................................. 148

Manuscrito 1 .......................................................................................................... 148

Manuscrito 2 .......................................................................................................... 150

Manuscrito 3 .......................................................................................................... 152

CONCLUSÕES GERAIS E PERSPECTIVAS ........................................................ 157

REFERÊNCIAS BIBLIOGRÁFICAS ...................................................................... 158

ANEXO A - PATENTE SOLICITADA PARA OS FILMES POLIMÉRICOS DESENVOLVIDOS ................................................................................................. 175

ANEXO B - PROTOCOLO APROVADO PARA ESTUDOS EM ANIMAIS NO CETEA-UFMG ........................................................................................................ 177

ANEXO C - PROTOCOLO APROVADO PARA ESTUDOS EM HUMANOS NO COMITÊ DE ÉTICA E PESQUISA - CEP/UFMG .................................................... 178

19

INTRODUÇÃO GERAL E RELEVÂNCIA DO TEMA O glaucoma é uma neuropatia óptica crônica, caracterizada por degeneração

progressiva das células ganglionares retinianas (CGs) e de seus axônios (nervo

óptico), resultando em perda de campo visual e lesão do nervo óptico, podendo

evoluir para cegueira uni ou bilateral (DA SILVA, 2004; HENDERER; RAPUANO,

2006a; MCKINNON et al., 2008). A doença afeta aproximadamente 67 milhões

de pessoas no mundo e dados do Conselho Brasileiro de Oftalmologia indicam

que, no Brasil, existam 900 mil pessoas glaucomatosas (CRONEMBERGER et

al., 2009). A perda de visão causada pelo glaucoma é irreversível (WEINREB;

KHAW, 2004). Por isso, a doença é a terceira maior causa de perda parcial de

visão, a segunda maior causa de cegueira no mundo, depois da catarata, sendo

responsável por 12,3 % dos casos mundiais de cegueira (PARANHOS et al.,

2009; RESNIKOFF et al., 2004).

Embora existam diversos fármacos utilizados para o tratamento do glaucoma,

um dos grandes desafios no tratamento medicamentoso de doenças crônicas,

como o glaucoma, é a adesão do paciente à terapia. Se, por um lado, a eficácia

terapêutica dos antiglaucomatosos está diretamente relacionada à fidelidade ao

tratamento, por outro, vários estudos têm sugerido que a adesão dos pacientes

com glaucoma ao tratamento é muito pequena (BOLAND; QUIGLEY, 2007;

COOK; FOSTER, 2012; PARANHOS et al., 2009; RAFUSE et al., 2009). Isso

porque os tratamentos utilizados até o momento envolvem diversos

inconvenientes, como efeitos adversos sistêmicos, alta frequência de aplicação do

fármaco, irritação ocular, alto custo e necessidade de uso crônico diário (WEINREB;

KHAW, 2004).

A veiculação tópica ocular de fármacos por meio das formas farmacêuticas

tradicionais está associada a diversas limitações, como o baixo tempo de

residência local e a baixa biodisponibilidade. Sistemas de liberação diferenciada

de fármacos, como os inserts poliméricos, são capazes de melhorar as

características de liberação das substâncias ativas. Dentre os polímeros naturais

mais utilizados nos sistemas de liberação, encontra-se o quitosana.

20

O quitosana é um polímero natural, quimicamente versátil, biocompatível e

biodegradável, que apresenta grande aplicação no desenvolvimento de sistemas

de liberação prolongada de fármacos nas últimas duas décadas.

(GIANNANTONI et al., 2006; ZHENG et al., 2007; THANOU &KEAN, 2010).

Tentando resolver os problemas atribuídos às formas farmacêuticas

convencionais no tratamento do glaucoma, este trabalho teve como proposta o

desenvolvimento e a caracterização de formas farmacêuticas de liberação

prolongada, na forma de inserts poliméricos de quitosana contendo bimatoprosta

e dorzolamida, visando avaliar estes dispositivos no tratamento do glaucoma. A

tese está dividida em duas partes. Na primeira parte foi conduzida uma revisão

da literatura sobre o glaucoma e apresentado os objetivos deste trabalho. Na

segunda parte da tese, apresentada na forma de 3 capítulos, está descrito o

trabalho experimental na forma de três manuscritos.

No manuscrito 1 estão relatados o desenvolvimento, a caracterização físico-

química e avaliação da atividade in vivo dos inserts poliméricos de quitosana

para liberação controlada de bimatoprosta.

No manuscrito 2 é relatados o desenvolvimento, a caracterização físico-química

e a avaliação da atividade in vivo dos inserts à base de quitosana e

hidroxietilcelulose para liberação controlada de dorzolamida.

No manuscrito 3 estão relatados os efeitos da esterilização por calor úmido nos

inserts oculares à base de quitosana e as características farmacocinéticas

desses inserts após aplicação ocular.

21

PARTE 1 – REVISÃO DE LITERATURA E OBJETIVOS

22

1 REVISÃO DE LITERATURA

1.1 Glaucoma

Anatomicamente, o olho humano (Figura 1) pode ser dividido em dois

segmentos: o anterior e o posterior. No segmento anterior, encontram-se a

córnea, o limbo, a íris, as câmaras anterior e posterior, a rede trabecular, o canal

de Schlemm, o cristalino, a zônula e o corpo ciliar. Já o segmento posterior

compreende as estruturas atrás do cristalino, compreendendo o humor vítreo e a

retina. A retina é uma estrutura especializada do sistema nervoso, que

transforma a luz em impulso nervoso, processa este sinal e transfere a

informação visual para o sistema nervoso central. É histologicamente composta

de dez camadas que são constituídas por seis tipos de neurônios:

fotorreceptores (cones e bastonetes), células horizontais, células bipolares,

células amácrinas, células interplexiformes e células ganglionares (CGs), e ainda

por células gliais (células de Muller) e por células epiteliais pigmentadas (Figura

2) (GUYTON, 1998). Os axônios das células ganglionares (CGs) retinianas se

unem na região posterior do olho para formar o nervo óptico (COLTHURST et

al., 2000; HENDERER; RAPUANO, 2006b). Tanto o segmento anterior como o

segmento posterior do olho podem ser afetados por diversas doenças. Um

distúrbio particularmente importante, que afeta tanto o segmento anterior como o

segmento posterior do olho é o glaucoma (ITO; WALTER, 2013).

Figura 1 - Anatomia do olho humano

(BURSCHKA et al., 2005)

23

Figura 2 - Imagem histólógica (a) e representação esquemática (b) da retina do

olho humano.

(a) (b)

O glaucoma é uma neuropatia óptica crônica, caracterizada por degeneração

progressiva das CGs e de seus axônios, resultando em perda de campo visual e

em lesão do nervo óptico. A doença pode evoluir para cegueira uni ou bilateral

(DA SILVA, 2004; FRANCA, 2011; HENDERER; RAPUANO, 2006a;

MCKINNON et al., 2008). Clinicamente, a doença é caracterizada por achados

estruturais específicos no disco óptico (Figura 3) e déficits funcionais específicos

detectados por testes de campo visual (COOK; FOSTER, 2012).

Figura 3 - Oftalmoscopia do disco óptico humano de indivíduos sem glaucoma

contendo uma área pálida (copo) que ocupa cerca de metade ou menos do disco óptico, rodeado por um aro laranja de tecido nervoso (A). Com glaucoma, o copo passa a ocupar um porção maior do disco óptico, o aro desaparece e o copo começa a se escavar com aprofundamento e um aro indeterminado (B) (QUIGLEY, 2011).

Mais especificamente, o glaucoma é definido como um grupo de desordens

oculares de etiologia multifatorial unidas por apresentarem: 1) neuropatia óptica

24

clinicamente caracterizada e potencialmente progressiva; 2) alterações clínicas

visíveis na cabeça do nervo óptico, que incluem afilamento focal ou generalizado

da camada neuroretiniana, com e sem escavação patológica do disco óptico e

alargamento do copo óptico que representam neurodegeneração dos axônios

das células ganglionares e, 3) deformação na região da lâmina cribriforme

(CASSON et al., 2012).

Nos primeiros estágios da doença, pode não ser detectada perda visual que

corresponda à perda localizada ou difusa das fibras neuronais. No entanto, se a

perda da acuidade visual é inicialmente esparsa, a progressão da lesão pode

levar a perda completa da visão (CASSON et al., 2012).

1.1.1 Epidemiologia do glaucoma Estima-se que o glaucoma afete mais de 67 milhões de pessoas no mundo

(CRONEMBERGER et al., 2009) e cerca de 75% dessa população é portadora

de glaucoma primário de ângulo aberto. Mulheres são mais afetadas pelo

glaucoma do que homens, compreendendo 59% dos casos de glaucoma no

mundo. Espera-se que a prevalência da doença progrida com o envelhecimento

da população e, em 2020 é estimado que o número de portadores da doença

atinja a marca de 79,6 milhões de pessoas (COOK; FOSTER, 2012). Em nações

desenvolvidas, a prevalência da doença é de 1,5 a 2% nas pessoas com mais

de 40 anos e nas populações africanas, pelo menos, 2 a 3 vezes esse valor

(FRANCA, 2011; SALOMAO; MITSUHIRO; BELFORT, 2009).

No Brasil, os dados sobre a prevalência do glaucoma são mais escassos. Em

2003, o Conselho Brasileiro de Oftalmologia estimou que, no Brasil, existam

cerca de novecentos mil pessoas com a doença. Dessas, cerca de 720 mil eram

assintomáticas e metade eram diagnosticadas (CRONEMBERGER et al., 2009).

Em um estudo realizado por SAKATA et al., foi observada uma prevalência da

doença de 3,4% em indivíduos acima de 40 anos, sendo a prevalência de

glaucoma primário de ângulo aberto de 2,4% (SAKATA et al., 2007).

25

A perda de visão causada pelo glaucoma é irreversível (WEINREB; KHAW,

2004). Por isso, a doença é a terceira maior causa de perda parcial de visão e a

segunda maior causa de cegueira, depois da catarata, sendo responsável por

12,3% dos casos mundiais de cegueira (PARANHOS et al., 2009; RESNIKOFF

et al., 2004). Estima-se que, em 2010, cerca de 4,5 milhões de pessoas no

mundo eram cegas, em decorrência do glaucoma primário de ângulo aberto,

enquanto 3,9 milhões eram cegas em decorrência do glaucoma primário de

ângulo fechado. Esses números devem subir para 5,9 e 5,3 milhões,

respectivamente em 2020 (COOK; FOSTER, 2012).

1.1.2 Classificação do glaucoma O glaucoma é classificado em diversos tipos. Os parâmetros utilizados para

classificação incluem a origem da doença e as alterações anatômicas

observadas e a presença ou não de hipertensão ocular, dentre outros (Figura 4)

(CASSON et al., 2012). Quando não são identificadas outras doenças

associadas, o glaucoma é classificado como primário.

Figura 4 - Classificação do glaucoma (CASSON et al., 2012)

Os dois principais tipos de glaucoma identificados nos indivíduos portadores da

doença são o glaucoma primário de ângulo fechado (GPAF) e o glaucoma

26

primário de ângulo aberto (GPAA). O GPAF (Figura 5 a) ocorre quando há

redução no ângulo da câmara anterior do olho gerando obstrução à passagem

do humor aquoso da câmara posterior para a anterior através da pupila,

geralmente devido a uma dilatação da pupila. Com isto, a íris é “empurrada” para

cima e estreita o ângulo da câmara anterior (entre a córnea e o corpo ciliar)

(KATZUNG, 2004; LEE, P.-J. et al., 2010; LEWIS et al., 2002). O tratamento

preferido nesse caso é a remoção cirúrgica de parte da íris (iridectomia

periférica), mas a intervenção farmacológica pode ser necessária para reduzir a

elevação aguda da pressão intraocular (FRANCA, 2011; HENDERER;

RAPUANO, 2006b).

Já no GPAA (Figura 5 b) ocorre um impedimento na drenagem do humor

aquoso pelos canais de Schlemm. Trata-se de um distúrbio crônico, cujo

tratamento é majoritariamente farmacológico (FRANCA, 2011; KATZUNG,

2004). Mais de 75% dos casos de cegueira são devidos ao GPAA, que é o tipo

mais comum de glaucoma (COOK; FOSTER, 2012; LEWIS et al., 2002;

MCKINNON et al., 2008).

Figura 5 - Representação esquemática da obstrução da passagem de humor

aquoso pela pupila no glaucoma de ângulo fechado (a), e do aumento da quantidade de humor aquoso no glaucoma de ângulo aberto (b) (COLEMAN, A. L., 1999)

Os principais fatores de risco para a iniciação do GPAA são a idade elevada e o

aumento da pressão intraocular (PIO) (BOLAND; QUIGLEY, 2007; COLEMAN,

ANNE L.; MIGLIOR, 2008). Outros fatores de risco que já foram identificados,

porém com menor nível de evidência foram: raça (negros são mais propensos),

história familiar e genética, reduzida espessura central da córnea, miopia

elevada, hipermetropia, diabetes mellitus, hipertensão arterial, hipotensão

27

arterial, apneia noturna, escavação suspeita do nervo óptico, hemorragias no

disco óptico, grau de severidade do glaucoma ou glaucoma bilateral, doença

cardiovascular, doença cerebrovascular, hipercolesterolemia, alimentação,

flutuação da PIO e enxaqueca (DA SILVA, 2004; HENDERER; RAPUANO,

2006a; LEWIS et al., 2002; PARANHOS et al., 2009). A contribuição do histórico

familiar positivo para a doença e diabetes mellitus para a iniciação do glaucoma

ainda é controversa (COLEMAN, ANNE L.; MIGLIOR, 2008).

Ainda não foi determinado se a PIO elevada ou a flutuação da PIO é o fator mais

importante para desenvolvimento e progressão do glaucoma e ambos podem ser

fatores de risco independentes para a doença (BOLAND; QUIGLEY, 2007).

Resultados de estudos de flutuação diária dos níveis pressóricos indicaram que

a ocorrência de picos pressóricos (variação ≥ 6 mmHg acima da PIO média do

dia) estavam associados com a piora do campo visual e progressão do

glaucoma independentemente dos valores médios de PIO (COLEMAN, ANNE L.;

MIGLIOR, 2008; PARANHOS et al., 2009; ZEIMER et al., 1991). O glaucoma

desenvolve-se mais precocemente e progride mais rapidamente entre os negros

americanos comparados aos brancos americanos. A prevalência de cegueira

também é maior entre os negros americanos (PARANHOS et al., 2009).

O GPAF é mais comum em mulheres. Por outro lado, ainda não está claro que

haja uma predileção de gênero para o GPAA. Estudos pouco consistentes do

passado levaram a uma falsa indicação de que a doença seria mais prevalente

em homens do que em mulheres. No entanto, em função do envelhecimento

populacional e da expectativa de vida ser maior para mulheres do que para

homens, o número de casos de mulheres acometidas é maior que o número de

casos de homens que apresentam a doença. Alguns estudos sugerem que os

hormônios sexuais femininos (especialmente o estrógeno), tenham efeito

protetor no desenvolvimento do glaucoma, tornando as mulheres na menopausa

mais propensas ao desenvolvimento da doença e sugerindo que a reposição

hormonal poderia atuar como protetor no desenvolvimento da doença. Porém,

outros estudos ainda são necessários para melhorar a compreensão do papel do

estrógeno no desenvolvimento do glaucoma (VAJARANANT et al., 2010).

28

1.1.2.1 Glaucoma primário de ângulo aberto (GPAA)

O GPAA é um subtipo singular de glaucoma, no qual, quando há elevação da

PIO, não é possível identificar a causa dessa elevação (CASSON et al., 2012). O

GPAA ocorre majoritariamente em adultos e é geralmente bilateral (acomete

ambos os olhos), embora, na maioria das vezes, seja assimétrico (um dos olhos

é mais acometido que o outro). O GPAA está normalmente associado a

alterações na PIO. A PIO é a pressão que os líquidos exercem sobre o

revestimento do olho. Ela é controlada pelo balanço entre a produção e a

drenagem de humor aquoso. O humor aquoso é produzido na câmara posterior

do olho pelas células do processo ciliar, presentes no corpo ciliar e flui através

da pupila para a câmara anterior do olho carregando nutrientes para a íris, para

o cristalino e para a córnea (Figura 6). Daí é drenado pela rede trabecular e pelo

canal de Schlemm, deixando o olho pela via uveoescleral (DIAS; ALMEIDA;

PRATA JÚNIOR, 2007; WEINREB; KHAW, 2004).

Figura 6 - Estruturas envolvidas na produção e drenagem do humor

aquoso (VAAJANEN; VAPAATALO, 2011)

O nervo óptico é composto pelos axônios das CGs. Esses axônios, que

convergem no disco óptico ou cabeça do nervo óptico, deixam o olho através da

lâmina cribriforme da esclera e fazem sinapse no núcleo geniculado lateral do

cérebro. Fatores tróficos, que incluem o fator neurotrófico derivado de cérebro,

29

são transportados dos axônios terminais das CGs para seus corpos e são

essenciais para a sobrevivência dessas células. O glutamato, que está

normalmente presente na retina também é transportado pelos axônios das CGs

para o núcleo geniculado lateral (WEINREB; KHAW, 2004).

O glaucoma é caracterizado pela perda seletiva de CGs, associada à redução

no campo visual. As CGs são responsáveis pela conversão dos estímulos

elétricos das células retinianas externas em potenciais de ação clássicos. Esses

potenciais de ação são transferidos ao cérebro em um processo dispendioso

energeticamente, o que torna essas células muito vulneráveis (MORGAN, 2012).

A morte celular pode ocorrer por vários mecanismos moleculares, tornando o

GPAA uma doença de perfil etiopatológico multifatorial (ALMASIEH et al., 2012;

LEE, P.-J. et al., 2010). Dessa forma, as bases biológicas do glaucoma não são

completamente conhecidas e os fatores que contribuem para sua progressão

não são completamente caracterizados (WEINREB; KHAW, 2004). O aumento

da PIO (geralmente para níveis superiores a 21 mmHg), que ocorre por aumento

na resistência à drenagem do humor aquoso (WEINREB; KHAW, 2004), é

considerado como um dos fatores de risco na etiopatogenia do glaucoma (DA

SILVA, 2004) porque está inquestionavelmente associado à morte de CGs e é o

único fator de risco passível de tratamento (CASSON et al., 2012; COLEMAN,

ANNE L.; MIGLIOR, 2008; WEINREB; KHAW, 2004). Estudos clínicos recentes

indicam que a redução da PIO pode prevenir o desenvolvimento do glaucoma

em indivíduos com PIO elevada e reduzir a progressão naqueles com a doença

inicial (MCKINNON et al., 2008; SALOMAO et al., 2009).

O aumento da PIO pode alterar a composição da matriz extracelular da cabeça

do nervo óptico e gerar gradiente de pressão na lâmina cribriforme, resultando

em deformação e estresse mecânico dessa estrutura e das CGs. Essa

compressão influencia no transporte de fatores tróficos pelos axônios, causando

a morte de axônios e, consequentemente, a morte das CGs. As mortes iniciais

resultam em inibição do transporte axonal de fatores neurotróficos, o que

ocasiona degeneração secundária das CGs (FECHTNER; WEINREB, 1994;

LEWIS et al., 2002; MUNEMASA; KITAOKA, 2013; WEINREB; KHAW, 2004).

30

Além disso, o aumento da PIO também induz estresse oxidativo por meio da

inibição de várias enzimas do sistema antioxidante, como superóxido dismutase

(SOD), glutationa peroxidase e catalase, o que implica em morte celular. A morte

celular das CGs também pode ocorrer por meio de resposta autoimune mediada

por células T, hipóxia ou isquemia dos vasos retinianos, baixo funcionamento

das bombas de transporte de glutamato, citocinas inflamatórias (fator de necrose

tumoral e óxido nítrico), estresse do retículo endoplasmático, ativação de células

da glia, excitotoxicidade (decorrente da hiperexcitação dos receptores N-metil-D-

aspartato (NMDA) pelo glutamato), ativação de endotelina (potente

vasoconstritor causador de morte celular por isquemia e apoptose), ausência de

fator neurotrófico e envelhecimento (ALMASIEH et al., 2012; LEWIS et al., 2002;

MUNEMASA; KITAOKA, 2013; WEINREB; KHAW, 2004). Alguns desses fatores

estão relacionados na Figura 7.

Figura 7 - Mecanismos de morte de CGs na lesão

glaucomatosa (DESAI, P. V.; CAPRIOLI, 2008)

A disfunção mitocondrial também tem sido associada ao glaucoma e dados

recentes usando modelos de degeneração neuronal sugerem que a mitocôndria

pode ser comprometida pela elevação da PIO (MORGAN, 2012). A disfunção

mitocondrial pode ser causada por mutações genéticas e tem duas

consequências graves: redução na síntese de ATP e aumento no conteúdo das

31

espécies reativas de oxigênio. Como as CGs têm um alto gasto energético,

déficit na produção de ATP resulta em falta de energia para processos como o

reparo após danos diversos. As espécies reativas de oxigênio podem danificar

diretamente as CGs ou induzir indiretamente a morte celular por alterações

vasculares, respostas imunes aberrantes e disfunção das células da glia

(CHRYSOSTOMOU et al., 2012).

Em modelos animais, tem sido demonstrado que as CGs são seletivamente

afetadas durante o glaucoma. Durante as primeiras dez semanas após o

aumento da PIO em ratos, a taxa de morte de CGs parece ser uniforme,

praticamente linear e em torno de 3 a 4% CGs/ semana, mas o grau de morte

celular parece depender da região da retina analisada (URCOLA; HERNANDEZ;

VECINO, 2006). Além da morte celular, alterações no tamanho das CGs têm

sido reportadas em glaucoma experimental. Assim, uma hipertrofia de todos os

tipos de CGs tem sido reportada em ratos após elevação da PIO por

cauterização da veia episcleral (AHMED, F.; CHAUDHARY; SHARMA, 2001).

Esse aumento no tamanho das CGs também foi observado após corte do nervo

óptico ou auxotomia. O aumento no tamanho de CGs parece ser parte da

resposta ao espaçamento disponível pela morte de CGs (URCOLA et al., 2006).

1.1.2.1.1 Diagnóstico A lesão glaucomatosa é progressiva, crônica e irreversível. Dessa forma, o

diagnóstico precoce da doença é crítico para a prevenção dos danos estruturais

permanentes e a perda irreversível da visão (SHARMA et al., 2008).

Embora seja um forte indicativo da doença, a PIO elevada não é critério

definitivo para diagnóstico do glaucoma, uma vez que quase metade das

pessoas que apresentam PIO elevada não irão desenvolver uma lesão

glaucomatosa (LEWIS et al., 2002).

Os critérios diagnósticos para glaucoma incluem medida da PIO, avaliação da

cabeça do nervo óptico e da camada de fibras nervosas retinianas, medida de

32

espessura da córnea e perda de campo visual (HO et al., 2011). Os exames

rotineiros para detecção do glaucoma incluem a tonometria, que mede a PIO, e

a oftalmoscopia ou exame de fundo de olho, que tenta avaliar se existe algum

dano no nervo óptico. Em caso de suspeita de glaucoma, realiza-se a

gonioscopia, que identifica o tipo possível de glaucoma pela avaliação do ângulo

da câmara anterior do olho antes e após dilatação da pupila e campimetria ou

exploração do campo visual, que avalia se há perda do campo visual. Esse

último exame é imprescindível para estabelecer o tratamento adequado e é

utilizado para confirmar o diagnóstico (CARVALHO, D. et al., 2007; LEWIS et

al., 2002).

Pacientes com um ou mais dos seguintes fatores de risco devem ser

examinados para possível diagnóstico de glaucoma: PIO basal elevada, disco

óptico com desvio da regra do ISN'T (a maioria dos discos ópticos normais

apresenta a seguinte ordem decrescente de espessura do aro: inferior, superior,

nasal, temporal), atrofia peripapilar, hemorragia de disco, espessura reduzida da

córnea central, dispersão pigmentar, miopia, pressão de perfusão ocular

diminuída, idade avançada, descendência africana ou hispânica, histórico

familiar ou enxaqueca (RAFUSE et al., 2009).

Como as principais manifestações clínicas utilizadas no diagnóstico do GPAA

são escavação do disco óptico (alterações estruturais) e perda progressiva de

campo visual (alterações funcionais), cerca de metade dos casos de glaucoma

não são diagnosticados e o diagnóstico da doença sempre ocorre após

alterações visuais irreversíveis (MUNEMASA; KITAOKA, 2013; TARRIDE et al.,

2011).

O teste padrão para monitoramento das alterações estruturais é a avaliação

rotineira do disco óptico, mas novas tecnologias que têm emergido oferecem

imagens de melhor resolução com detalhes anatômicos da cabeça do nervo

óptico e da camada de fibras nervosas da retina (TARRIDE et al., 2011).

Técnicas como oftalmoscopia confocal de varredura a laser, polarimetria de

varredura a laser e tomografia de coerência óptica têm sido extensivamente

empregados como auxiliares na avaliação subjetiva da cabeça do nervo óptico.

33

Similarmente, técnicas de perimetria seletiva, que incluem perimetria

automatizada de baixo comprimento de onda (SWAP) e tecnologia de perimetria

de tecnologia de perimetria de dupla frequência (FDT) têm sido exploradas como

substitutivas da Perimetria Padrão Automatizada (SAP) para promover detecção

precoce de perda de campo visual (SHARMA et al., 2008).

1.1.2.1.2 Tratamento Os objetivos a serem alcançados no tratamento do glaucoma são preservar a

função visual existente e manter ou melhorar a qualidade de vida do paciente

(RAFUSE et al., 2009). O único método clinicamente estabelecido para o

tratamento do glaucoma é a redução da PIO. Essa redução pode ser conseguida

com tratamento farmacológico, terapia a laser e cirurgia, se necessário

(BRUBAKER, 2003; LEWIS et al., 2002; MCKINNON et al., 2008).

No tratamento a laser de argônio (trabeculoplastia), um feixe de luz incide sobre

a rede trabecular para reduzir a resistência ao efluxo de humor aquoso. Esse

tratamento costuma ser efetivo nos primeiros meses, mas perde seu efeito com

o tempo (50% de falha terapêutica após cinco anos). PIO muito elevada e

histórico familiar positivo para a doença são fatores comumente associados aos

casos de falha terapêutica. Pacientes com miopia tem maior chance de obterem

sucesso terapêutico. Outro tratamento a laser, a ciclofotocoagulação de diodo, é

utilizado nos casos de GPAA avançado. O laser é aplicado na esclera com o

intuito de reduzir a secreção de humor aquoso. Esse procedimento também tem

efeito temporário e precisa ser repetido. As principais complicações da terapia a

laser incluem aumento da PIO durante o procedimento e a ocorrência de

inflamação após o procedimento (LEWIS et al., 2002; WEINREB; KHAW, 2004)

A filtração cirúrgica, o tratamento cirúrgico mais utilizado, é realizada pela

criação de um caminho alternativo para efluxo de humor aquoso e redução da

PIO. As principais complicações incluem hipotonia, uveíte e hemorragia

supracoroidal. Outro tratamento cirúrgico do GPAA, a trabeculectomia, é

realizado pela remoção de uma pequena porção da malha trabecular e dos

34

tecidos adjacentes para aumentar a drenagem de humor aquoso (FRANCA,

2011; LEWIS et al., 2002). A principal causa de falha na trabeculectomia é a

fibroproliferação escleral, que bloqueia a saída de humor aquoso e tem sido

evitada pelo uso de agentes anticancerígenos (5-fluorouracil e mitomicina C)

(WEINREB; KHAW, 2004). Implantes que drenam o humor aquoso para um

reservatório suturado na esclera também têm sido utilizados. Outras técnicas,

como a cirurgia ciclodestrutiva são realizadas em pessoas com baixa acuidade

visual (MCKINNON et al., 2008).

1.2.1.2.1 Tratamento farmacológico Na maioria dos casos de GPAA, a terapêutica inicial baseia-se na utilização de

drogas hipotensoras oculares (LEWIS et al., 2002; MCKINNON et al., 2008;

PARANHOS et al., 2009). A escolha do fármaco deve ser feita de acordo com o

seu mecanismo de ação, eficácia na diminuição da PIO, efeitos adversos e custo

(PARANHOS et al., 2009).

Nesse sentido, diversos fármacos foram testados para a redução da pressão

intraocular. Os fármacos de primeira escolha para início do tratamento incluem

os betabloqueadores e os análogos de prostaglandinas (Figura 8 a, b, c e d)

(PARANHOS et al., 2009). Por serem mais efetivos e mais seguros que os

betabloqueadores, os análogos de prostaglandinas se tornaram preferíveis aos

betabloqueadores nos últimos anos (NICE, 2009; RAFUSE et al., 2009). Outros

fármacos que podem ser utilizados são os inibidores de anidrase carbônica, os

agonistas α-2 seletivos (Figura 8 e e f), seguidos dos agentes colinérgicos

(MCKINNON et al., 2008). No entanto, o fármaco a ser utilizado ao longo do

tratamento será definido com base no efeito observado e na tolerância do

paciente. Caso não seja alcançado o efeito desejado, o fármaco inicialmente

selecionado deve ser substituído ou associado a outro, conforme mostrado na

Figura 9 (PARANHOS et al., 2009).

Os betabloqueadores não seletivos, como o propranolol, foram inicialmente

utilizados no tratamento do glaucoma, mas foram completamente substituídos

35

pelos betabloqueadores β1-seletivos (betaxolol, maleato de timolol). Os

betabloqueadores reduzem a pressão intraocular por reduzirem a produção de

humor aquoso (LEWIS et al., 2002; MCKINNON et al., 2008). A redução ocorre

possivelmente pela redução na produção de mensageiro secundário

monofosfato de adenosina cíclico (AMPc) no epitélio não pigmentado do corpo

ciliar (CARVALHO, D. et al., 2007; DIAS et al., 2007).

Figura 8 - Estrutura química de representantes

das principais classes de fármacos utilizados na terapia do glaucoma: betabloqueador: (maleato de timolol; a), análogos de prostaglandinas (latanoprosta, bimatoprosta e travoprosta; b, c e d, respectivamente), inibidor de anidrase carbônica (cloridrato de dorzolamida; e) e do agonista α-2 seletivo (tartarato de brimonidina; f).

Figura 9 - Diagrama de sequência do tratamento clínico do GPAA (PARANHOS et

al., 2009).

36

A posologia desses medicamentos costuma ser de uma gota por olho duas

vezes ao dia. Embora tenham sido utilizados por muito tempo e ainda sejam

considerados fármacos de primeira-linha por alguns autores (MCKINNON et al.,

2008; PARIKH et al., 2008), os efeitos adversos desses fármacos (oculares,

respiratórios, cardíacos e sistema nervoso central) levaram a uma redução

significativa do seu uso, especialmente com o advento dos análogos de

prostaglandinas (MCKINNON et al., 2008; WEINREB; KHAW, 2004).

Os análogos de prostaglandinas (latanoprosta, bimatoprosta e travoprosta)

reduzem a PIO pelo aumento da drenagem do humor aquoso, primariamente

pela via uveoescleral. Algumas prostaglandinas ativam proteases de matriz que

remodelam a matriz extracelular e reduzem a resistência ao fluxo aumentando a

velocidade de efluxo do humor aquoso. Esses fármacos se tornaram preferidos

no tratamento porque podem ser aplicados apenas uma vez ao dia, tem efeitos

sistêmicos mínimos e excelente efetividade na redução da PIO. Alguns efeitos

adversos observados são hiperpigmentação gradual e irreversível da íris (por

aumento de melanossomas) e escurecimento de sobrancelha, hipertricose,

inflamação ocular e ceratite (LEWIS et al., 2002; MCKINNON et al., 2008;

PARIKH et al., 2008; WEINREB; KHAW, 2004). Embora sejam considerados

medicamentos de primeira escolha por serem mais eficazes e mais seguros, o

alto custo dos análogos de prostaglandinas é um fator limitante para o seu uso

(PARIKH et al., 2008). Em 2009 a ANVISA divulgou um boletim tratando

especificamente do alto custo desses medicamentos. Como os três fármacos

apresentam eficácia semelhante e a seleção entre um e outro pode ser feita

baseado no custo (o bimatoprosta tem menor custo) e na estabilidade (o

latanoprosta só é estável se armazenado entre 2 e 8 °C) (ANVISA, 2009;

SAKAI; YASUEDA; OHTORI, 2005)

O bimatoprosta é uma prostamida análoga à prostamida F2α. Estudos recentes

mostraram sua capacidade em aumentar a drenagem uveoescleral do humor

aquoso (BRUBAKER, 2001; CHRISTIANSEN et al., 2004). O fármaco também

induz o efluxo trabecular do humor aquoso (LIM, K. S. et al., 2008). A redução

da PIO por bimatoprosta pode estar associada à ativação de receptores

específicos para prostamidas, já que o fármaco não estimula os receptores

37

convencionais para prostaglandinas. Outra possibilidade seria a atuação do

fármaco como um precursor de prostaglandinas (produzida pela hidrólise da

amida). No entanto, o mecanismo de ação desse fármaco ainda é controverso

(KRAUSS; WOODWARD, 2004; TORIS; GABELT; KAUFMAN, 2008).

Outros fármacos que podem ser utilizados no tratamento do glaucoma em caso

de falha terapêutica ou intolerância aos betabloqueadores e aos análogos de

prostaglandinas são os inibidores de anidrase carbônica e os agonistas α-2

seletivos (LEWIS et al., 2002; MCKINNON et al., 2008). A partir dos primeiros

estudos que indicaram que o humor aquoso era composto basicamente por

bicarbonato de sódio e que detectaram a anidrase carbônica (responsável pela

secreção de bicarbonato de sódio) na úvea, foi demonstrada a atividade da

acetazolamida via oral na redução da PIO (MINCIONE; SCOZZAFAVA;

SUPURAN, 2008). Desde então, foram desenvolvidos fármacos inibidores de

anidrase carbônica que se mostraram úteis para o tratamento do glaucoma por

via tópica (brinzolamida e dorzolamida). Os inibidores de anidrase carbônica

utilizados por via tópica apresentam poucos efeitos adversos, mas apresentam

atividade na redução da PIO menor que os fármacos de primeira linha para o

tratamento do glaucoma. Eles são utilizados duas a três vezes ao dia, e não

podem ser usados em indivíduos alérgicos a sulfonamidas (MINCIONE et al.,

2008; WEINREB; KHAW, 2004). Os agonistas α2-seletivos (apraclonidina e

brimonidina) reduzem a secreção de humor aquoso de forma aguda pela

inibição da liberação de norepinefrina e aumento o efluxo de humor aquoso pela

via uveoescleral. Eles são menos efetivos que os fármacos de primeira escolha,

são associados à ocorrência de conjuntivite alérgica, podem causar sedação e

têm potencial atividade simpatomimética sistêmica. Esses fármacos também são

administrados duas a três vezes ao dia. Agentes colinérgicos (pilocarpina,

carbacol) são utilizados como terceira opção, pois, embora reduzam a PIO por

aumento do efluxo de humor aquoso por via trabecular, apresentam muitos

efeitos adversos como miopia induzida, dor de cabeça, redução da acuidade

visual pela miose, possibilidade de formação de catarata, dentre outros, além de

serem aplicados três a quatro vezes ao dia (BRUBAKER, 2003; MCKINNON et

al., 2008; WEINREB; KHAW, 2004).

38

Um dos grandes desafios no tratamento medicamentos de doenças crônicas,

como o glaucoma é a adesão do paciente à terapia. Se por um lado, a eficácia

terapêutica dos antiglaucomatosos está diretamente relacionada à fidelidade ao

tratamento, por outro, vários estudos têm sugerido que a adesão dos pacientes

glaucomatosos ao tratamento é muito pequena (BOLAND; QUIGLEY, 2007;

COOK; FOSTER, 2012; PARANHOS et al., 2009; RAFUSE et al., 2009)

Interferem na fidelidade ao tratamento o custo, o número de medicamentos, os

efeitos colaterais, a complexidade posológica, as limitações individuais (físicas e

cognitivas) do paciente e a própria relação médico paciente (BOLAND;

QUIGLEY, 2007; PARANHOS et al., 2009). Dados de estudos sugerem que

existe uma diferença entre os sexos no cumprimento de prescrições de colírios

utilizados no tratamento do GPAA: as mulheres cumprem apenas 75% das

prescrições cumpridas pelos homens. O custo da terapia é a principal barreira

para muitos pacientes nos países desenvolvidos e impede que a terapia seja

plenamente concluída na maioria dos países em desenvolvimento (BOLAND;

QUIGLEY, 2007).

O aumento da adesão do paciente ao tratamento e a redução da progressão da

doença podem ser conseguidos com a redução do número de medicações, a

educação do paciente sobre a doença e o tratamento, e redução da dose e da

frequência de aplicação (RAFUSE et al., 2009).

Além da baixa adesão ao tratamento, o dano inicial mais severo no diagnóstico

também pode influenciar na eficácia do medicamento. Outros fatores que podem

influenciar no tratamento do glaucoma são a existência de córneas mais

espessas, que respondem menos aos colírios e de olhos mais pigmentados, que

podem não ter redução tão pronunciada de PIO como se esperava, quando são

tratados com alguns tipos de fármacos (BOLAND; QUIGLEY, 2007).

39

1.1.3 Modelos animais para estudo de glaucoma O desenvolvimento de modelos animais de glaucoma mais rápidos, barato e

reprodutíveis é essencial para a elucidação do curso natural da doença e para o

desenvolvimento de intervenções terapêuticas que interrompam ou revertam a

progressão da lesão glaucomatosa (JOHNSON; TOMAREV, 2010). Diversos

modelos animais de diferentes espécies já foram testados para o estudo do

glaucoma. Isso inclui mamíferos de grande porte, como macacos, cachorros,

gatos e porcos, e mamíferos de pequeno porte, como roedores (BOUHENNI et

al., 2012).

De todos os modelos animais disponíveis, aqueles desenvolvidos em roedores

são altamente atrativos por diversas razões: facilidade de manipulação

experimental (incluindo manipulação genética), custo relativamente baixo, curto

tempo de vida e disponibilidade de animais para serem usados em grande

número (BOUHENNI et al., 2012; JOHNSON; TOMAREV, 2010; PANG;

WANG; CLARK, 2005). A popularidade desses modelos aumentou ainda mais

com os significantes avanços nas técnicas de medição da PIO (PANG et al.,

2005).

Dentre os roedores, os ratos estão sendo cada vez mais utilizados para

desenvolvimento de modelos de estudo de glaucoma. O principal motivo para

isso é que, ao contrário de muitos outros animais de laboratório não primatas, o

rato apresenta anatomia e características de desenvolvimento no segmento

anterior do olho semelhantes ao olho humano, especialmente no que diz

respeito ao efluxo de humor aquoso. Dessa forma, espera-se que resultados de

pesquisas realizadas com ratos predigam alterações biológicas em humanos

(PANG et al., 2005). Além disso, existe um aumento razoável de PIO e variações

nas CGs semelhante ao observado em humanos e ocorre redução da PIO em

resposta a medicações glaucomatosas, embora esses efeitos não sejam

idênticos aos observados em humanos (BOUHENNI et al., 2012).

No entanto, os modelos animais de glaucoma não são cópias exatas da

condição humana (JOHNSON; TOMAREV, 2010) e ainda não há um modelo

40

ideal para estudo de glaucoma em virtude da complexidade da doença

(BOUHENNI et al., 2012). Embora roedores tenham sido cada vez mais usados

na pesquisa de glaucoma, resultados conflitantes sobre a ação das

prostaglandinas na PIO de roedores tem sido publicados (HUSAIN et al., 2006).

Modelos de roedores que envolvem a produção de danos no nervo óptico por

meio de hipertensão ocular são os mais comuns (JOHNSON; TOMAREV, 2010;

URCOLA et al., 2006). A PIO elevada é um fio que conecta a maior parte das

formas de glaucoma e maior fator de risco da doença (BOUHENNI et al., 2012;

JOHNSON; TOMAREV, 2010; URCOLA et al., 2006). O aumento da PIO pode

ser conseguido pela redução do efluxo de humor aquoso. A drenagem de humor

aquoso pode ser interrompida pela cauterização da veia episcleral ou por injeção

de salina hipertônica na veia episcleral. Além disso, a malha trabecular e/ou e a

veia episcleral podem ser diretamente queimadas por meio da aplicação de

energia proveniente de laser. Outros métodos são baseados no bloqueio da

drenagem de humor aquoso na malha trabecular, evitando manipulação do

sistema vascular ocular. Para isso, a injeção de diferentes substâncias, como

eritrócitos fantasmas ou microesferas de látex, gera lesões que bloqueiam o

canal. Finalmente, a injeção de agentes viscoelásticos na câmara anterior induz

aumento da PIO por obstrução mecânica da malha trabecular (URCOLA et al.,

2006).

A injeção intracameral semanal do ácido hialurônico (molécula da matriz

extracelular), em ratos, produz hipertensão ocular que se segue por mais de dez

semanas. Trata-se de uma técnica simples e relativamente barata, mas muito

trabalhosa devido à necessidade de injeções semanais repetidas para a

manutenção da hipertensão ocular. Adicionalmente, é possível que efeitos

adversos deletérios como anormalidades corneais e/ou inflamações possam se

tornar evidentes ao longo do tempo (JOHNSON; TOMAREV, 2010).

41

1.2 Administração ocular de fármacos A administração tópica de fármaco é a via preferida para o tratamento de

doenças do segmento anterior do olho, em virtude da facilidade e do baixo custo

(LIU, S.; JONES; GU, 2012; RAWAS-QALAJI; WILLIAMS, 2012). Fármacos

solúveis em água são veiculados em soluções aquosas (colírios) e fármacos

insolúveis em água são veiculados em pomadas ou suspensões aquosas

(ORÉFICE; FERNANDES; ORÉFICE, 2006).

No entanto, essa administração é significativamente limitada porque, para a

maioria dos fármacos aplicado no olho, o sitio de ação não é a córnea, nem a

conjuntiva e nem a esclera e fatores pré-corneais e barreiras teciduais afetam

negativamente a biodisponibilidade da formulação. Os fatores pré-corneais

incluem indução da lacrimação, diluição da formulação na lágrima, drenagem da

solução, renovação lacrimal, ato de piscar e filme lacrimal. O filme lacrimal, cuja

composição e quantidade são determinantes para a saúde da superfície ocular,

oferece a primeira resistência em virtude do seu rápido tempo de renovação (2-3

min) e a maioria das soluções administradas topicamente começam a ser

drenadas entre 15 a 30 s após a instilação. Além disso, várias camadas de

córnea, conjuntiva e esclera exercem papel importante na permeação do

fármaco, uma vez que a anatomia, a fisiologia e a função de barreira dessas

estruturas comprometem a rápida absorção de moléculas (GAUDANA et al.,

2010; GOOCH et al., 2012; LIU, S. et al., 2012; LUDWIG, 2005).

Considerando todos os fatores pré-corneais, o tempo de contato com as

membranas absortivas é o principal responsável pelo fato de menos de 5% da

dose aplicada chegar aos tecidos oculares. Por exemplo, após administração de

colírio convencional de ciclosporina, mais de 95% da dose atinge a circulação

sistêmica por absorção transnasal ou conjuntival (GAUDANA et al., 2010; LIU,

S. et al., 2012). Assim, somente 1-3% formulação penetra os tecidos alvo

(GOOCH et al., 2012).

Desta forma, após a instilação de um colírio, a dispersão contendo o fármaco se

mistura com o fluido lacrimal levando a uma alta concentração inicial do princípio

42

ativo nas lágrimas, e, em seguida, ocorre um rápido declínio, sendo que a maior

parte do fármaco é eliminada por drenagem lacrimal e captação conjuntival. Isto

representa um risco potencial de toxicidade e indica uma necessidade de

instilação frequente (AHMED, I.; PATTON, 1985). Todavia, o uso frequente de

soluções altamente concentradas pode induzir efeitos tóxicos e danos celulares

na superfície do olho (LUDWIG, 2005).

Além disso, fármacos aplicados topicamente são absorvidos por rota corneal

(córnea – humor aquoso – tecidos intraoculares) ou por rota não corneal

(conjuntiva – esclera – coroide/epitélio pigmentado da retina), o que também

limita a quantidade de fármaco absorvida pelo tecido ocular (GAUDANA et al.,

2010; GHELANI et al.,2011; LIU, S. et al., 2012). O fármaco instilado na

superfície do olho também pode atingir a via sistêmica através da drenagem

lácrimo-nasal e pela consequente absorção através da mucosa nasal e/ou

digestiva ou, obviamente, quando é administrado diretamente na via sistêmica,

com o propósito de terapêutica ocular (ORÉFICE; FERNANDES; ORÉFICE,

2006).

Além dos problemas já citados, os colírios convencionais sofrem de outros

problemas inerentes como reações alérgicas, penetração do fármaco em pulsos

após a administração tópica, e dificuldade de adesão ao tratamento pelo

paciente (GHELANI et al., 2011; ORÉFICE; FERNANDES; ORÉFICE, 2006).

Alternativamente, soluções viscosas têm sido desenvolvidas para impedir a

rápida drenagem do fármaco pelo ducto nasolacrimal e, consequentemente,

melhorar a eficácia terapêutica (LUDWIG, 2005). Inúmeros agentes viscosantes

naturais e sintéticos (polímeros, em sua maioria) podem ser utilizados para

aumentar a viscosidade das preparações farmacêuticas oculares. No entanto, na

maioria dos casos, aumentos substanciais na viscosidade levam a somente uma

moderada melhora na biodisponibilidade (ORÉFICE; FERNANDES; ORÉFICE,

2006) e, além disso, pode ocorrer uma rápida saída do fármaco da rede

polimérica (LUDWIG, 2005). A visão borrada e a irritação parecem ser as

maiores desvantagens dessas formulações e, em consequência, os pacientes

43

preferem utilizar os colírios convencionais, mesmo que a administração

frequente seja necessária (ORÉFICE; FERNANDES; ORÉFICE, 2006).

Além das preparações líquidas, anteriormente relatadas, há a possibilidade de

se empregar na via ocular, preparações viscosas semissólidas, tais como

pomadas e hidrogéis (géis clássicos pré-formados e sistemas de gelificação in

situ). Estas, por sua vez, proporcionam um contacto sustentado com os olhos.

Desvantagens destes sistemas são a sensação pegajosa, visão turva e indução

do reflexo de piscar devido ao desconforto ou até mesmo à irritação (LUDWIG,

2005). Existe ainda a dificuldade de se administrar uma dose precisa do

fármaco, devido à variação da quantidade aplicada durante a administração

tópica. Além disso, alguns estudos demonstraram um risco potencial de lesão da

córnea para alguns agentes (ORÉFICE; FERNANDES; ORÉFICE, 2006).

A necessidade de uma alta frequência de instilações ao dia, a visão borrada e o

ardor ocular são aspectos que desestimulam a correta aplicação tópica de um

colírio e todos os problemas relatados anteriormente contribuem para que a

adesão do paciente ao tratamento seja baixa. Ainda, no caso da exposição

sistêmica, os efeitos adversos, que podem ocorrer em alguns casos, impedem

que o tratamento prossiga de forma adequada (ORÉFICE; FERNANDES;

ORÉFICE, 2006). Todos esses fatores associados podem levar a uma falha

terapêutica no tratamento. No caso do glaucoma, por exemplo, essa falha

terapêutica pode implicar em progressão da degeneração do nervo óptico que,

em última instância, pode evoluir para a cegueira (HENDERER; RAPUANO,

2006b).

Desta forma, para superar as desvantagens apresentadas pelas formulações

oftálmicas convencionais há um esforço significativo para o desenvolvimento de

novas formas e sistemas de administração oftálmica que promovam o máximo

de absorção ocular, o prolongamento do tempo de permanência e a liberação

mais lenta e uniforme do fármaco (ORÉFICE; FERNANDES; ORÉFICE, 2006).

Dentre esses sistemas de liberação prolongada de fármacos por via oftálmica

estão os inserts oftálmicos (KIM; CHAUHAN, 2008).

44

Inserts oftálmicos são preparações estéreis, impregnadas com fármacos,

aplicadas no fórnice conjuntival, de forma a entrar em contato com a conjuntiva

bulbar. Os inserts oftálmicos podem ser divididos em três categorias: solúveis,

insolúveis e bioerodíveis. Para inserts insolúveis, normalmente o núcleo é um

reservatório de fármaco inserido entre membranas limitantes. Inserts oculares

permitem liberação controlada, redução na posologia e aumento do tempo de

contato com o tecido ocular, aumentando a biodisponibilidade. A expulsão e o

desconforto são dois possíveis problemas associados ao uso (GOOCH et al.,

2012).

O Ocusert® (Figura 10 a e b), um insert insolúvel, foi o primeiro sistema de

liberação prolongada utilizado na terapia ocular. Os dispositivos são constituídos

de membranas plásticas com tamanho de 1/3 do tamanho de uma lente de

contato e inseridos no olho sob a pálpebra inferior ou superior, na qual não pode

ser visto. O Ocusert promove liberação controlada (20 ou 40 µg/h por sete dias)

de pilocarpina e tem sido comercializado desde 1974. O implante é composto

por duas camadas de copolímero etileno-acetato de vinila (EVA) e uma camada

de pilocarpina em gel de alginato em di-(etilhexil)ftalato colocada entre as duas

camadas de EVA. O Ocusert não substituiu os colírios por causar desconforto ao

paciente e da necessidade de destreza manual e de educação do paciente para

colocar e retirar o insert, além da possibilidade de ejeção do implante do olho e

da irritação durante a inserção. Houve alterações no modelo original para melhor

encaixe e reduzir a chance de recusa do paciente. Inserts similares foram

desenvolvidos para liberação de outros fármacos, como o timolol (GOOCH et al.,

2012; KUNO; FUJII, 2011; LAVIK; KUEHN; KWON, 2011).

Já o Lacrisert® (Figura 10 c e d), introduzido no Mercado em 1981, é um insert

oftálmico estéril, translúcido, em formato de haste, solúvel em água e

biodegradável, composto por hidroxipropilcelulose, uma substância fisiológica,

administrado diariamente no fórnice conjuntival inferior para tratamento de

síndrome do olho seco. A liberação controlada do polímero (5mg/dia) estabiliza o

filme lacrimal pré-corneal e prolonga o tempo de quebra do filme. O insert reduz

os sinais e sintomas moderados a graves da síndrome do olho seco como

queratite seca, hiperemia conjuntival e pigmentação corneal e conjuntival e é

45

indicado para pacientes que permanecem sintomáticos após terapia com lágrima

artificial. O mercado de uso ainda é pequeno. A administração diária se mostrou

mais efetiva em aliviar os sintomas que o tratamento com lágrimas artificiais

quatro vezes ao dia. O implante pode ser administrado pelo próprio paciente até

duas vezes ao dia usando um aplicador especialmente desenhado e é

geralmente bem tolerado. Efeitos adversos incluem visão borrada, desconforto e

irritação ocular, embaraço e engrossamento de cílios, fotofobia,

hipersensibilidade, edema de pálpebra e hiperemia. Os resultados de pesquisas

com pacientes sobre conforto e preferência de produto favorecem o Lacrisert em

detrimento das lágrimas artificiais. Conceitualmente, outros inserts contendo

agentes redutores de PIO semelhantes ao Lacrisert podem ser formulados para

melhorar a liberação ocular de fármaco (GOOCH et al., 2012; KUNO; FUJII,

2011; LEE, S. S. et al., 2010).

Um implante subconjuntival de latonoprosta, desenvolvido pela Pfizer, está

sendo avaliado em estudos clínicos de fase I. O insert é composto por um tubo

do copolímero dos ácidos lático e glicólico (PLGA) contento um núcleo de

latanoprosta. Uma ponta do tubo é encapada com um polímero impermeável

(silicone), enquanto a outra ponta do tudo é encapada com o polímero

permeável (ácido polívinílico, PVA). O latanoprosta é liberado pela extremidade

contendo PVA e a duração do implante é de 3–6 meses (KUNO; FUJII, 2011).

Outros inserts incluindo revestimentos de colágeno e Ocufit SR® (Figura 10 e),

NODS e sistemas terapêuticos de minidisco ocular (Figura 10 f) foram

desenvolvidos. A falha terapêutica desses inserts está associada à relutância em

abandonar o tratamento tradicional e a ejeção ocasional (KUNO; FUJII, 2011).

Outra abordagem na otimização das formas farmacêuticas oculares é a

implementação do conceito de sistemas mucoadesivos, uma vez que, para estes

tipos de dispositivos, foi observado um aumento do tempo de residência pré-

corneal, devido às interações do dispositivo com a mucosa e com tecidos

oculares. Nesse contexto, alguns polímeros mucoadesivos mostraram não

apenas a capacidade de aumentar a biodisponibilidade do medicamento

46

aplicado, mas também de proteção ocular por apresentarem propriedades

curativas para as células epiteliais (LUDWIG, 2005).

Figura 10 - Inserts oftálmicos para liberação prolongada de

fármacos: (a) Ocusert® pilo; (b) Ocusert

® no olho do paciente; (c)

Lacrisert®; (d) Lacrisert

® no olho do paciente; (e) Ocufit

® SR; (f)

minidisco ocular. Fontes: sites comerciais das empresas.

1.3 Mucoadesão A mucoadesão é a capacidade de ligação de uma determinada substância a

uma mucosa. Nas últimas décadas, a mucoadesão se tornou de grande

interesse no desenvolvimento de produtos farmacêuticos devido ao seu

potencial em aumentar o tempo de residência da formulação na mucosa,

aumentar a retenção do fármaco na região de aplicação sem impedir a

absorção, aumentar a biodisponibilidade e aumentar a eficácia e a segurança do

fármaco por reduzir a concentração efetiva. Este fato está relacionado a um

contato íntimo e prolongado entre fármaco/polímero e os tecidos absorventes,

tais como pele e mucosas ocular, nasal, oral, vaginal, gastrintestinal e retal e,

também, com a possibilidade de se evitar o metabolismo hepático de primeira

passagem (ANDREWS; LAVERTY; JONES, 2009; SMART, 2005). Outras

vantagens das formulações mucoadesivas são a redução da degradação

enzimática devido ao contato íntimo do fármaco com a superfície de absorção e

inibição das enzimas de membrana, a liberação do fármaco em sítio específico,

47

e redução do custo total da formulação devido à redução da quantidade de

fármaco utilizada (ANDREWS et al., 2009). As desvantagens dos sistemas

mucoadesivos incluem possíveis ocorrências de efeitos ulcerosos prolongados

em virtude do tempo de contato prolongado com agentes com propriedades

ulcerosas, ausência de um bom modelo para seleção in vitro dos fármacos

adequados para esse tipo de administração e aceitação do paciente em termos

de irritação (KHURANA; MADHAV; TANGRI).

A mucoadesão é um fenômeno complexo. O mecanismo de ligação da forma

farmacêutica à mucosa envolve molhagem, adsorção e interpenetração das

cadeias poliméricas. O processo é divido em duas etapas: a primeira etapa ou

estágio de contato envolve o contato íntimo entre o mucoadesivo e a membrana

(molhagem e hidratação) e a segunda etapa ou estágio de consolidação envolve

a penetração do mucoadesivo na membrana mucosa (interpenetração) Figura

11 (CARVALHO, F. C. et al., 2010; KHURANA et al.).

Figura 11 - Estágios envolvidos no mecanismo

de mucoadesão (CARVALHO, F. C. et al., 2010)

Formulações mucoadesivas para a liberação de fármacos têm sido

desenvolvidas na forma de comprimidos, inserts e sistemas particulados, em

que, dentre outras possibilidades, os polímeros mucoadesivos formam a matriz

na qual o medicamento é disperso ou a barreira através da qual o fármaco deve

se difundir (SMART, 2005). A característica mucoadesiva dos polímeros

empregados nestas formulações não é surpreendente. Sua constituição

possibilita a formação de ligações químicas secundárias (interações

48

hidrofóbicas, interações de Van der Waals e ligações de hidrogênio) e ligações

químicas primárias (ligações covalentes) além de desenvolverem interações

eletrostáticas com moléculas com carga oposta (SALAMAT-MILLER;

CHITTCHANG; JOHNSTON, 2005; SMART, 2005).

Polímeros mucoadesivos podem permitir a liberação localizada de um agente

ativo em um sítio específico no corpo como o olho (DAVE et al., 2012). Dessa

forma, nos últimos anos, o uso de polímeros mucoadesivos se tornou uma

alternativa interessante para aumentar o tempo de residência pré-corneal de

formulações (DE LA FUENTE et al., 2010). O conceito de mucoadesão no olho

envolve buscar polímeros que se prendam à mucina conjuntival ou corneal, via

ligações não covalentes, e permaneçam em contato com o tecido pré-corneal

até que a renovação da mucina cause a eliminação do polímero. Em outras

palavras, quanto mais fraca a ligação mucina-mucina, mais forte a ligação

mucina-polímero.

Enquanto vários polímeros irão se ligar à mucina por ligação covalente e não

covalente, as ligações não covalentes são preferidas porque a força dessa

ligação é suficientemente forte para ser considerada irreversível. Por outro lado,

se a ligação é forte demais, o polímero pode oferecer resistência ao ato de

piscar e ao movimento ocular, tornando-se desconfortável. Um sistema

mucoadesivo ideal para uso oftálmico deve exibir propriedades adesivas fracas.

Polímeros mucoadesivos solúveis ou insolúveis em água podem ser colocados

na frente do olho e ligado à camada de mucina. Mucoadesivos solúveis em água

dissolvem-se lentamente no filme lacrimal enquanto os mucoadesivos insolúveis

em água serão retidos até a renovação da mucina (15-20 h) ou, mais

comumente até que a força do ato de piscar desloque o sistema mucoadesivo. A

maioria dos mucoadesivos insolúveis em água tem grupos hidrofílicos que

interagem com as moléculas de água e expandem a rede polimérica para um

estágio mais flexível e móvel. A força e a capacidade de emaranhamento do

polímero mucoadesivo em contato com o substrato mucoso hidrofílico permite

essa adesão ao substrato pra formar ligações adesivas (KASHIKAR, 2011)

49

Existem diversos polímeros bioadesivos disponíveis com variados graus de

capacidade mucoadesiva (DAVE et al., 2012). Duas classes de polímeros

mucoadesivos já foram aprovadas pela agência reguladora americana, FDA

(Food and Drug Administration): os derivados aniônicos de ácido poliacrílico

(Carbophil®) e o quitosana (FLORENCE; ATTWOOD, 2003).

1.4 Quitosana O quitosana é um polímero natural derivado da quitina. A quitina, poli (β-(1→4)-

N-acetil-D-glicosamina), é o segundo polissacarídeo mais abundantemente

encontrado na natureza. Ela pode ser obtida a partir do exoesqueleto de insetos

e crustáceos, particularmente caranguejos, camarões e lagostas (nos quais a

quitina existe como um polímero semicristalino) ou da parede celular de fungos.

Esse materiais podem se tornar a base de produção biotecnológica desse

material (CHMIELEWSKI, 2010; GEORGIEVA; ZVEZDOVA; VLAEV, 2012;

HEJAZI; AMIJI, 2003; YANG et al., 2007). A quitina é obtida a partir do

exoesqueleto de crustáceos por um processo de isolamento e purificação que

inclui o tratamento ácido para solubilizar o carbonato de cálcio, seguido de

tratamento alcalino, para extração de proteínas (RINAUDO, 2007).

Quitosana e quitina apresentam estruturas similares à celulose. A diferença

estrutural entre quitina e celulose se deve ao grupo hidroxila (-OH) da celulose,

localizado na posição C-2, que na quitina está substituído por grupos acetamido

(-NHCOCH3). Já o quitosana possui porcentagem variada dos grupos acetamido

da quitina hidrolisados (Figura 12). Assim, no carbono C-2 do anel piranosídico

do quitosana, há grupos amino (-NH2) alternados com grupos acetamido. A

variação do grau de grupos amino na estrutura do quitosana confere à mesma,

maior ou menor hidrossolubilidade em meio ácido (grande ou pequeno número

de grupos -NH2, respectivamente) (HAMILTON et al., 2006; LI, B. et al., 2011;

LIM, L. Y.; KHOR; KOO, 1998; RINAUDO, 2007; SHEN et al., 2011).

50

Figura 12 - Estrutura molecular simplificada da celulose,

quitina e quitosana.

A obtenção de quitosana a partir de quitina ocorre pela quebra de parte das

ligações N-acetil do polímero, levando à formação de grupos amino livres, e

pode ser realizada pelo método enzimático ou pelo processo de desacetilação

alcalina, sendo este último o mais comumente utilizado (CHMIELEWSKI, 2010;

WESKA et al., 2007; YANG et al., 2007). Assim, os quitosanas disponíveis

comercialmente não são completamente desacetiladas em relação à quitina.

Apresentam grupos acetila remanescentes da estrutura do polímero

completamente acetilado. Portanto, o quitosana é um copolímero constituído de

monômeros de N-acetil-D-glicosamina e D-glicosamina em proporções variáveis,

sendo composto predominantemente, por unidades D-glicosamina (HAMILTON

et al., 2006; LI, B. et al., 2011; LIM, L. Y. et al., 1998; RINAUDO, 2007; SHEN et

al., 2011).

O quitosana é uma base fraca em função de o resíduo de D-glicosamina possuir

um valor de pKa de cerca de 6,2 a 7,0. O polímero não se dispersa em pH

neutro e alcalino. Contudo, o quitosana forma sais com ácidos inorgânicos e

orgânicos tais como ácido clorídrico, ácido acético, ácido glutâmico e ácido

lático, dentre outros. Assim, em meio ácido, o polímero comporta-se como um

polieletrólito catiônico onde seus grupos amino são protonados, resultando em

uma forma dispersível do polissacarídeo, que se encontra positivamente

carregado com uma alta densidade de carga (uma carga para cada unidade de

D-glicosamina). Dessa forma, o quitosana é um polímero natural

pseudocatiônico (RINAUDO, 2007). Todavia, a dispersão do quitosana em meio

ácido não se deve apenas a seu comportamento como polieletrólito catiônico

51

das unidades de D-glicosamina, mas, também, ao rompimento das ligações

intermoleculares envolvendo os grupos N-acetil presentes.

O quitosana é hidrofílico como a celulose e a quitina, por ter um grande número

de grupos hidroxila. No entanto, possui melhor solubilidade e reatividade que

esse dois polímeros, devido aos grupos amino presentes em sua estrutura. O

quitosana ainda apresenta propriedade antimicrobiana, analgésica,

anticolesterolêmica, sequestrante de íons, antifibroblástica, curativa de feridas e

ação regenerativa óssea (LIM, L. Y. et al., 1998; LUDWIG, 2005; RINAUDO,

2007). Tudo isso faz com que esse polímero tenha diversas aplicações nas

áreas alimentícia, farmacêutica, cosmética, biomédica e biotecnológica, na

medicina veterinária, na gestão de resíduos, no tratamento de água, na

cicatrização e reparo tecidual e na liberação de fármacos e genes, dentre outros

(CHMIELEWSKI, 2010; LAVERTU et al., 2003; LI, B. et al., 2011; RINAUDO,

2007; SHEN et al., 2011).

Em função de ser um polímero atóxico, biocompatível e biodegradável

(características desejáveis e necessárias a polímeros usados como veículos para

fármacos), o quitosana tem sido utilizada como veículo em diversas formulações

farmacêuticas, como pós, comprimidos, emulsões, géis, filmes, fibras, esponjas,

esferas, soluções, etc. (GIANNANTONI et al., 2006; JARRY et al., 2002; LIU, W.

G.; DE YAO, 2002; RINAUDO, 2007; SHEN et al., 2011; VALENTA, 2005;

ZHENG et al., 2007).

1.4.1 Quitosana como polímero mucoadesivo Além de todas as características apresentadas acima, o quitosana tem se

mostrado um material mucoadesivo promissor em valores de pH fisiológicos por

possuir grupos amino (-NH2) e hidroxila (-OH) que podem dar origem a

interações químicas secundárias como ligações de hidrogênio e interações

eletrostáticas (VALENTA, 2005).

52

A propriedade mucoadesiva do quitosana está relacionada também com o fato

de o polímero ter uma superfície policatiônica que interage com a camada de

mucina que contém resíduos de ácido siálico (carga negativa), resultando no

desenvolvimento de forças atrativas que ajudam na geração do processo de

mucoadesão (Figura 13). As interações eletrostáticas desenvolvidas pelas

cargas opostas do polímero e do tecido são responsáveis pelo prolongamento

do tempo de retenção ocular de fármacos no olho, por exemplo. Assim, o caráter

mucoadesivo do quitosana é muito importante do ponto de vista do tecido ocular.

Além disso, interações hidrofóbicas podem contribuir para a mucoadesão

(BERNKOP-SCHNUERCH; DUENNHAUPT, 2012; WADHWA et al., 2009).

Figura 13 – Representação esquemática da natureza

mucoadesiva do quitosana, em virtude das interações iônicas (WADHWA et al., 2009)

Essa propriedade mucoadesiva tem sido ilustrada em diversas pesquisas. Um

estudo apresentou a capacidade do quitosana de aderir à mucosa gástrica in

vitro, o que pode sugerir uma liberação local específica do fármaco e, também,

prolongamento do tempo de residência da formulação no local de ação, com a

consequente melhora da absorção do fármaco (GASEROD et al., 1998;

GEORGE; ABRAHAM, 2006). Outro trabalho mostrou um aumento de três vezes

no tempo de residência pré-corneal da tobramicina (antimicrobiano) com a

53

adição de quitosana nas formulações, em comparação com a solução comercial

do fármaco (FELT et al., 1999).

1.4.2 Quitosana como inserts poliméricos de liberação controlada Dentre os diversos sistemas de liberação controlada disponíveis, as formas

farmacêuticas de insert surgiram como uma forma conveniente de liberação de

fármacos (PERUGINI et al., 2003). Eles são constituídos de matriz polimérica

podendo ser biodegradáveis ou não, dependendo do polímero utilizado na sua

formulação (BRUSCHI et al., 2006). Esses sistemas, assim como outros

sistemas de liberação controlada, têm a vantagem de permitir uma liberação

contínua, constante e prolongada do medicamento mantendo um nível estável

do fármaco no organismo do paciente e evitando efeitos adversos que poderiam

ocorrer como a administração convencional.

O maior emprego dos filmes está relacionado ao revestimento de comprimidos.

Revestimentos aprimorados em função do polímero escolhido permitem uma

liberação controlada de fármacos. Neste caso, eles devem ser cuidadosamente

elaborados por meio de técnicas como o processo de nebulização (spraying) ou

por solubilização e evaporação do solvente (solvent casting) (REDESCHI, 2006).

Outra forma de utilização dos filmes é por meio da administração direta ao

paciente, como formulações promissoras conhecidas também como inserts para

liberação controlada de fármacos no tratamento tópico de doenças. Um exemplo

desta abordagem é a utilização dos Inserts nas doenças da superfície ocular que

exigem instilações frequentes ou crônicas de colírio para manter níveis

terapêuticos do fármaco. Portanto, a utilização destes sistemas visa diminuir a

frequência de aplicação e consequentemente melhora da aceitação por parte do

paciente, influenciando a eficácia terapêutica. Neste caso, os inserts são

normalmente fabricados pelo processo de evaporação do solvente. Este

processo é descrito como sendo a solubilização/dispersão do fármaco em uma

dispersão polimérica. A dispersão é vertida em um recipiente e deixada secar

54

por meio da evaporação do solvente. Este processo resultará na obtenção do

filme seco (Figura 14) (RIBEIRO, 2010; RODRIGUES et al., 2009).

Figura 14 - Filme de quitosana

obtido pelo método de solvent casting (RIBEIRO, 2010)

Os inserts poliméricos podem ser utilizados na superfície ocular. Nesse caso, o

insert deve ser flexível e macio sendo que o intumescimento do insert, se

ocorrer, não deve ser muito extenso, a fim de evitar desconforto (SALAMAT-

MILLER et al., 2005). Além disso, é interessante que seja constituído por

polímero mucoadesivo, o que prolonga o tempo de permanência e promove uma

localização específica do sistema de liberação de fármacos no lugar de

aplicação para a desejada ação, evitando-se a drenagem lacrimal e reduzindo a

dose de fármaco utilizada (GRABOVAC; GUGGI; BERNKOP-SCHNURCH,

2005). O polímero a ser utilizado também deve ser biodegradável para evitar a

necessidade de remoção do insert e aumentar a aceitação do paciente ao

tratamento (PERUGINI et al., 2003).

Com isso, um bom equilíbrio entre aderência (mucoadesão), prolongado tempo

de permanência, liberação controlada, baixo potencial de irritação, tolerância e

aceitação pelos pacientes devem ser alcançados. O uso do quitosana como

matriz polimérica de inserts visa atender a todos estes requisitos, uma vez que

ele é um polímero natural, atóxico, biocompatível, mucoadesivo e, também,

biodegradável (CHEN; LIN; YANG, 1994; RINAUDO, 2007; SHEN et al., 2011).

55

2 OBJETIVOS 2.1 Objetivo geral Desenvolver e caracterizar inserts poliméricos de quitosana contendo fármacos

utilizados na terapia do glaucoma (bimatoprosta e dorzolamida) e avaliar a atividade

e a farmacocinética desses inserts em ratos.

2.2 Objetivos específicos - Otimizar os inserts poliméricos desenvolvidos durante a dissertação de mestrado

para liberação de bimatoprosta e dorzolamida;

- caracterizar os inserts poliméricos com e sem os fármacos morfologicamente por

microscopia eletrônica de varredura e fisico-quimicamente por análise térmica e

espectrometria no infravermelho, potencial de hidratação e pH de superfície;

- caracterizar os inserts poliméricos com fármaco com relação ao perfil de liberação

in vitro;

- avaliar os efeitos da esterilização por calor úmido nas propriedades físico-

químicas dos inserts;

- avaliar farmacocinética dos inserts por imagens cintilográficas e estudos de

biodistribuição ex vivo;

- avaliar a atividade dos dispositivos contendo bimatoprosta e dorzolamida na

redução da PIO, na contagem de células ganglionares da retina de ratos e na

escavação do nervo óptico de ratos com glaucoma induzido.

56

PARTE 2 – TRABALHO EXPERIMENTAL: MATERIAIS E MÉTODOS, RESULTADOS E DISCUSSÃO

57

MANUSCRITO 1

Bimatoprost-loaded ocular inserts as sustained release drug delivery

systems for glaucoma treatment: in vitro and in vivo evaluation

Artigo publicado no periódico PLOS ONE, v 9, n 4, p. e95461, 2014

58

BIMATOPROST-LOADED OCULAR INSERTS AS SUSTAINED RELEASE DRUG DELIVERY SYSTEMS FOR GLAUCOMA TREATMENT: IN VITRO AND IN VIVO EVALUATION

Juçara Ribeiro Franca1, Giselle Foureaux2, Leonardo Lima Fuscaldi3, Tatiana

Gomes Ribeiro1, Lívia Bomfim Rodrigues1, Renata Bravo1, Rachel Oliveira

Castilho1, Maria Irene Yoshida4, Valbert Nascimento Cardoso 3, Simone Odília

Fernandes3, Sebastião Cronemberger5, Anderson José Ferreira2, André Augusto

Gomes Faraco1

1Department of Pharmaceutical Products, Federal University of Minas Gerais, Belo Horizonte,

Minas Gerais, Brazil;

2Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais,

Brazil;

3Department of Clinical and Toxicological Analysis, Federal University of Minas Gerais, Belo

Horizonte, Minas Gerais, Brazil;

4Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais,

Brazil;

5Department of Ophthalmology and Otolaryngology, Federal University of Minas Gerais, Belo

Horizonte, Minas Gerais, Brazil;

Abstract

The purpose of the present study was to develop and assess a novel sustained-

release drug delivery system of Bimatoprost (BIM). Chitosan polymeric inserts

were prepared using the solvent casting method and characterized by swelling

studies, infrared spectroscopy, differential scanning calorimetry, drug content,

scanning electron microscopy and in vitro drug release. Biodistribution of 99mTc-

BIM eye drops and 99mTc-BIM-loaded inserts, after ocular administration in Wistar

rats, was accessed by ex vivo radiation gamma counting. The inserts were

evaluated for their therapeutic efficacy in glaucomatous Wistar rats. Glaucoma

was induced by weekly intracameral injection of hyaluronic acid. BIM-loaded

inserts (equivalent to 9.0 μg BIM) were administered once into conjunctival sac,

after ocular hypertension confirmation. BIM eye drop was topically instilled in a

second group of glaucomatous rats for 15 days days, while placebo inserts were

administered once in a third group. An untreated glaucomatous group was used

59

as control. Intraocular pressure (IOP) was monitored for four consecutive weeks

after treatment began. At the end of the experiment, retinal ganglion cells and

optic nerve head cupping were evaluated in the histological eye sections.

Characterization results revealed that the drug physically interacted, but did not

chemically react with the polymeric matrix. Inserts sustainedly released BIM in

vitro during 8 hours. Biodistribution studies showed that the amount of 99mTc-BIM

that remained in the eye was significantly lower after eye drop instillation than

after chitosan insert implantation. BIM-loaded inserts lowered IOP for 4 weeks,

after one application, while IOP values remained significantly high for the placebo

and untreated groups. Eye drops were only effective during the daily treatment

period. IOP results were reflected in retinal ganglion cells (RGC) counting and

optic nerve head cupping damage. BIM-loaded inserts provided sustained

release of BIM and seem to be a promising system for glaucoma management.

Introduction Glaucoma is an ocular disorder with multi-factorial etiology, characterized by a

slow progressive degeneration of retinal ganglion cells (RGC) and optic nerve

axons [1,2]. The disease is the second leading cause of blindness and,

worldwide, it is estimated that about 66.8 million people have contracted some

form of visual impairment from glaucoma, with 6.7 million suffering from

blindness [3-5]. The most important risk factor for glaucoma is intraocular

pressure (IOP) elevation. Progressive visual loss is associated with increased

IOP, which damages the optic nerve [6-8]. Primary open-angle glaucoma (POAG)

is the most common type of glaucoma [9]. In POAG it is not possible to establish

a clinical cause to neurodegeneration or to IOP elevation [10,11]. POAG therapy

usually begins with medications [3].

Prostaglandin analogs have become the first therapeutic class of choice for

medical treatment of POAG because of their improved efficacy and tolerability

[12,13]. Prostaglandin analogs are able to control IOP, primarily by increasing

uveoscleral outflow via remodeling of the ciliary body [14]. Bimatoprost (BIM) is a

prostaglandin analog chemically related to prostamide F2α [15]. The mechanism

60

of IOP lowering induced by BIM is not completely understood. Some authors

suggest that BIM is an agonist to „„prostamide‟‟ receptor [16-18], while another

study in human eye tissues has shown that BIM is rapidly hydrolyzed in cornea,

iris, sclera, and ciliary muscle to its corresponding 17-phenyl-prostaglandin F2α

metabolite (free acid), known to be active at the prostaglandin F receptor [19].

Another recent work also suggested that both BIM and its metabolite promote

protective effects on the RCG against oxidative stress [14].

Eye drops are still the mainstay eye disease management, accounting for

approximately 90% of all ophthalmic treatments. Nevertheless, only 1% to 7% of

the administered drugs actually reach the aqueous humor [20-22]. The

inefficiency of this route stems mainly from the precorneal tear clearance

mechanism, the highly selective corneal epithelial barrier, and patient

compliance, a factor that is quite unpredictable and difficult to control [22].

Clinically, in glaucomatous patients, variable bioavailability of the active

ingredients results in diurnal IOP fluctuation [23]. Moreover, patients tend to

present inadequate adherence to their daily therapeutic regimen [23]. These

factors may result in therapeutic inefficacy and progression of the glaucoma

damage. Therefore, the development of new vehicles and drug formulations that

require less patient effort and enhance the drug bioavailability represent an

important aspect in controlling the evolution of this disease [22].

Sustained-release drug delivery systems have been developed to overcome eye

drops limitations [24]. These systems can achieve prolonged therapeutic drug

concentrations in ocular target tissues, while limiting systemic exposure and side

effects and improving patient adherence to therapy [25]. Ocular inserts are solid

or semi-solid devices meant to be placed in the conjunctival sac (between the

lower eyelid and the eye itself) to deliver drugs on the ocular surface [26]. These

devices are designed to release the drug at a constant rate for a prolonged time

while minimizing systemic absorption through the nasal mucosa and improving

patient compliance due to a reduced frequency of administration. Inserts are

often matrix based and made of degradable polymers, such as Chitosan (CS)

[22,27].

61

CS is a natural carbohydrate polymer, has number of applications in the field of

ophthalmics and has attracted a great deal of attention from the scientific

community and environmentalists due to its unique features [28]. CS is a

biodegradable, nontoxic, and biocompatible polymer [29], which can enhance the

intraocular bioavailability of both hydrophilic and lipophilic drugs [29,30].

Moreover, CS is a promising mucoadhesive material in physiological pH [31-34].

Due to interactions with the mucus layer or the eye tissues, an increase in the

precorneal residence time of the preparation can be observed, leading to an

increase in the bioavailability of the drug instilled [21]. Thus, mucoadhesive

ocular inserts (such as CS-based inserts) could increase the precorneal drug

retention (to delay washout), which may result in an enhanced formulation

bioavailability.

In this regard, to improve patient compliance by lowering the frequency of

administration and to enhance therapeutic effectiveness of glaucoma medical

treatment, this research aimed at formulating, physicochemically and in vivo

evaluating CS-based inserts for a sustained release of BIM, which were able to

lower IOP over four weeks after one application, without causing any damage to

the animals.

Materials and Methods Materials Medium molecular weight CS and Bimatoprost were supplied by Sigma-Aldrich®.

All other reagents were of analytical grade.

Preparation of BIM-loaded inserts Inserts were prepared as monolayer films by employing the solvent/casting

technique, according to Rodrigues et al. [35]. First, 75 µL of acetic acid was

added to 5 mL of an aqueous solution containing 1.5 mg of BIM homogeneously

dissolved. Next, 250 mg of CS was added in this solution. This viscous

62

dispersion was magnetically stirred overnight to ensure homogeneity of both drug

and polymer. Then, it was cast, at room temperature, in circular silicone-molded

trays (SMT) containing individual 5 mm × 2 mm wells [36] to produce BIM-loaded

inserts (BI). After casting, inserts were carefully removed from the SMT and

stored in receptacles, protected from light and air humidity. Placebo inserts (PI)

were produced in a similar manner, by adding 250 mg of CS to 5 mL of a solution

containing 75 µL of acetic acid in water.

Characterization studies Swelling studies Inserts swelling studies were carried out in a phosphate buffer solution (pH 7.4)

(PBS). Each insert was weighed and placed in PBS for predetermined periods of

time (5, 10, 20, 40, 60, and 90 min) as described by Eroglu et al. [37]. After

immersion, the inserts were removed from the medium, the excess surface water

was removed by using filter paper, and the pieces were weighed. The degree of

swelling was calculated by using the equation: Swellingindex = [(Wt-W0)/W0].

[38].

The weight of the swollen insert after predetermined periods of time (t) is

represented by Wt. The original weight of the insert at zero time is represented by

W0. This experiment was performed in triplicate.

ATR-FTIR analysis Attenuated Total Reflectance Fourier Transformed Infrared spectroscopy (ATR-

FTIR) spectra of all the inserts and of the original polymer powders were

recorded on a PerkinElmer FTIR Spectrometer, Model Spectrum One (USA).

63

DSC analysis Thermal properties of the inserts were also evaluated. Differential Scanning

Calorimetry (DSC) measurements were carried out in a Shimadzu DSC50.

Samples (inserts, powder CS, and powder chitosan) were packed in an

aluminum crucible and heated at a rate of 10°C/min. Nitrogen, at the rate of 20

mL/min was used as a purge gas during the role analysis. The specimens were

heated from −50°C to 200°C (RUN 1). The specimens were then cooled to −50°C

at the same rate of 10°C/min, at which point they were reheated to 400°C at a

rate of 10°C/min (RUN 2).

SEM analysis The inserts morphology was studied using a JEOL scanning electron microscope

(SEM), model JSM-6360LV, operating at 15 kV. The samples were prepared by

freezing the inserts in liquid nitrogen. Then, the inserts were fractured. Next, the

surface and sides of the inserts were analyzed. The devices were analyzed at

suitable acceleration voltages using varying magnification for each sample.

Representative micrographs were also taken.

Determination of BIM The high performance liquid chromatography (HPLC) method was chosen to

quantify the amount of BIM loaded in the inserts. A Waters HPLC with Pump

Control Module (PCM II), a Binary Pump System Waters 515 CLAE Pump, a

Waters 717 Plus Autosampler, and a Waters 486 Turnable Absorbance Detector

were used. Merck Column Lichro CART 100 (ODS) of 250 x 4.6 mm, with a

particle size of 5 μm, was used for the stationary phase at room temperature. The

mobile phase, at a flow rate of 1.0 mL/min, was comprised of

methanol/acetonitrile/phosphoric acid at 0.1vol% (30:30:40), and detection was

performed at 210 nm. The solvents were of HPLC grade (Tédia Brazil). Samples

were dissolved in PBS. After filtration on a 0.45 µm membrane made of

regenerated cellulose (Sartorius®, Sweden), 20 µL of the samples were

64

automatically injected into the apparatus. The method was validated in

accordance with the ICH guidelines. BIM, at a concentration of 3.0–15 μg/mL in

PBS, was used as a standard solution (phosphate buffer solution, pH 7.4) (y=

26433.5x+ 880.449, R2=0.9994; n=3).

Drug Content uniformity Drug Content uniformity was performed according to the Brazilian Pharmacopeia

[39]. Each ocular insert was hydrated with 100 µL of acetic acid. After 30 minutes,

900 µL of water was added to dissolve the insert. The solution was filtered and

suitably diluted. The BIM content was analyzed by HPLC. This test was

performed on 10 ocular inserts.

In vitro drug release In vitro drug release was evaluated using the Franz cell system. A cellulose

acetate membrane with 0.45 μm pores was used to split the insert compartment

from the receptor liquid compartment. PBS was used as a receptor liquid, and the

glass cells were incubated at 37±0.5°C. At appropriate time intervals, all the

receptor liquid was withdrawn from the glass cells, and an equal volume of the

same receptor liquid was added to maintain a constant volume. The amount of

drug released was evaluated by HPLC. The experiment was performed in

quintuplicate.

In vivo studies Animals Male Wistar rats weighing 180 to 220 g were obtained from the animal facility of

the Faculty of Pharmacy, Federal University of Minas Gerais. The animals were

housed in a temperature-controlled room (22-23 °C) with a 12-12h light-dark

cycle. Water and food were available ad libitum. The experimental protocols were

performed and approved in accordance with institutional guidelines by the Ethics

65

Committee in Animal Experimentation of the Federal University of Minas Gerais,

Brazil (CETEA-UFMG), which are in accordance with the National Institutes of

Health (NIH) Guidelines for the Care and Use of Laboratory Animals (protocols nº

251/11 and 211/13). In addition, this study conforms to the Association for

Research in Vision and Ophthalmology (ARVO) statement for the use of animals

in ophthalmic and vision research.

Biodistribution studies Biodistribution studies were based on the administration of free and entrapped

BIM, radiolabeled with technetium-99m (99mTc). The method for 99mTc labeling of

BIM was developed in our laboratory, based on the radiolabeling protocols

developed by Nunan et al. [40] and de Barros et al. [41], with modifications. BIM

was dissolved in 1.0 mL of phosphate buffer (pH 7.4) and radiolabeled with 99mTc

by direct labeling method using stannous chloride as reducing agent. Purification

was processed by the addition of 200 mg of G60 silica to the radiolabeled

solution. After 15 minutes, suspension was centrifuged at 10,000 rpm during 10

minutes and supernatant was recovered. Radiochemical purity analysis of 99mTc-

BIM was performed by instant thin-layer chromatography on silica gel strips

(ITLC-SG, Merck), using a two-solvent system: saline and ethyl acetate/acetone

(5:95) to determine the amount of free technetium (99mTcO4-) and hydrolysed

technetium (99mTcO2), respectively. 99mTc-BIM solution was used to prepare BI as

described earlier.

99mTc-BIM (free and in the insert) was topically administered in the right eye of

Wistar rats (n = 5), as decribed above. At 8 and 18 hours post-administration,

rats were anesthetized intramuscularly with a solution of ketamine (70 mg/Kg)

and xylazine (10 mg/Kg) and, then, euthanized. Organs and tissues of interest

(spleen, liver, stomach, small and large intestines, kidneys, blood and eyes) were

harvested. Then, each organ and tissue was weighed and its associated

radioactivity was determined in an automatic gamma counter (Wizard, Finland).

The results were expressed as the percentage of radioactivity per gram of tissue

66

(% cpm/g). Data were statistically analyzed by means of unpaired t test, using

PRISM 5.0 software.

In vivo efficacy

Unilateral glaucoma was induced in the right eye by injection of 30μL of

hyaluronic acid (HA) (10mg/mL) into the anterior chamber through the clear

cornea, near the corneoscleral limbus using an hypodermic needle (22 gauge),

once a week, for 6 weeks, on the same calendar day and time, according to

Moreno et al. [42]. Rats were anesthetized intramuscularly with ketamine (70

mg/kg) and xylazine (10 mg/kg). In addition, two drops of 0.4% benoxinate

hydrochloride were instilled directly on the cornea as a local anesthetic. No

procedure was performed in the contralateral eye (control groups). Evaluation of

IOP and mean arterial pressure (MAP) were carried out one day before the next

HA injection.

BI was placed, once, into the conjunctival sac after the establishment of ocular

hypertension (immediately after the second induction). A marketed formulation of

BIM eye drops were used as positive control. In this case, animals were treated

daily during two weeks. The treatment was also started immediately after the

second induction. Untreated animals and PI were used as negative controls. PI

was also placed once in the conjunctival sac immediately after the second

induction. Five animals were used in each group. Both eyes (sick and healthy) of

each animal were submitted to the same treatment. Inserts were hydrated with

saline for 30 seconds before administration.

IOP measurements were performed using an applanation tonometer TonoPen XL

(Mentor, Norwell, MA, USA) which was calibrated before use by an experienced

person. A topical anesthetic (benoxinate hydrochloride 0.4%) was applied to each

eye prior to the measurement of IOP. To obtain the measures, non-sedated

animals (n=5) were carefully contained with a small cloth and three readings of

IOP (with standard error less than 10%) were acquired in each eye. The average

of these three measures was considered the corresponding value of IOP. IOP

67

measurements were performed at the same time each day or week (between

11:00 AM and 12:00 PM) to correct diurnal variations in IOP. The tonometrist was

masked to the treatment and an assistant performed the randomization process.

Mean arterial pressure (MAP) was evaluated by a tail-cuff method, which is a

noninvasive computerized system for measuring blood pressure (Kent Scientific

Corporation, Torrington, CT, USA). This tail-cuff blood pressure system utilizes

volume pressure recording sensor technology to measure the rat tail blood

pressure. The animals (n=5) were acclimated one day before the beginning of

the experiments to restraint and to tail-cuff inflation. The restraint platform was

maintained at approximately 32-34°C. For each session the rat was placed in an

acrylic box restraint and the tail was inserted into a compression cuff that

measured the blood pressure 15 times to calculate the average.

Animals were euthanized and both eye were enucleated for histological analysis.

After enucleation, two small sagittal sections were made in each side of the eyes.

Then, they were immediately immersed in Bouin‟s fluid for approximately 24

hours. Thereafter, they were dehydrated in increasing concentrations of ethanol

(70, 80, 90, 95 and 100%), diaphanized in xylene, and included and embedded in

Paraplast. Semi-serial 6 μm-sections (60 μm of interval) were obtained using a

microtome (model HM335E, Microm, Minnesota, USA). For histological analysis

and RGC counting, histological sections were stained with hematoxylin-eosin

(HE).

Statistical analyses Data were expressed as mean ± SEM. Comparative results were analyzed using

unpaired t test (for Biodistribution) and one-way ANOVA followed by the Tukey

post-test (for PIO, MAP and RCG counting). All these tests were performed using

the GraphPad Prism 5 software. Results were considered significant at the

p<0.05 level.

68

Results Characterization studies and in vitro drug release

Chitosan polymeric inserts were produced as circular flexible films with 5 mm of

diameter. Physicochemical interactions between drug and polymeric matrix were

evaluated by different techniques. Results of the characterization studies are

presented below.

Swelling indexes of inserts are shown in Fig. 1.1. Inserts hydrated very quickly,

reaching more than 80% of total hydration in the first 20 min. The effects of BIM

on the swelling behavior are also presented in Fig. 1.1. The water soluble drug

(BIM) decreased the water uptake of BI, compared to PI. During the

accomplishment of the test, the integrity of the tested films was not lost.

69

Figure 1. 1 - Swelling index of PI and BI in a buffered solution

medium (PBS; pH 7.4). Values expressed as mean ± SD.

Fig. 1.2 shows the ATR-FTIR spectra PI and BI. In both spectra, two

characteristic absorption bands of CS were detected at 1634 and 1538 cm-1 and

attributed to amide I (C=O stretching) and to N-H (amine) vibration overlapped to

amide II (N-H vibration), respectively. In the FTIR spectrum of PI, the wide and

overlapped absorption band at 3258 cm-1 was due to the stretching vibration of

the O-H and N-H bonds [35,43,44]. From the FTIR spectra of BI, it can be seen

that the first band shifted to a higher frequency (from 3258 to 3264 cm-1) and

widened.

70

Figure 1. 2. ATR-FTIR spectra of PI (a) and BI (b). BIM shifted first band to a higher

frequency (from 3258 to 3264 cm-1

) and widened.

Fig. 1.3 shows the DSC curves of PI and BI. PI presented a broad endothermic

peak at 62.19°C , as well as a broad exothermic peak at 310.39°C on the first

and second runs, respectively. Both peaks are irregular and can be attributed to

an evaporation of residual water and a degradation of the main chain,

respectively [35,45,46]. The degradation peak of CS was dismembered and an

increase in the degradation temperature from 310.38°C to 342.90°C could be

observed when BIM was added to the inserts.

71

Figure 1. 3 - DSC curves of PI and BI. (a) First

run; (b) second run.

Morphological characterization of inserts was performed by SEM analysis. SEM

pictures of PI and BI are shown in Fig. 1.4. From surface images (Fig. 1.4 a), it is

possible to notice that inserts showed an irregular surface. However, it is not

possible to identify drug crystals in this surface, suggesting the miscibility of the

drug in the polymer matrix. Lateral images (Fig. 1.4 b) shows that the insert

polymeric matrix is homogeneous, compact, without any kind of crystallized or

granular particles and have about 50 μm of thickness.

(a)

72

Figure 1. 4 - Representative SEM photomicrographs

of Bimatoprost-loaded inserts. (a) surface; (b) lateral. Bar indicates the thickness of the insert.

The drug content in formulations was proved to be uniform. BIM was found at

9.009 ± 0.030 µg/insert. CS inserts reached a controlled-release profile (greater

than 4 hours). The Fig. 1.5 showed the biphasic kinetic from release to BI. In the

first stage it can be observed a burst release and subsequently an extended

release of the drug. BI released 100% of the drug in 8 hours.

Figure 1. 5 - In vitro release profile of

BIM from BI. Values expressed as mean ± SD.

Biodistribution studies

BIM was radiolabeled with radionuclide Tc-99m for biodistribution studies. The

latter was chosen as it emits low-energy gamma rays that do not lead to serious

73

health hazards. BIM was instantaneously labeled with 99mTc. Radiolabeling

procedure can yield two mainly radiochemical impurities, free technetium

(99mTcO4-) and hydrolysed technetium (99mTcO2). In both mobile phases,

99mTcO4-reaches to the top of the ITLC strip (Rf= 0.9-1.0), whereas 99mTcO2

cannot travel much due to the difference in molecular weight and is retained at

the base of the ITLC strip (Rf = 0.0). 99mTc-BIM is a hydrophilic compound, which,

similarly to 99mTcO4-,migrates to the top of the ITLC strip with saline and remains

at the point of application when ethyl acetate/acetone (5/95) is used as eluent,

like 99mTcO2. Then, saline was used to determine the amount of 99mTcO2, whereas

ethyl acetate/acetone (5/95) was used to quantify 99mTcO4-. After preliminary BIM

radiolabeling studies, which included the adjustment of labeling parameters, such

as the amount of stannous chloride and pH, labeling procedure were optimized

and an amount of 20 μg of stannous chloride and a pH of 7.0 were found to give

the maximum labeling efficiency (89.38%), after purification.The results showed

low levels of radiochemical impurities, allowing for images of better quality.

Results of biodistribution studies are presented in Fig. 1.6. At 8 h post-

administration, 34.2 ± 24.8% of 99mTc-BIM from eye drops and 47.7±4.4% of

99mTc-BIM from the inserts remained in the right eye. On the other hand, at 18 h,

only 5.6 ± 3.1% of 99mTc-BIM from eye drops persisted in the right eye, whereas

29,9 ± 10,9% of 99mTc-BIM from the inserts was still present in the application

site. In other words, the inserts prolonged retention of 99mTc-BIM at the corneal

site and reduced the extent of nasolacrimal drainage. The 99mTc-BIM cleaned

from the eye after eye drop instillation accumulated preferentially in the large

intestine and in the kidneys, while 99mTc-BIM cleaned from the eye after insert

application accumulated preferentially in the stomach and in the large intestine.

74

Figure 1. 6 - 99mTc-BIM biodistribution profile after eye drops

instillation and chitosan inserts implantation. Values are expressed as „mean ± SD‟ (n = 5). (*p<0.05 for 8 h vs. 18 h and

#p<0.05 for eye

drops vs. inserts). Unpaired Student t test.

In vivo efficacy

The ability of the inserts to controlled release BIM in vivo was tested in an

experimental model of glaucoma induced by intraocular injection of HA. Fig. 1.7

shows the IOP of all experimental groups during the period of 6 weeks (a,

glaucomatous eye; b, normal eye). Before the first induction, the IOP of all the

groups was at normal levels. After first induction, a significant increase in the IOP

of all glaucomatous groups was observed. There was no difference between the

groups (p=0.2024). At this point, the treatment started. For the following four

weeks after the treatment, it was observed that, while the IOP of non-treated

glaucomatous animals and of glaucomatous animals treated with PI remained

significantly high, the IOP of glaucomatous animals treated with BI was

significantly lowered. The marketed formulation containing BIM reduced IOP for

two weeks (period of eye drop instillation) but, when the treatment was

interrupted, the IOP increased again. No significant changes in the IOP were

induced by treatment of non-glaucomatous animals with BI or with marketed

formulation (Fig. 7 b).

75

Figure 1. 7 - Effects of administration of BI on IOP. (a) Glaucomatous groups;

(b) non-glaucomatous groups. Treatments initiated after confirmation of the elevated IOP, i.e. after second week. Values expressed as mean ± SD. *p<0.01 vs. untreated. One-way ANOVA followed by the Tukey post test.

The anti-glaucomatous effects of the BI did not change the MAP. The IOP

lowering effects of BI were followed by preservation of the RGC. As viewed in

Fig. 1.8 a, non-treated glaucomatous animals and glaucomatous animals treated

with PI showed a large reduction in the number of RGC (glaucomatous non-

treated group: 393.2 ± 31.5 cells; glaucomatous PI group 408.2± 43.4 cells).

Similar reduction was not noticed in glaucomatous animals treated either with

marketed formulation containing BIM or with BI (473.5 ± 27,9 cells in control

76

group; 502.0 ± 23,2 cells in the glaucomatous BIM eye drops group; 502.8 ± 18,6

in glaucomatous BI group). Again, no significant changes were induced by BI in

non-glaucomatous animals (Fig 1.8 b).

Figure 1. 8 - Figure 8. Effects of administration of BI on RGC counting.

Quantification of RCG in retinas of (a) glaucomatous groups, compared to control (*p<0.05 vs. control and

#p<0.05 vs. untreated glaucoma) and (b) non-

glaucomatous groups. Values expressed as mean ± SD. One-way ANOVA followed by the Tukey post test.

Representative histological images of retina showing RGC loss in glaucomatous

groups are presented in Fig. 1.9. Additionally, the reduction in the number of

RGC caused by elevated IOP led to a severe loss of neural fibers with

consequent increase in the optic nerve head cupping (Fig. 1.10). These effects

were abolished by the treatment with BI. Altogether, these data indicated that

controlled release of BIM induced a neuroprotection by decreasing the loss of

RGC and neural fibers.

77

Figure 1. 9 - Histological analysis of retinal ganglion cells (RGC).

Representative photomicrographs of retinas showing the smaller number of RCG in non-treated and PI-treated glaucomatous rats and the beneficial effect of BIM in this parameter. (a) Non-glaucomatous animals; (b) untreated glaucomatous animals; (c) PI glaucomatous animals; (d) BIM eye drops glaucomatous animals; (e) BI glaucomatous animals.

78

Figure 1. 10 - BIM induced neuroprotection in retinas of glaucomatous rats.

Representative photomicrographs of excavation of the optic nerve (arrows). (a) Non-glaucomatous animals; (b) untreated glaucomatous animals; (c) PI glaucomatous animals; (d) BIM eye drops glaucomatous animals; (e) BI glaucomatous animals. Note an exacerbation of the excavation in untreated and PI glaucomatous animals (b and c) when compared with all other groups. This effect is reverted by BIM.

During in vivo efficacy test, eventual eye irritation caused by the insert was

evaluated. In all experiments, the inserts were well tolerated. No symptoms of

ocular lesions, such as tearing, redness, edema, and inflammation, could be

observed during the experimental assays. No anterior chamber inflammation or

corneal changes were observed. Ocular surface structures and intraocular

tissues proved to be normal. Furthermore, fluorescein staining did not indicate

corneal or conjunctival ulcerations.

79

Discussion

Ocular drug delivery has been a major challenge to pharmacologists and drug

delivery scientists due to its unique anatomy and physiology [47]. An ideal

therapy for chronic diseases, such as glaucoma, should maintain effective levels

of drug for the longer duration following a single application [48]. Novel drug

delivery strategies that provide controlled release for the treatment of such

diseases and increase the patient‟s and doctor‟s convenience to reduce the

dosing frequency and invasive treatment have been developed to sustain drug

levels at the target site [47,49]. Likewise, a great deal of attention is paid to

develop non-invasive sustained drug release for eye disorders [48].

Within this context, we developed CS-based ocular inserts for sustained release

of BIM, a highly efficacious ocular hypotensive agent [17]. CS, as well, seemed to

be an adequate polymeric matrix due its biodegradable, nontoxic, biocompatible

and mucoadhesive proprieties [29,31-34]. Inserts were prepared as circular

flexible membranes with 5 mm of diameter and about 50 μm of thickness (Fig.

1.4). Ocular insert used in animal or human clinical trial showed a thickness of 70

to 500 μm [50] suggesting that the inserts developed in our work have a suited

breadth for clinical use.

Inserts hydrated very quickly (Fig. 1.1). BIM (hydrophilic drug) decrease the

swelling index of BI, compared to PI. This fact, suggesting that there are

intermolecular interactions between the drug and the polymeric matrix, is in

agreement with the findings of Panomsuk et al. [51], in which the addition of

mannitol to methylcellulose matrix also reduced the swelling index of the

membranes. This result indicates the formation of hydrogen bonding between the

drugs and the polymeric matrix. Therefore, the greater the number and strength

of hydrogen bonding sites, the slower the diffusion of the water molecules in the

hydrated matrix [51]. The presence of hydrogen bonding was further confirmed

by ATR-FTIR spectra of BI (Fig. 1.2), in which O-H stretching bands were shifted

to higher wave number. In this case, those changes provide evidence of the

intermolecular interaction between the hydrophilic drug and polymeric matrix.

80

In DSC curves (Fig. 1.3 b), it was observed that BIM addition dismembered the

degradation peak of CS in two other peaks and increased the degradation

temperature of the main chain of CS [45,46]. This data indicates that the drug

interacted with the matrix, in turn hampering the degradation of the matrix.

Moreover, this finding corroborates those of ATR-FTIR spectra and swelling

studies. These results suggest that the polymer and the drug interacted through

hydrogen bonding.

Apart from the increase in O-H stretching wave number, no other changes in CS

infrared spectrum were detected due the addition of BIM (Fig. 1.2), leading to the

conclusion that there was no obvious chemical reaction between the drug and

the matrix, in turn suggesting that the drug did not lose its activity in the drug-

loaded inserts.

From the morphological characterization (Fig. 1.4), it was not possible to identify

crystallized particles in the middle or on the surface of the inserts containing BIM

that could be attributed to drug crystals, suggesting that the drug was molecularly

dispersed within the polymeric matrix. Both surface and lateral areas of inserts

were homogeneous. The standard error of measurement (SEM) of drug content

uniformity was very low (0,33%). It could be concluded that the drug dispersed

uniformly throughout the inserts [52], as predicted by the SEM analysis.

In vitro drug release studies (Fig. 1.5) indicated that there is a biphasic kinetic of

BI release. This fact can be explained based on the effect of drug solubility and

inserts hydration. In this case, the drug used is highly soluble in aqueous media

and can pass through the porous structure of inserts. PBS was used as receptor

fluid in the Franz cell and hydration of the inserts was very fast, as described

above (80 % in the first 20 min). These two factors together may have

contributed to the burst effect observed.

On the other hand, in vitro drug release studies (Fig. 1.5) indicated that inserts

were able to sustainedly release BIM. Although the drug is hydrophilic, the in vitro

release data demonstrate that there is a certain time to release the drug content

of the inner polymer matrix. As described above, this difficulty is associated with

81

greater interpenetration of the polymer matrix in the main chain caused by

greater interaction between the drug and the matrix itself, reducing the inflow of

water into the matrix (after initial hydration) and consequently decreasing the

release time of the drug.

Biodistribution studies were performed in order to evaluate the difference

between 99mTc-BIM and 99mTc-BIM inserts drainage extension, at 8 and 18 hours

post-ocular administration. Since the main route of drug elimination from the eye

is nasolacrimal drainage, the gastrointestinal organs (stomach and intestines)

were collected. Moreover, in order to evaluate possible absorption, blood and

common organs of drug elimination (liver, spleen and kidneys) were also

harvested. It was evidenced that CS was able to enhance precorneal retention

time of BIM, which is probable due to the mucoadhesive proprieties of the

polymeric matrix. It has already been proved that CS shows a prolonged

precorneal residence time when delivered in the eye [53,54]. Here, we

demonstrated that CS was able to confer this property to BIM, most likely

because of the physicochemical interaction between the drug and the polymeric

matrix. An increment on the precorneal retention time of the drugs associated

with polymeric matrix was reported by Gupta et al., when evaluated PLGA

nanoparticles entrapping 99mTc-sparfloxacin [55] or 99mTc-levofloxacin [56] and

PVA inserts entrapping 99mTc-DTPA[57]. Preferable sites of 99mTc-BIM

accumulation were kidney and gastrointestinal tract (stomach, small intestine and

large intestine), which are the two most important ways of elimination of BIM [58].

Reduction of IOP has long been the standard treatment for glaucoma [59].

Thereby, the effectiveness of the inserts was first evaluated by measuring the

changes in IOP of glaucomatous rats caused by the inserts application. As

expected, IOP lowering with conventional eye drop was only maintained during

the daily treatment. As soon as the treatment was interrupted, IOP increased

again. BI, on the other hand, were able to reduce IOP for four week after one

application. These results showed a different drug delivery profile when

comparing the in vitro and the in vivo experiments. It can be due to the fast in

vitro drug release in the Franz cell system. So, the drug will be released

constantly and fast, as described above. In the eye, such condition does not

82

happen because the present liquid is the small and limited volume of the tears.

Then, in this case, the drug will be released more slowly than in vitro. In other

words, our results suggest that therapeutic regimen of BIM could be reduced

from daily to monthly.

If, on the one side, reduction of IOP is essential on treatment for glaucoma [59],

by other, RGC damage is responsible for the loss of vision [14]. So, at the end of

the treatment, we also evaluated histological sections of retina in optic nerve area

in order to determine RGC loss and optic nerve head cupping. As predicted, both

non-treated groups have showed significant RGC loss, while in both treated

groups (eye drops or inserts), the RGC number was statistically equal to the

number of non-glaucomatous animals, indicating that treatment with BIM also

promoted neuroprotection [14]. It is important to underline that the same

neuroprotection effect was obtained when BI was administered once or when

BIM eye drops were administered daily for two weeks. The amount of BIM in one

insert is equivalent to the amount of BIM in one drop.

In 2011, Robinson et al. developed polymeric systems for the sustained release

of BIM [60,61]. The main innovation of the present system, as compared with that

developed by Robinson et al., is that, while their system must be implanted in the

anterior chamber of the eye, requiring a surgical procedure, the present system

can simply be applied topically on the conjunctival sac, a non-invasive procedure.

In 2013, Shafiee et al. proposed a DuraSite system to reduce the dosing

frequency of BIM administration. BIM formulated in DuraSite system had ocular

bioavailability superior to that of the conventional eye drops. Commercial

DuraSite systems (AzaSite and Besivance) are still administered daily [62].

Natarajan et al., developed liposomes for sustained release of Latanoprost, a

prostaglandin analog similar to BIM [61]. The sustained release of Latanoprost

was achieved; however, the process for the production of liposomes still involves

the use of organic solvents, which is undesirable in the pharmaceuticals industry.

In 2013, Giarmoukakis et al. also developed biodegradable nanoparticles for

sustained release of Latanoprot [23]. Unfortunately, invasive procedures were

needed for periocular implantation of the developed formulation.

83

Conclusions

The findings of this study revealed that CS-based ocular insert for the sustained

release of BIM were successfully produced. A strong interaction between the

drug and the polymer was achieved. The formulation enhanced precorneal

residence time of the BIM, compared to the conventional eye drops. The

sustained release of BIM was proven by pharmacodinamic effects (IOP lowering

and neuroprotection) and biodistribution studies. Consequently, after the data

analysis, BI was able to sustain the release of BIM for over a month with only one

dose applied. These results may reveal a potential application of this new drug

delivery system in glaucoma management, in order to improve patient

compliance by lowering the frequency of administration and to enhance

therapeutic effectiveness of glaucoma medical treatment.

Acknowledgements The authors are grateful to PRPq-UFMG, CNPq (for Development Technologic

fellowship and financial support), CAPES and FAPEMIG for their financial

support. The authors would like to acknowledge the Center of Microscopy at the

Universidade Federal de Minas Gerais (http://www.microscopia.ufmg.br) for

providing the equipment and technical support for experiments involving

scanning electron microscopy.

References 1. Weinreb RN, Khaw PT (2004) Primary open-angle glaucoma. The Lancet 363:

1711-1720.

2. McKinnon SJ, Goldberg LD, Peeples P, Walt JG, Bramley TJ (2008) Current

management of glaucoma and the need for complete therapy. Am J

Manag Care 14: S20-27.

3. Gupta SK, Niranjan G, Agrawal SS, Srivastava S, Saxena R (2008) Recent

advances in pharmacotherapy of glaucoma. Indian Journal of

Pharmacology 40: 197-208.

84

4. Salomao SR, Mitsuhiro MRKH, Belfort RJr (2009) Visual impairment and

blindness: an overview of prevalence and causes in Brazil. Anais Da

Academia Brasileira De Ciencias 81: 539-549.

5. Resnikoff S, Pascolini D, Etya'ale D, Kocur I, Pararajasegaram R, et al. (2004)

Global data on visual impairment in the year 2002. Bulletin of the World

Health Organization 82: 844-851.

6. Boland MV, Quigley HA (2007) Risk factors and open-angle glaucoma:

Classification and application. Journal of Glaucoma 16: 406-418.

7. Coleman AL, Miglior S (2008) Risk Factors for Glaucoma Onset and

Progression. Survey of Ophthalmology 53: S3-S10.

8. Natu MV, Gaspar MN, Fontes Ribeiro CA, Cabrita AM, de Sousa HC, et al.

(2011) In vitro and in vivo evaluation of an intraocular implant for

glaucoma treatment. International Journal of Pharmaceutics 415: 73-82.

9. Bouhenni RA, Dunmire J, Sewell A, Edward DP (2012) Animal Models of

Glaucoma. Journal of Biomedicine and Biotechnology.

10. Casson RJ, Chidlow G, Wood JPM, Crowston JG, Goldberg I (2012)

Definition of glaucoma: clinical and experimental concepts. Clinical and

Experimental Ophthalmology 40: 341-349.

11. Cook C, Foster P (2012) Epidemiology of glaucoma: what's new? Canadian

Journal of Ophthalmology-Journal Canadien D Ophtalmologie 47: 223-

226.

12. Rafuse PE, Buys YM, Damji KE, Harasymowycz P, Lajoie C, et al. (2009)

Canadian Ophthalmological Society evidence-based clinical practice

guidelines for the management of glaucoma in the adult eye Canadian

Ophthalmological Society Glaucoma Clinical Practice Guideline Expert

Committee. Canadian Journal of Ophthalmology-Journal Canadien D

Ophtalmologie 44: S7-S54.

13. Bean GW, Camras CB (2008) Commercially Available Prostaglandin Analogs

for the Reduction of Intraocular Pressure: Similarities and Differences.

Survey of Ophthalmology 53: S69-S84.

14. Takano N, Tsuruma K, Ohno Y, Shimazawa M, Hara H (2013) Bimatoprost

protects retinal neuronal damage via Akt pathway. European Journal of

Pharmacology 702: 56-61.

85

15. Brubaker RF (2001) Mechanism of action of bimatoprost (Luminan (TM)).

Survey of Ophthalmology 45: S347-S351.

16. Burk RM, Woodward DF (2007) A historical perspective and recent advances

in prostamide research and therapeutics. Current Opinion in Drug

Discovery & Development 10: 413-421.

17. Woodward DF, Krauss AHP, Chen J, Lai RK, Spada CS, et al. (2001) The

pharmacology of bimatoprost (Lumigan (TM)). Survey of Ophthalmology

45: S337-S345.

18. Liang Y, Woodward DF, Guzman VM, Li C, Scott DF, et al. (2008)

Identification and pharmacological characterization of the prostaglandin

FP receptor and FP receptor variant complexes. British Journal of

Pharmacology 154: 1079-1093.

19. Davies SS, Ju WK, Neufeld AH, Abran D, Chemtob S, et al. (2003)

Hydrolysis of bimatoprost (Lumigan) to its free acid by ocular tissue in

vitro. Journal of Ocular Pharmacology and Therapeutics 19: 45-54.

20. Gulsen D, Chauhan A (2005) Dispersion of microemulsion drops in HEMA

hydrogel: a potential ophthalmic drug delivery vehicle. International

Journal of Pharmaceutics 292: 95-117.

21. Ludwig A (2005) The use of mucoadhesive polymers in ocular drug delivery.

Advanced Drug Delivery Reviews 57: 1595-1639.

22. Ghate D, Edelhauser HF (2008) Barriers to glaucoma drug delivery. Journal

of Glaucoma 17: 147-156.

23. Giarmoukakis A, Labiris G, Sideroudi H, Tsimali Z, Koutsospyrou N, et al.

(2013) Biodegradable nanoparticles for controlled subconjunctival delivery

of latanoprost acid: In vitro and in vivo evaluation. Preliminary results.

Experimental Eye Research 112: 29-36.

24. Aggarwal D, Kaur IP (2005) Improved pharmacodynamics of timolol maleate

from a mucoadhesive niosomal ophthalmic drug delivery system.

International Journal of Pharmaceutics 290: 155-159.

25. Lee SS, Hughes P, Ross AD, Robinson MR (2010) Biodegradable Implants

for Sustained Drug Release in the Eye. Pharmaceutical Research 27:

2043-2053.

86

26. Aburahma MH, Mahmoud AA (2011) Biodegradable Ocular Inserts for

Sustained Delivery of Brimonidine Tartarate: Preparation and In Vitro/In

Vivo Evaluation. Aaps Pharmscitech 12: 1335-1347.

27. Kearns VR, Williams RL (2009) Drug delivery systems for the eye. Expert

Review of Medical Devices 6: 277-290.

28. Wadhwa S, Paliwal R, Paliwal SR, Vyas SP (2009) Chitosan and its Role in

Ocular Therapeutics. Mini-Reviews in Medicinal Chemistry 9: 1639-1647.

29. Zambito Y, Di Colo G (2010) Chitosan and its derivatives as intraocular

penetration enhancers. Journal of Drug Delivery Science and Technology

20: 45-52.

30. Chen RH, Lin JH, Yang MH (1994) RELATIONSHIPS BETWEEN THE

CHAIN FLEXIBILITIES OF CHITOSAN MOLECULES AND THE

PHYSICAL-PROPERTIES OF THEIR CASTED FILMS. Carbohydrate

Polymers 24: 41-46.

31. Felt O, Furrer P, Mayer JM, Plazonnet B, Buri P, et al. (1999) Topical use of

chitosan in ophthalmology: tolerance assessment and evaluation of

precorneal retention. International Journal of Pharmaceutics 180: 185-193.

32. Gaserod O, Jolliffe IG, Hampson FC, Dettmar PW, Skjak-Braek G (1998) The

enhancement of the bioadhesive properties of calcium alginate gel beads

by coating with chitosan. International Journal of Pharmaceutics 175: 237-

246.

33. George M, Abraham TE (2006) Polyionic hydrocolloids for the intestinal

delivery of protein drugs: Alginate and chitosan - a review. Journal of

Controlled Release 114: 1-14.

34. Valenta C (2005) The use of mucoadhesive polymers in vaginal delivery.

Advanced Drug Delivery Reviews 57: 1692-1712.

35. Rodrigues LB, Leite HF, Yoshida MI, Saliba JB, Cunha AS, et al. (2009) In

vitro release and characterization of chitosan films as dexamethasone

carrier. International Journal of Pharmaceutics 368: 1-6.

36. Perumal VA, Lutchman D, Mackraj I, Govender T (2008) Formulation of

monolayered films with drug and polymers of opposing solubilities.

International Journal of Pharmaceutics 358: 184-191.

87

37. Eroglu H, Sargon MF, Oener L (2007) Chitosan formulations for steroid

delivery: Effect of formulation variables on in vitro characteristics. Drug

Development and Industrial Pharmacy 33: 265-271.

38. Dobaria NB, Badhan AC, Mashru RC (2009) A Novel Itraconazole

Bioadhesive Film for Vaginal Delivery: Design, Optimization, and

Physicodynamic Characterization. Aaps Pharmscitech 10: 951-959.

39. (BRASIL) ANDVS, CRUZ FO (2010) Farmacopeia brasileira. Brasília:

ANVISA: FIOCRUZ.

40. Nunan EA, Cardoso VN, Moraes-Santos T (2002) Technetium-99m labeling

of tityustoxin and venom from the scorpion Tityus serrulatus. Applied

Radiation and Isotopes 57: 849-852.

41. de Barros ALB, Mota LdG, Ferreira CdA, Cardoso VN (2012) Kit formulation

for 99mTc-labeling of HYNIC-βAla-Bombesin(7–14). Applied Radiation

and Isotopes 70: 2440-2445.

42. Moreno MC, Marcos HJA, Croxatto JO, Sande PH, Campanelli J, et al.

(2005) A new experimental model of glaucoma in rats through

intracameral injections of hyaluronic acid. Experimental Eye Research 81:

71-80.

43. Kumirska J, Czerwicka M, Kaczynski Z, Bychowska A, Brzozowski K, et al.

(2010) Application of Spectroscopic Methods for Structural Analysis of

Chitin and Chitosan. Marine Drugs 8: 1567-1636.

44. Lawrie G, Keen I, Drew B, Chandler-Temple A, Rintoul L, et al. (2007)

Interactions between alginate and chitosan biopolymers characterized

using FTIR and XPS. Biomacromolecules 8: 2533-2541.

45. Mucha M, Pawlak A (2005) Thermal analysis of chitosan and its blends.

Thermochimica Acta 427: 69-76.

46. Neto CGT, Giacometti JA, Job AE, Ferreira FC, Fonseca JLC, et al. (2005)

Thermal analysis of chitosan based networks. Carbohydrate Polymers 62:

97-103.

47. Gaudana R, Ananthula HK, Parenky A, Mitra AK (2010) Ocular Drug

Delivery. Aaps Journal 12: 348-360.

48. Gaudana R, Jwala J, Boddu SHS, Mitra AK (2009) Recent Perspectives in

Ocular Drug Delivery. Pharmaceutical Research 26: 1197-1216.

88

49. Kuno N, Fujii S (2011) Recent Advances in Ocular Drug Delivery Systems.

Polymers 3: 193-221.

50. Lisa Land D, Benjamin WJ (1994) Sizes and shapes of conjunctival inserts.

International Contact Lens Clinic 21: 212-217.

51. Panomsuk SP, Hatanaka T, Aiba T, Katayama K, Koizumi T (1996) A study

of the hydrophilic cellulose matrix: Effect of drugs on swelling properties.

Chemical & Pharmaceutical Bulletin 44: 1039-1042.

52. Semalty M, Semalty A, Kumar G (2008) Formulation and Characterization of

Mucoadhesive Buccal Films of Glipizide. Indian Journal of Pharmaceutical

Sciences 70: 43-48.

53. Yuan X-B, Li H, Yuan Y-B (2006) Preparation of cholesterol-modified

chitosan self-aggregated nanoparticles for delivery of drugs to ocular

surface. Carbohydrate Polymers 65.

54. Kuntner C, Wanek T, Hoffer M, Dangl D, Hornof M, et al. (2011)

Radiosynthesis and Assessment of Ocular Pharmacokinetics of I-124-

Labeled Chitosan in Rabbits Using Small-Animal PET. Molecular Imaging

and Biology 13.

55. Gupta H, Aqil M, Khar RK, Ali A, Bhatnagar A, et al. (2010) Sparfloxacin-

loaded PLGA nanoparticles for sustained ocular drug delivery.

Nanomedicine-Nanotechnology Biology and Medicine 6.

56. Gupta H, Aqil M, Khar RK, Ali A, Bhatnagar A, et al. (2011) Biodegradable

levofloxacin nanoparticles for sustained ocular drug delivery. Journal of

drug targeting 19: 409-417.

57. Wilson CG, Zhu YP, Frier M, Rao LS, Gilchrist P, et al. (1998) Ocular contact

time of a carbomer gel (GelTears) in humans. British Journal of

Ophthalmology 82.

58. Curran MP (2009) Bimatoprost A Review of its Use in Open-Angle Glaucoma

and Ocular Hypertension. Drugs & Aging 26: 1049-1071.

59. Lavik E, Kuehn MH, Kwon YH (2011) Novel drug delivery systems for

glaucoma. Eye 25: 578-586.

60. Robinson MR, Burke J, Schiffman R Treating ocular condition e.g. glaucoma,

comprises providing biodegradable sustained release implants containing

therapeutic agent e.g. bimatoprost and latanoprost and implanting the

implants into the anterior chamber of an eye. Allergan Inc.

89

61. Natarajan JV, Ang M, Darwitan A, Chattopadhyay S, Wong TT, et al. (2012)

Nanomedicine for glaucoma: liposomes provide sustained release of

latanoprost in the eye. International Journal of Nanomedicine 7: 123.

62. Shafiee A, Bowman LM, Hou E, Hosseini K (2013) Ocular pharmacokinetics

of bimatoprost formulated in DuraSite compared to bimatoprost 0.03%

ophthalmic solution in pigmented rabbit eyes. Clinical Ophthalmology 7:

1549-1556.

90

MANUSCRITO 2

Novel polymeric-based ocular inserts for sustained-release of

dorzolamide for glaucoma treatment: in vitro and in vivo

evaluation

Artigo a ser submetido ao periódico Molecular pharmaceutics

91

NOVEL POLYMERIC-BASED OCULAR INSERTS FOR SUSTAINED-RELEASE OF DORZOLAMIDE FOR GLAUCOMA TREATMENT: IN VITRO AND IN VIVO EVALUATION

Juçara R. Franca†, Giselle Foureaux‡, Leonardo L. Fuscaldi†, Tatiana G.

Ribeiro†, Rachel O. Castilho†, Maria I. Yoshida§, Valbert N. Cardoso†, Simone O.

A. Fernandes†, Sebastião Cronemberger‖, Anderson J. Ferreira‡, André A. G.

Faraco†*

†Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Minas

Gerais, Brazil;

ffiDepartment of Morphology, Institute of Biological Sciences, Federal University of

Minas Gerais, Belo Horizonte, Minas Gerais, Brazil;

§Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte,

Minas Gerais, Brazil;

‖Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, Minas

Gerais, Brazil;

KEYWORDS: Glaucoma; Dorzolamide; Chitosan; Hydroxyethyl cellulose; Ocular

inserts; Sustained release; Technetium-99m; Scintigraphic images; Drug delivery

Abstract

Carbonic anhydrase inhibitors are commonly used as eye drops to reduce

intraocular pressure in glaucoma patients. Nevertheless, chronic daily topical

administration and the eventual systemic side effects may reduce patient

compliance to the treatment. Sustained-release drug delivery systems, such as

ocular inserts, can achieve prolonged therapeutic drug concentrations in ocular

target tissues while limiting systemic exposure and side effects and improving

patient adherence to therapy. Here, polymeric-based ocular inserts for sustained

release of dorzolamide were developed and evaluated. Inserts were produced by

solvent/casting method and characterized by swelling studies, infrared

spectrometry, differential scanning calorimetry and in vitro sustained release

92

profile. Pharmacokinetics of 99mTc-dorzolamide, after ocular administration of eye

drops and inserts in rats, was assessed by scintigraphic images and ex vivo

biodistribution studies. The effectiveness of the inserts was tested in

glaucomatous rats. Glaucoma was induced by weekly intracameral injection of

hyaluronic acid. Dorzolamide-loaded insert was placed into the conjunctival sac

after confirmation of the ocular hypertension. Dorzolamide eye drops were used

as a positive control, while placebo inserts and untreated glaucomatous animals

served as negative controls. Intraocular pressure was monitored for four

consecutive weeks after the beginning of the treatment. At the end of the

experimental protocol, retinal ganglion cells were evaluated in histological eye

sections. Characterization of the inserts showed that the drug strongly interacted

with the polymeric matrix and 75% of dorzolamide loaded in the inserts was

released over a three-hour period. At 18 hours post-administration, 53.6 ± 17.2 %

of 99mTc-dorzolamide remained in the eye after administration of the inserts, while

only 30.0 ± 5.4 % remained in the eye after drops administration. Dorzolamide

inserts exerted a significant hypotensive effect during two weeks. Eye drops were

effective only during the daily treatment period. Prevention of retinal ganglion

cells death was observed only in animals treated with dorzolamide inserts.

Altogether, these findings evidenced the potential application of polymeric-based

dorzolamide inserts for glaucoma management.

Introduction Carbonic anhydrase inhibitors, such as acetazolamide, methazolamide,

brinzolamide and dorzolamide, are commonly used to reduce intraocular

pressure (IOP) in glaucoma patients.1 Glaucoma is a group of eye diseases that

damage the optic nerve and retinal ganglion cells (RGC).2, 3 These damages

usually occur as a result of elevated pressure of the ocular fluids (aqueous

humor) in the tissues of the eye.2 Carbonic anhydrase is responsible for

generation of bicarbonate anions secreted by the ciliary process into the

posterior chamber of the eyeball. So, inhibition of carbonic anhydrase leads to

reduction of intraocular pressure.4

93

If, on one hand, glaucoma remains a leading cause of blindness in adults over

age 60, according to the National Eye Institute, a division of the National

Institutes of Health,5 on the other hand, systemic carbonic anhydrase inhibitors

administration can lead to various side effects, such as numbness, fatigue and

gastrointestinal irritation and consequent poor patient compliance.1, 6 To address

this problem, FDA approved topical carbonic anhydrase inhibitors, which are

more effective and less harmful to glaucoma patients. Dorzolamide hydrochloride

((4-S-trans)-4-ethylamino-5,6-dihydro-6-methyl-4H-thie-no-[2,3-b]thiopyran-2-

sulfonamide-7,7-dioxide monohydrochloride) was the first topical carbonic

anhydrase inhibitor that was approved in U.S.A.5 The topically effective aqueous

dorzolamide eye drop solution (TrusoptTM) became available in 1995.4, 5

In most glaucoma patients, medical therapy consists of topical eye drops and oral

tablets. For instance, carbonic anhydrase inhibitors are available as aqueous eye

drop solutions (dorzolamide) and suspensions (brinzolamide) for topical

administration and as tablets for systemic drug delivery (acetazolamide and

methazolamide).7 Nevertheless, the eye presents unique challenges when it

comes to delivery of drug molecules and, even eye drops often lead to low ocular

bioavailability. 8 A large portion of the drop can be lost due to overflow from the

cojunctival sac, while the drop remaining on the ocular surface can be washed

away through the nasolacrimal duct, thereby decreasing the amount of the drug

that reaches the targeted ocular structures.9 So, in general, less than 5% of an

applied dose is absorbed into the eye and more typically, less than 1% is

absorbed.4, 10 In the case of TrusoptTM, addition of hydroxyethyl cellulose results

in increased viscosity, which leads to increased corneal contact time and,

consequently, to increased bioavailability. However, the relatively low pH (5.95)

and high viscosity have been shown to generate local irritation after topical

administration of the eye drops.11 Moreover, patients tend to present inadequate

adherence to their daily therapeutic regimen. In this case, forgetfulness,

uncomfortable sensations, difficulty of instillation and other practical issues are

cited as important factors for low compliance and low persistence when eye

drops are prescribed.12

94

Controlled drug release devices are systems that can provide continuous release

of a drug at predetermined rates and allows the elimination of frequent dosing by

the patient, which results in better patient compliance.13 Furthermore, the

therapeutic drug levels are achieved without exposure of ocular tissues to the

toxic level of the drugs. The devices are more economic because smaller

amounts of drugs are required to achieve the same effect as eye drops since

these systems release the drugs over extended periods of time.14

Several formulations techniques have been investigated in an effort to overcome

poor bioavailability of carbonic anhydrase inhibitors after topical applications such

as gel formulations, 6, 15 water-soluble salts16 and liposomal/niosomal

formulations17-19. Similarly, various formulations containing dorzolamide

hydrochloride such as aqueous cyclodextrin containing eye drop solutions 4,

nanoparticles 20-22, microparticles7, polymeric films 5 and implants14, 23 have been

developed as controlled release drug delivery systems for dorzolamide.

Unfortunately, some of these systems have only been tested in vitro.5, 20, 21 From

those studies that performed tests in vivo, positive results were taken during 24-

72 h after administration.4, 7, 22 Despite the improvement that was taken, the

period is still too short when talking about chronic diseases like glaucoma. Better

results were achieved by polymeric implants developed by Natu et al.14, 23

Nevertheless, their formulation needs to be surgically implanted.14

Chitosan is a biodegradable, nontoxic biomaterial which has excellent

mucoadhesive strength and has been routinely explored for controlled delivery of

drugs at various mucosal sites of the body, including eye.9, 24-26 Because of its

polycationic properties, chitosan interacts with the polyanionic surface of ocular

mucosa through hydrogen bonding and ionic interactions enhancing the

mucoadhesive effect of the formulation.22 It also widens the tight junctions of

membranes27, enhances the drug residence time24 and mucoadhesiveness28-30

and serves as permeation and absorption enhancer.26, 31 Due to these interesting

features, chitosan seems to be an appropriate base for the development of

ocular formulations.

95

As such, the hydroxyethyl cellulose is a non-ionic, water-soluble, odorless,

tasteless, and non-toxic carbohydrate polymer used extensively in

pharmaceutical areas. Hydroxyethyl cellulose exhibits a pH-independent release

due to its non-ionic nature 32 and is better tolerated on the eye surface than other

cellulose derivates.9 Moreover, chitosan-hydroxyethyl cellulose hydrogels were

tested by Li et al.33 for ophthalmologic applications. It was found that the

polymers could interact by means of hydrogen bonds, thus leading to sustained

release of pilocarpine.

From all the formulations developed for ophthalmic drug delivery, only inserts and

implants are capable of sustained release of drugs during several days.23 Since

implants must be surgically placed in the eye, our long-term goal is to prepare a

drug-loaded biodegradable insert designed to provide a localized, sustained

release of dorzolamide hydrochloride that can be used in the treatment of open-

angle glaucoma. The insert will degrade and, thereby, slowly releasing the drug

at the site to be treated. By delivering controlled amounts of the drug, the insert

would be highly efficient, increase patient compliance and be cost effective.

Thus, to improve patient compliance by lowering the frequency of administration,

this current study aimed formulating and characterizing chitosan-based inserts for

a sustained release of chitosan-hydroxyethyl cellulose-based inserts for a

continued release of dorzolamide hydrochloride.

Experimental Section Materials Medium molecular weight chitosan was supplied by Sigma-Aldrich (St. Louis, Mo,

USA) and hydroxyethyl cellulose was supplied by Galena (Campinas, Brazil).

Dorzolamide hydrochloride was purchased from Fluka (Steinheim, Germany).

Technetium-99m (99mTc) was obtained from a 99Mo/99mTc generator acquired

from IPEN/CNEN (Brazil). All other reagents were of analytical grade.

96

Preparation of inserts Inserts were prepared as monolayer films by employing the solvent/casting

technique, according to Rodrigues et al.34. First, 150 µL of acetic acid was added

to 10 mL of an aqueous solution containing 223 mg of dorzolamide hydrochloride

(equivalent to 200 mg of dorzolamide) homogeneously dissolved. Next, 30 mg of

hydroxyethyl cellulose and 500 mg of chitosan were added. This viscous

dispersion was magnetically stirred overnight to ensure homogeneity of both drug

and polymers were dried, at room temperature, in circular silicone-molded trays

containing individual 5 mm × 2 mm wells35 to produce dorzolamide-loaded inserts

(DI). After casting, inserts were gently removed from the silicone-molded trays

and stored in closed recipients, protected from light and air humidity. Placebo

inserts (PI) were produced in a similar way by adding 500 mg of chitosan and 30

mg of hydroxyethyl cellulose to 10 mL of a solution containing 150 µL of acetic

acid in water.

Characterization of the inserts Swelling studies Swelling studies of the inserts were carried out in a phosphate buffer solution

(PBS) pH 7.4. Each insert was weighed and placed in PBS for a predetermined

period of time (5, 10, 20, 40, 60 or 90 min), as described by Eroglu et al.36. After

immersion, the inserts were removed from the medium, the exceeding surface

water was removed by using filter paper and the hydrated devices were weighed.

The degree of swelling was calculated by using Eq. 1.37 In Eq. 1, the weight of

the swollen insert after the time (t) is represented by Wt. The original weight of

the insert is represented by W0. This experiment was performed in triplicate.

[ ⁄ ] (Eq. 1)

97

ATR-FTIR analysis Attenuated total reflectance Fourier transformed infrared spectroscopy (ATR-

FTIR) spectra of PI and DI were recorded on a PerkinElmer FTIR Spectrometer,

Model Spectrum One (USA).

Differential scanning calorimetry Differential scanning calorimetry (DSC) measurements were carried out in a

Shimadzu DSC50 (Japan) apparatus, using samples packed in an aluminum

crucible with a heating rate of 10 °C/min. Nitrogen, at the rate of 50 mL/min was

used as purge gas. The specimens were heated from −50 to 200 °C (run 1) in a

nitrogen environment. Then, the specimens were cooled to −50 °C under

nitrogen environment at the same rate of 10 °C/min and, afterward, they were

reheated to 400 °C at a rate of 10 °C/min (run 2).

Determination of dorzolamide Dorzolamide presented in the inserts was quantified by UV spectroscopy. A

Shimadzu Ultraviolet spectrometer (Japan) was used at a wavelength of 254 nm.

The method was validated in accordance with ICH guidelines.38 A dorzolamide

concentration range of 5–40 μg/mL in PBS was used (y=0.403568x + 0.0277201,

r2 = 0.9990; n = 5).

In vitro drug release In vitro drug release was evaluated using the Franz cell system. A cellulose

acetate membrane with 0.45 μm pores was used to split the insert compartment

from the receptor liquid compartment. PBS was used as a receptor liquid and the

glass cells were incubated at 37±0.5 °C. At appropriate time intervals, all the

receptor liquid was withdrawn from the glass cells and an equal volume of the

same receptor liquid was added to maintain a constant volume. The amount of

98

drug released was evaluated by UV Spectrophotometry. The experiment was

performed in quintuplicate.

In vivo studies Animals Male Wistar rats (180-220 g) were obtained from the animal facility of the Faculty

of Pharmacy, Federal University of Minas Gerais, Brazil. The animals were

housed in a temperature-controlled room (22-23 °C) with a 12-12h light-dark

cycle. Water and food were available ad libitum. The experimental protocols were

performed in accordance with institutional guidelines approved by the Animal

Ethics Committee of the Federal University of Minas Gerais, Brazil (CEUA-

UFMG), which are in accordance with the National Institutes of Health (NIH)

Guidelines for the Care and Use of Laboratory Animals (protocols nº 251/11 and

211/13). In addition, this study is conformed to the Association for Research in

Vision and Ophthalmology (ARVO) statement for the use of animals in

ophthalmic and vision research.

Radiolabeling of dorzolamide Dorzolamide hydrochloride (11 mg) was added to a sealed vial and dissolved in

500 μL of PBS (pH 7.4). Aliquots containing 30 µL of SnCl2.2H2O (1 mg/mL in

0.25 N HCl) and 30 µL of NaBH4 (5 mg/mL in 0.1 N NaOH) were used as

reducing agents. Next, an aliquot of 370 MBq of Na99mTcO4 (q.s. ad = 1 mL) was

added to the vial and the solution was kept at room temperature for 5 min.

Radiochemical purity analysis of 99mTc-dorzolamide were performed by thin-layer

chromatography on silica gel strips (TLC-SG 60, Merck, Darmstadt, Germany),

using a two-solvent system: methyl ethyl ketone (MEK) and saline to determine

the amount of free technetium (99mTcO4-) and hydrolysed technetium (99mTcO2),

respectively. This 99mTc-dorzolamide solution was used to prepare chitosan-

based inserts as described above.

99

Scintigraphic images and ex vivo biodistribution studies Eye drops or inserts containing 18.5 MBq of 99mTc-dorzolamide were

administered into the right eye in healthy Wistar rats (n = 5). At 30 min, 4 and 18

h post-administration, animals were anesthetized intramuscularly with a solution

of ketamine (70 mg/kg) and xylazine (10 mg/kg) and, then, placed in prone

position under a gamma camera (Mediso, Hungary), employing a low-energy

high-resolution collimator (LEHR). Images were acquired using a 256x256x16

matrix size with a 20% energy window set at 140 keV for a period of 10 min.

After the acquirement of the scintigraphic images at 18h post-administration, ex

vivo biodistribution was performed. Rats, still anesthetized, were euthanized and

organs and tissues of interest (spleen, liver, stomach, small and large intestines,

kidneys, blood and eyes) were removed. Then, each organ and tissue was

weighed and its associated radioactivity was determined in an automatic gamma

counter (Wizard, Finland). Results were expressed as the percentage of

radioactivity per gram of tissue (% cpm/g).

In vivo efficacy Unilateral glaucoma was induced in the right eye by injection of 30 μL of

hyaluronic acid (HA) (10 mg/mL) into the anterior chamber through the clear

cornea, near to the corneoscleral limbus using an hypodermic needle (22 gauge),

once a week, for 6 weeks, in the same calendar day and time, according to

Moreno et al.39. Rats were anesthetized intramuscularly with ketamine (70

mg/kg) and xylazine (10 mg/kg). In addition, two drops of 0.4% benoxinate

hydrochloride were instilled directly on the cornea as a local anesthetic. No

procedure was performed in the contralateral eye (control groups). Evaluation of

IOP and mean arterial pressure (MAP) were carried out one day before the next

injection of HA.

Only one DI was placed in each conjunctival sac after the establishment of ocular

hypertension (immediately after the second induction). TrusoptTM eye drops was

100

used as positive control. In this case, animals were treated daily during two

weeks. The treatment also started immediately after the second induction.

Untreated animals and animal treated with PI were used as negative controls.

Also, only one PI was placed in each conjunctival sac immediately after the

second induction. Five animals were used in each group. Both eyes (sick and

healthy) of the animals were submitted to the same treatment. Inserts were

hydrated with saline during thirty seconds before administration.

IOP measurements were performed using an applanation tonometer TonoPen XL

(Mentor, Norwell, MA, USA) which was calibrated before use by an experienced

person. A topical anesthetic (0.4% benoxinate hydrochloride) was applied to

each eye prior to the measurement of IOP. To obtain the measures, non-sedated

animals (n=5) were carefully contained with a small cloth and three readings of

IOP (with standard error less than 10%) were acquired in each eye. The average

of these three measures was considered the corresponding value of IOP. IOP

measurements were performed at the same time each day or week (between

11:00 AM and 12:00 PM) to correct diurnal variations of the IOP .The tonometrist

was masked to the treatment and an assistant performed the randomization

process.

MAP was evaluated by a tail cuff method, which is a noninvasive computerized

system for measuring blood pressure (Kent Scientific Corporation, Torrington,

CT, USA). This tail-cuff blood pressure system utilizes volume pressure recording

sensor technology to measure the tail blood pressure. The animals (n=5) were

acclimated one day before the beginning of the experiments to restraint and to

tail-cuff inflation. The restraint platform was maintained at approximately 32-34 °C.

For each session the animal was placed in an acrylic box restraint and the tail was

involved by the compression cuff that measured the blood pressure 15 times to

calculate the average.

For histological analysis, animals were euthanized and both eyes were

enucleated. After enucleation, two small sagittal sections were made in the nasal

and temporal sides of the eyes and, immediately, they were immersed in Bouin‟s

fluid for approximately 24 hours. Thereafter, they were dehydrated in increasing

101

concentrations of ethanol (70, 80, 90, 95 and 100%), diaphanized in xylene, and

included and embedded in Paraplast. Semi-serial 6 μm-sections (60 μm of

interval) were obtained using a microtome (model HM335E, Microm, Minnesota,

USA). For RGC counting, histological sections were stained with hematoxylin-

eosin (HE).

Statistical analyses Data were expressed as mean ± SD. Comparative results were analyzed using

unpaired Student t test (swelling studies and biodistribution) or one-way ANOVA

followed by the Newman-Keuls post-test (PIO, MAP and RCG counting). All

these tests were performed using the GraphPad Prism 5.0 software. The

significance level considered was p<0.05.

Results Characterization studies DI were produced as uniform flexible circular transparent yellowish membranes.

The swelling indexes of the PI and DI are shown in Fig. 2.1. Both PI and DI were

hydrated very quickly and it was observed that the presence of dorzolamide

decreased the water uptake of the insert.

102

Figure 2. 1 - Swelling index of placebo

inserts (PI) and dorzolamide inserts (DI) in a buffered solution medium (PBS; pH 7.4). Values are expressed as mean ± SD.*p<0.05.

Fig. 2.2 depicts the ATR-FTIR spectra of the PI and DI. In the DI spectrum, the

characteristic band of the dorzolamide, i.e. N-H bonds of secondary amide,

shifted from 3372 cm-1 21 to 3383 cm-1. Other characteristic bands of the

dorzolamide [NH2+ stretching at 2900 cm-1; SO2 asymmetric stretching (sulphone

and sulphonamide) at 1342 cm-1 and 1310 cm-1; SO2 symmetric stretching

(sulphone and sulphonamide) at 1145 cm-1 and 1137 cm-1 and the thin bands at

1400 cm-1 and 650 cm-1)14, 21, 40 were also identified. In the PI spectrum, two

characteristic absorption bands of chitosan were detected at 1637 cm-1 and 1546

cm-1 and they were attributed to amide I (C=O stretching) and to N-H (amine)

vibration overlapped to amide II (N-H vibration), respectively. From the FTIR

spectra of DI, it is possible to observe that the first band was widened. Moreover,

the N-H vibration band at 1546 cm-1 significantly increased.

103

Figure 2. 2 - ATR-FTIR spectra of (a) placebo inserts (PI) and (b) dorzolamide

inserts (DI). Dorzolamide first band was shifted to a higher frequency (from 3372 cm-

1 to 3383 cm

-1), while amide I (1637 cm

-1) and amide II (1546 cm

-1) chitosan bands

decreased and increased, respectively (arrows).

DSC curves of PI and DI are presented in Fig. 2.3. PI exhibited a broad

endothermic peak at 73.38°C, as well as a broad exothermic peak at 283.37 °C

in the first and second scan curves, respectively. This second peak was

dismembered and a significant decrease in the degradation temperature from

283.37 °C to 249.12 °C was observed when dorzolamide was added to the

inserts.

104

Figure 2. 3 - DSC curves of placebo inserts

(PI) and dorzolamide inserts (DI). (a) run 1 and (b) run 2.

Dorzolamide dismembered the degradation peak of the main polymeric chains

and lowered the temperature in which it happens. On the other hand,

dorzolamida, a hydrophilic drug, released approximately 75 % of the drug during

a 3-h period (Fig. 2.4). By using the same Franz cell system, conventional eye

drops released 85,3 ± 2,0 % of dorzolamide in 1 h.

105

Figure 2. 4 - In vitro release profile of

dorzolamide from dorzolamide inserts (DI). Values are expressed as mean ± SD.

Scintigraphic images and ex vivo biodistribution studies

Radiolabeling of dorzolamide with 99mTc yielded a radiochemical purity of 93.88

%, allowing performing images with high quality. Scintigraphic images

examination revealed that 99mTc-dorzolamide remained in the right eye of the rats

even 4 h after ocular administration of both eye drops and inserts. However, at

18 h post-administration, it was observed that a portion of 99mTc-dorzolamide

from eye drops was drained to the body (mainly to the abdominal region), while

99mTc-dorzolamide from inserts basically remained in the eye (Fig. 2.5).

106

Figure 2. 5 - Scintigraphic images obtained at 30 min, 4 h and 18 h after ocular

administration of 99m

Tc-dorzolamide loaded in (a) eye drops and in (b) inserts in healthy rats.

In order to quantify the extent of the drainage and to identify the destination of

99mTc-dorzolamide, ex vivo biodistribution studies were performed (Fig. 2.6). At

18 h post-administration, 30.0 ± 5.4 % of 99mTc-dorzolamide from eye drops and

53.6 ± 17.2 % of 99mTc-dorzolamide from inserts remained in the site of

administration (right eye). 99mTc-dorzolamide that was cleared from the eye

accumulated preferentially in kidneys, stomach and large intestine.

107

Figure 2. 6 - Biodistribution profile obtained at

18 h after ocular administration of 99m

Tc-dorzolamide loaded in eye drops and in inserts in healthy rats. Results are expressed as the percentage of radioactivity per gram of tissue (%cpm/g). Values are expressed as mean ± SD. *p<0.05.

In vivo efficacy The biological effectiveness of the inserts to controlled release of dorzolamide

was tested in an experimental model of glaucoma. Before the induction of

glaucoma, the IOP of all the groups was at normal levels. After first week of the

induction of glaucoma, it was observed a significant increase in IOP of all

glaucomatous groups. No significant differences among the groups were

observed (p=0.8848). At this point, the treatments started. While the IOP of non-

treated glaucomatous animals and of glaucomatous animals treated with PI

remained high during the following four weeks, the IOP of glaucomatous animals

treated with DI was significantly lowered during the following two weeks after a

single administration. Commercially eye drops containing dorzolamide reduced

the IOP during the daily treatment (two weeks) but, as soon as the daily

treatment was interrupted, the IOP increased again. No significant changes in the

IOP were induced by the treatment of non-glaucomatous animals with DI or with

eye drops containing dorzolamide (Fig. 2.7). The anti-glaucomatous effects of

the DI did not affect the MAP (Fig. 2.8).

108

Figure 2. 7 - Effects of the administration of

dorzolamide inserts (DI) on IOP. (a) Glaucomatous groups and (b) non-glaucomatous groups. Treatments initiated after confirmation of the elevated IOP, i.e. after the second week. Values are expressed as mean ± SD. *p<0.01 vs. untreated. PI: placebo inserts.

Figure 2. 8 - Effects of the administration of

dorzolamide inserts (DI) on MAP. Values are expressed as mean ± SD. PI: placebo inserts.

109

The IOP lowering effects of DI were accompanied by preservation of the RGC.

As viewed in Fig. 2.9 II, we found that non-treated glaucomatous animals,

glaucomatous animals treated with PI and glaucomatous animals treated with

dorzolamide eye drops showed a large reduction in the number of RGC

(glaucomatous non-treated group: 405 ± 11 cells; glaucomatous PI group: 420 ±

35 cells; glaucomatous dorzolamide eye drops group: 400 ± 34 cells). This

reduction in the RGC counting was not notice in glaucomatous animals treated

with DI (485 ± 21 cells in control group and 490 ± 66 cells in glaucomatous DI

group). Again, no significant changes were induced by DI in non-glaucomatous

animals. Representative histological images of retina showing the effects of DI on

RGC counting are presented in Fig. 2.9 I. These data indicate that controlled

release of DI induced a neuroprotection by decreasing the loss of RGC.

110

Figure 2. 9- Effects of the administration of dorzolamide

inserts (DI) on retinal ganglion cells (RGC) counting evaluated by histological analysis. (I) Representative photomicrographs of retinas showing the smaller number of RCG in non-treated glaucomatous rats, placebo insert (PI) treated glaucomatous rats and dorzolamide eye drops treated glaucomatous rats when compared to non glaucomatous animals and the beneficial effects of dorzolamide inserts (DI) in this parameter. (a) non-glaucomatous animals; (b) untreated glaucomatous animals; (c) PI glaucomatous animals; (d) dorzolamide eye drops glaucomatous animals; and (e) DI glaucomatous animals. (II) Quantification of RCG in retinas of (a) glaucomatous groups and (b) non-glaucomatous groups. Values are expressed as mean ± SD. *p<0.05 vs. control and #p<0.05 vs. untreated glaucomatous rats. PI: placebo inserts.

During the in vivo tests, eventual eye irritation caused by the inserts was

evaluated. In all experiments the inserts were well tolerated. No symptoms of

ocular lesions, such as tearing, redness, edema and inflammation were viewed.

111

Likewise, no anterior chamber inflammation or corneal changes were observed.

Ocular surface structures and intraocular tissues were normal. Furthermore,

fluorescein staining did not indicate corneal or conjunctival ulcerations (data not

shown).

Discussion Glaucoma is a chronic condition that requires long-term treatment in order to stop

progressive and irreversible blindness. In most glaucoma patients, medical

therapy consists of topical eye drops or oral tablets.14 Controlled drug delivery

systems offer manifold advantages over conventional systems particularly in

glaucoma therapy as they increase the efficiency of drug delivery by improving

the release profile and reduce drug toxicity.22 Ophthalmic inserts are sterile

devices placed into cul-de-sac or conjuctival sac in order to contact the bulbar

conjunctiva. Ocular inserts allow controlled sustained release, reduced dosing

frequency and increased contact time with ocular tissue (i.e., better

bioavailability).41 Within this context, this study sought to develop and to evaluate

a chitosan and hydroxyethyl cellulose-based ocular insert for sustained release of

dorzolamide.

Inserts were produced as thin layer films and the interaction between the drug

and the polymeric matrix was investigated by swelling studies, ATR-FTIR and

DSC analyses. The decrease in the swelling index caused by the addition of

dorzolamide, which is a hydrophilic drug, is in agreement with the findings of

Panomsuk et al.42 since these authors reported that the addition of mannitol to

methylcellulose matrix reduces the swelling index of the membranes. These

results indicate the formation of hydrogen bonding between the drugs and the

polymeric matrix. Therefore, the greater number and strength of hydrogen

bonding, the lower the diffusion of the water molecules in the hydrated matrix.42

In the DI spectrum, characteristic bands of N-H bonds of secondary amide

(dorzolamide) shifted from 3372 cm-1 21 to 3383 cm-1, suggesting a hydrogen

bonding interaction between the drug and the matrix, thereby confirming the

swelling tests. Moreover, characteristic dorzolamide bands at 1589 cm-1 and

112

1534 cm-1 (C=C stretching)21, 40 were not identified in the DI spectrum, but it was

observed that the band at 1546 cm-1 (N-H vibration) significantly increased, while

chitosan band at 1634 cm-1 (C=O stretching) lowered. These findings indicate an

interaction between amino and carbonyl groups of chitosan and the C=C groups

of dorzolamide.5, 21, 43

From DSC curves, it is possible to notice one peak in the first and another in the

second run. Both peaks are irregular and they can be attributed to the

evaporation of residual water and to the degradation of the main polymeric

chains, respectively.34, 44, 45 The degradation peak of the polymeric chains was

dismembered and a decrease in the degradation temperature was observed

when dorzolamide was added to the inserts. These data corroborate with findings

from both the ATR-FTIR and swelling studies, which indicated an interaction

between the polymeric matrix and the drug. Moreover, melting point of

dorzolamide (endothermic peak at 274.75 °C)40 was not identified, suggesting

that dorzolamide was molecularly dispersed in the polymeric matrix.

The ability of the formulation to sustained release dorzolamide was evaluated by

in vitro drug release, scintigraphic images, ex vivo biodistribution studies and in

vivo effectiveness studies. From in vitro sustained release profile, it was noticed

that about 75% of dorzolamide was released at the first 3 hours. Nevertheless,

scintigraphic images showed that, at 30 min and 4 h post-administration, 99mTc-

dorzolamide remained in the eye even after eye drops instillation. Thus, late

images were taken (at 18 h post-administration) and it was observed that most of

radiolabeled dorzolamide from eye drops was cleared from the eye, while

polymeric inserts enhanced precorneal residence time of dorzolamide. Ex vivo

biodistribution studies corroborated with scintigraphic images since the results

showed that more than 50 % of the 99mTc-dorzolamide loaded in the inserts

remained in the eye after 18 hours. Likewise, when the DI was used to treat

animals with glaucoma, it was able to reduce the IOP for up two weeks after a

single administration, therefore increasing the time of action of the drug.

The enhancement of the precorneal retention time of dorzolamide is probable

due to the mucoadhesive properties of the polymeric matrix. It has already been

113

proved that chitosan shows a prolonged precorneal residence time when

delivered in the eye.46, 47 In the present study, it was demonstrated that chitosan

was able to enhance precorneal residence time of dorzolamide, which is probably

due to the physicochemical interaction between the drug and the polymeric

matrix. Similar results were found by Gupta et al. when they evaluated PLGA

nanoparticles entrapping 99mTc-sparfloxacin48 or 99mTc-levofloxacin49 and by

Wilson et al. who evaluated PVA inserts entrapping 99mTc-DTPA50. The

preferable site of accumulation of 99mTc-dorzolamide released from eye drops

was the kidneys, which are the most important way of elimination of dorzolamide

since it is a high hydrophilic drug.

In keeping with the findings of the present study, Papadimitriou et al.21, working

with dorzolamide-loaded chitosan nanoparticles, obtained in vitro sustained

release of the drug, but this formulation was not tested in vivo. Additionally,

Wadhwa et al.22 added hyaluronic acid to chitosan polymeric nanoparticles and

only 20 % of dorzolamide was released in vitro during 24 hours. However, when

this formulation was tested in non glaucomatous rabbits, it was able to decrease

the IOP for only 72 hours. Therefore, the inserts used in the present study were

more efficient since the IOP was lowered for a longer period (2 weeks). Also, it is

important to notice that the procedure used to prepare the inserts was easier

than that one used to produce nanoparticles.

Natu et al. developed polymeric inserts of poly (ε-caprolactone) and poly

(ethylene oxide)-b-poly-(propylene oxide)-b-poly-(ethylene oxide) as dorzolamide

carriers, which were able to sustainable release of the drug for 20 days23 and to

decrease the IOP of normal and glaucomatous rabbits during 3 months 14.

However, those inserts are surgically implanted in the ocular conjunctiva and this

procedure caused conjunctivitis in approximately 9 % of the treated animals.14

On the other hand, the inserts developed by us were able to in vivo sustainable

release of dorzolamide lowering the IOP for a relatively long period even being

applied topically without causing serious damages to the eyes.

It is important to notice that DI not only was able to reduce the IOP of

glaucomatous rats, but also showed a neuroprotective effect, which was

114

demonstrated by the prevention of RGC loss. Although, both eye drops and DI

groups had the IOP lowered by the same period (two weeks), reduction in the

RCG counting was observed only in rats treated with eye drops. It could be

explained by the difference between both drug release systems evaluated. Since

eye drops released the drug immediately, the drug concentration in the eye

lowered during the day, which likely resulted in transient increments of the IOP

leading to RGC death. In a sustained release formulation, the amount of the drug

released in the eye is constant. Thus, transient increments in the IOP during the

day do not happen and RGC are protected. It is not well established if the

elevation or fluctuation of the IOP is the most important risk factor for

development and progression of glaucoma or if both factors are crucial for the

development of the disease 51, but it seems that both factors are important for

RCG death.

It is also important to highlight that the amount of drug which was used in one

insert is equivalent to the amount of drug which is found in one drop of

dorzolamide eye drops solution. Since the insert was used once, the eye drop

was used daily during fifteen days and both of the formulations were effective in

reducing IOP during two weeks, it is possible to say that the insert enhanced

dorzolamide effectiveness by 15 times compared to eye drops.

In summary, considering all the current results, it can be concluded that chitosan

and hydroxyethyl cellulose-based ocular inserts are promising formulations to be

used as sustained-release drug delivery systems of dorzolamide for glaucoma

treatment. Therefore, this formulation can be considered as a novel strategy in

the field of glaucoma management.

Corresponding Author *Phone: +553134096396. Fax: +553134096961. E-mail: [email protected]

Present Addresses

115

†Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Minas

Gerais, Brazil;

ffiDepartment of Morphology, Institute of Biological Sciences, Federal University of

Minas Gerais, Belo Horizonte, Minas Gerais, Brazil;

§Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte,

Minas Gerais, Brazil;

‖Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, Minas

Gerais, Brazil;

Author Contributions

The manuscript was written through contributions of all authors. All authors have

given approval to the final version of the manuscript.

Funding Sources This work was supported by the National Council for Scientific and Technological

Development (CNPq), Coordination for the Improvement of Higher Education

Personnel (CAPES) and the Foundation for Research Supporting of the State of

Minas Gerais (FAPEMIG).

ACKNOWLEDGMENT The authors are grateful to PRPq-UFMG, CNPq (for Development Technologic

fellowship and financial support), CAPES and FAPEMIG for their financial

support.

ABREVIATIONS ATR-FTIR, attenuated total reflectance Fourier transformed infrared

spectroscopy; DSC, differential scanning calorimetry; DI, dorzolamide inserts;

116

IOP, intraocular pressure; ITLC, instant thin-layer chromatography; MAP, mean

arterial pressure; PBS, phosphate saline buffer; PI, placebo inserts; RGC, retinal

ganglion cells;99mTc, technetium-99m.

REFERENCES

1. Mincione, F.; Scozzafava, A.; Supuran, C. T. The development of topically

acting carbonic anhydrase inhibitors as antiglaucoma agents. Current

Pharmaceutical Design 2008, 14, (7), 649-654.

2. Weinreb, R. N.; Khaw, P. T. Primary open-angle glaucoma. Lancet 2004,

363, (9422), 1711-1720.

3. McKinnon, S. J.; Goldberg, L. D.; Peeples, P.; Walt, J. G.; Bramley, T. J.

Current management of glaucoma and the need for complete therapy. Am J

Manag Care 2008, 14, (1 Suppl), S20-7.

4. Sigurdsson, H. H.; Stefansson, E.; Gudmundsdottir, E.; Eysteinsson, T.;

Thorsteinsdottir, M.; Loftsson, T. Cyclodextrin formulation of dorzolamide and its

distribution in the eye after topical administration. Journal of Controlled Release

2005, 102, (1), 255-262.

5. Tandale, Y. N.; Wagh, V. D. Formulation and evaluation of dorzolamide

hydrochloride polymeric film. Int J PharmTech Res 2011, 3, 1817-24.

6. Kaur, I. P.; Singh, M.; Kanwar, M. Formulation and evaluation of

ophthalmic preparations of acetazolamide. International Journal of

Pharmaceutics 2000, 199, (2), 119-127.

7. Jansook, P.; Stefansson, E.; Thorsteinsdottir, M.; Sigurdsson, B. B.;

Kristjansdottir, S. S.; Bas, J. F.; Sigurdsson, H. H.; Loftsson, T. Cyclodextrin

solubilization of carbonic anhydrase inhibitor drugs: Formulation of dorzolamide

eye drop microparticle suspension. European Journal of Pharmaceutics and

Biopharmaceutics 2010, 76, (2), 208-214.

8. Gulsen, D.; Chauhan, A. Dispersion of microemulsion drops in HEMA

hydrogel: a potential ophthalmic drug delivery vehicle. International Journal of

Pharmaceutics 2005, 292, (1-2), 95-117.

117

9. Ludwig, A. The use of mucoadhesive polymers in ocular drug delivery.

Advanced Drug Delivery Reviews 2005, 57, (11), 1595-1639.

10. Jarvinen, K.; Jarvinen, T.; Urtti, A. Ocular absorption following topical

delivery. Advanced Drug Delivery Reviews 1995, 16, (1), 3-19.

11. Silver, L. H.; Brinzolamide Comfort Study, G. Ocular comfort of

brinzolamide 1.0% ophthalmic suspension compared with dorzolamide 2.0%

ophthalmic solution: Results from two multicenter comfort studies. Survey of

Ophthalmology 2000, 44, S141-S145.

12. Kulkarni, S. V.; Damji, K. F.; Buys, Y. M. Medical management of primary

open-angle glaucoma: Best practices associated with enhanced patient

compliance and persistency. Patient preference and adherence 2008, 2, 303.

13. Bourges, J. L.; Bloquel, C.; Thomas, A.; Froussart, F.; Bochot, A.; Azan,

F.; Gurny, R.; BenEzra, D.; Behar-Cohen, F. Intraocular implants for extended

drug delivery: Therapeutic applications. Advanced Drug Delivery Reviews 2006,

58, (11), 1182-1202.

14. Natu, M. V.; Gaspar, M. N.; Fontes Ribeiro, C. A.; Cabrita, A. M.; de

Sousa, H. C.; Gil, M. H. In vitro and in vivo evaluation of an intraocular implant

for glaucoma treatment. International Journal of Pharmaceutics 2011, 415, (1-2),

73-82.

15. Putnam, M. L.; Schoenwald, R. D.; Duffel, M. W.; Barfknecht, C. F.;

Segarra, T. M.; Campbell, D. A. Ocular disposition of aminozolamide in the

rabbit eye. Investigative Ophthalmology & Visual Science 1987, 28, (8), 1373-

1382.

16. Lotti, V. J.; Schmitt, C. J.; Gautheron, P. D. Topical ocular hypotensive

activity and ocular penetration of dichlorphenamide sodium in rabbits. Graefes

Archive for Clinical and Experimental Ophthalmology 1984, 222, (1), 13-19.

17. Hathout, R. M.; Mansour, S.; Mortada, N. D.; Guinedi, A. S. Liposomes as

an ocular delivery system for acetazolamide: In vitro and in vivo studies. Aaps

Pharmscitech 2007, 8, (1).

18. El-Gazayerly, O. N.; Hikal, A. H. Preparation and evaluation of

acetazolamide liposomes as an ocular delivery system. International Journal of

Pharmaceutics 1997, 158, (2), 121-127.

118

19. Aggarwal, D.; Garg, A.; Kaur, I. P. Development of a topical niosomal

preparation of acetazolamide: preparation and evaluation. Journal of Pharmacy

and Pharmacology 2004, 56, (12), 1509-1517.

20. Hasan, A. A. Formulation and evaluation of dorzolamide hydrochloride-

loaded nanoparticles as controlled release drug delivery system. Asian Journal of

Pharmaceutics 2012, 6, (1), 67.

21. Papadimitriou, S.; Bikiaris, D.; Avgoustakis, K.; Karavas, E.; Georgarakis,

M. Chitosan nanoparticles loaded with dorzolamide and pramipexole.

Carbohydrate Polymers 2008, 73, (1), 44-54.

22. Wadhwa, S.; Paliwal, R.; Paliwal, S. R.; Vyas, S. P. Chitosan and its Role

in Ocular Therapeutics. Mini-Reviews in Medicinal Chemistry 2009, 9, (14), 1639-

1647.

23. Natu, M. V.; Gaspar, M. N.; Fontes Ribeiro, C. A.; Correia, I. J.; Silva, D.;

de Sousa, H. C.; Gil, M. H. A poly(epsilon-caprolactone) device for sustained

release of an anti-glaucoma drug. Biomedical Materials 2011, 6, (2).

24. Felt, O.; Furrer, P.; Mayer, J. M.; Plazonnet, B.; Buri, P.; Gurny, R. Topical

use of chitosan in ophthalmology: tolerance assessment and evaluation of

precorneal retention. International Journal of Pharmaceutics 1999, 180, (2), 185-

193.

25. de la Fuente, M.; Raviña, M.; Paolicelli, P.; Sanchez, A.; Seijo, B.; Alonso,

M. J. Chitosan-based nanostructures: A delivery platform for ocular therapeutics.

Advanced Drug Delivery Reviews 2010, 62, (1), 100-117.

26. Zambito, Y.; Di Colo, G. Chitosan and its derivatives as intraocular

penetration enhancers. Journal of Drug Delivery Science and Technology 2010,

20, (1), 45-52.

27. Han, H. D.; Nam, D. E.; Seo, D. H.; Kim, T. W.; Shin, B. C.; Choi, H. S.

Preparation and biodegradation of thermosensitive chitosan hydrogel as a

function of pH and temperature. Macromolecular Research 2004, 12, (5), 507-

511.

28. Gaserod, O.; Jolliffe, I. G.; Hampson, F. C.; Dettmar, P. W.; Skjak-Braek,

G. The enhancement of the bioadhesive properties of calcium alginate gel beads

by coating with chitosan. International Journal of Pharmaceutics 1998, 175, (2),

237-246.

119

29. George, M.; Abraham, T. E. Polyionic hydrocolloids for the intestinal

delivery of protein drugs: Alginate and chitosan - a review. Journal of Controlled

Release 2006, 114, (1), 1-14.

30. Valenta, C. The use of mucoadhesive polymers in vaginal delivery.

Advanced Drug Delivery Reviews 2005, 57, (11), 1692-1712.

31. Caramella, C.; Ferrari, F.; Bonferoni, M. C.; Rossi, S.; Sandri, G. Chitosan

and its derivatives as drug penetration enhancers. Journal of Drug Delivery

Science and Technology 2010, 20, (1), 5-13.

32. Angadi, S. C.; Manjeshwar, L. S.; Aminabhavi, T. M. Interpenetrating

polymer network blend microspheres of chitosan and hydroxyethyl cellulose for

controlled release of isoniazid. International Journal of Biological Macromolecules

2010, 47, (2), 171-179.

33. Li, J. J.; Xu, Z. H. Physical characterization of a chitosan-based hydrogel

delivery system. Journal of Pharmaceutical Sciences 2002, 91, (7), 1669-1677.

34. Rodrigues, L. B.; Leite, H. F.; Yoshida, M. I.; Saliba, J. B.; Cunha, A. S.;

Faraco, A. A. G. In vitro release and characterization of chitosan films as

dexamethasone carrier. International Journal of Pharmaceutics 2009, 368, (1-2),

1-6.

35. Perumal, V. A.; Lutchman, D.; Mackraj, I.; Govender, T. Formulation of

monolayered films with drug and polymers of opposing solubilities. International

Journal of Pharmaceutics 2008, 358, (1-2), 184-191.

36. Eroglu, H.; Sargon, M. F.; Oener, L. Chitosan formulations for steroid

delivery: Effect of formulation variables on in vitro characteristics. Drug

Development and Industrial Pharmacy 2007, 33, (3), 265-271.

37. Dobaria, N. B.; Badhan, A. C.; Mashru, R. C. A Novel Itraconazole

Bioadhesive Film for Vaginal Delivery: Design, Optimization, and

Physicodynamic Characterization. Aaps Pharmscitech 2009, 10, (3), 951-959.

38. Committee, I. S. In Validation of analytical procedures: methodology q2b

ich - international conference on harmonisation of technical requirements for

registration of pharmaceuticals for human use 1996.

39. Moreno, M. C.; Marcos, H. J. A.; Croxatto, J. O.; Sande, P. H.; Campanelli,

J.; Jaliffa, C. O.; Benozzi, J.; Rosenstein, R. E. A new experimental model of

glaucoma in rats through intracameral injections of hyaluronic acid. Experimental

Eye Research 2005, 81, (1), 71-80.

120

40. Quint, M.-P.; Grove, J.; Thomas, S. M. Dorsolamide Hydrochloride.

Analytical profiles of drug substances and excipients 1999, 26, 283-317.

41. Gooch, N.; Molokhia, S. A.; Condie, R.; Burr, R. M.; Archer, B.; Ambati, B.

K.; Wirostko, B. Ocular drug delivery for glaucoma management. Pharmaceutics

2012, 4, (1), 197-211.

42. Panomsuk, S. P.; Hatanaka, T.; Aiba, T.; Katayama, K.; Koizumi, T. A

study of the hydrophilic cellulose matrix: Effect of drugs on swelling properties.

Chemical & Pharmaceutical Bulletin 1996, 44, (5), 1039-1042.

43. Takahashi, H.; Chen, R.; Okamoto, H.; Danjo, K. Acetaminophen particle

design using chitosan and a spray-drying technique. Chemical and

Pharmaceutical Bulletin 2005, 53, (1), 37-41.

44. Mucha, M.; Pawlak, A. Thermal analysis of chitosan and its blends.

Thermochimica Acta 2005, 427, (1-2), 69-76.

45. Neto, C. G. T.; Giacometti, J. A.; Job, A. E.; Ferreira, F. C.; Fonseca, J. L.

C.; Pereira, M. R. Thermal analysis of chitosan based networks. Carbohydrate

Polymers 2005, 62, (2), 97-103.

46. Yuan, X.-B.; Li, H.; Yuan, Y.-B. Preparation of cholesterol-modified

chitosan self-aggregated nanoparticles for delivery of drugs to ocular surface.

Carbohydrate Polymers 2006, 65, (3).

47. Kuntner, C.; Wanek, T.; Hoffer, M.; Dangl, D.; Hornof, M.; Kvaternik, H.;

Langer, O. Radiosynthesis and Assessment of Ocular Pharmacokinetics of I-

124-Labeled Chitosan in Rabbits Using Small-Animal PET. Molecular Imaging

and Biology 2011, 13, (2).

48. Gupta, H.; Aqil, M.; Khar, R. K.; Ali, A.; Bhatnagar, A.; Mittal, G.

Sparfloxacin-loaded PLGA nanoparticles for sustained ocular drug delivery.

Nanomedicine-Nanotechnology Biology and Medicine 2010, 6, (2).

49. Gupta, H.; Aqil, M.; Khar, R. K.; Ali, A.; Bhatnagar, A.; Mittal, G.

Biodegradable levofloxacin nanoparticles for sustained ocular drug delivery.

Journal of drug targeting 2011, 19, (6), 409-417.

50. Wilson, C. G.; Zhu, Y. P.; Frier, M.; Rao, L. S.; Gilchrist, P.; Perkins, A. C.

Ocular contact time of a carbomer gel (GelTears) in humans. British Journal of

Ophthalmology 1998, 82, (10).

51. Boland, M. V.; Quigley, H. A. Risk factors and open-angle glaucoma:

Classification and application. Journal of Glaucoma 2007, 16, (4), 406-418.

121

MANUSCRITO 3

The use of chitosan as pharmaceutical excipient in ocular drug

delivery systems: sterilization and pharmacokinetics

Artigo a ser submetido ao periódico Journal of Material Science

122

THE USE OF CHITOSAN AS PHARMACEUTICAL EXCIPIENT IN OCULAR DRUG DELIVERY SYSTEMS: STERILIZATION AND PHARMACOKINETICS

Juçara R. Franca,1 Leonardo L. Fuscaldi,2 Tatiana G. Ribeiro,1 Giselle Foureaux,3

Rachel O. Castilho,1 Sebastião Cronemberger,5 Anderson J. Ferreira,3 Simone O.

A. Fernandes,2 Valbert N. Cardoso,2 André A. G. Faraco1

1Department of Pharmaceutical Products, Faculty of Pharmacy, Federal

University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil;

2Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal

University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil;

3Department of Morphology, Institute of Biological Sciences, Federal University of

Minas Gerais, Belo Horizonte, Minas Gerais, Brazil;

4Department of Chemistry, Institute of Exact Sciences, Federal University of

Minas Gerais, Belo Horizonte, Minas Gerais, Brazil;

5Department of Ophthalmology and Otolaryngology, Faculty of Medicine, Federal

University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil;

Corresponding author: André Augusto Gomes Faraco, PhD

Address: Av. Antônio Carlos, 6627, Belo Horizonte, Minas Gerais, 31270-901,

Brazil.

Phone: +55 31 3409-6396; Fax: +55 31 3409-6961

E-mail: [email protected]

123

Abstract

The use of chitosan as a pharmaceutical excipient in the ocular field is not new.

Nevertheless, the impact of steam sterilization in the polymeric matrix structure

and the pharmacokinetics of chitosan after ocular administration still remain

unclear. So, in this study, the pharmacokinetic profile and the effects of stem

sterilization on chitosan-based ocular inserts (CI) were evaluated. CI were

produced by solvent/casting method and sterilized by saturated steam.

Sterilization was confirmed by direct inoculation of CI in suitable microbiological

growth media. Characterization of CI before and after sterilization was preceded

by swelling studies, infrared spectrometry, thermal analysis and scanning

electron microscopy. Results suggested that, although steam sterilization

changed the arrangement of the matrix, the heat and the humidity did not

modified the structure of the main polymeric chain. Pharmacokinetics of CI

radiolabeled with technetium-99m (99mTc) was assessed by scintigraphic images

and ex vivo biodistribution study, after ocular administration in male Wistar rats.

Scintigraphic images analysis showed that CI remained in the eye until six hours

after administration and began to migrate to the abdominal cavity after twelve

hours. In the ex vivo biodistribution study, it was found that, respectively, about

70 % and 40 % of the radiolabeled CI remained in the eye at six and eighteen

hours post-administration, thus confirming the bioadhesion and biodegradability

properties of chitosan. Together, these data represent an important step forward

the manufacturing and the clinical application of CI as drug delivery systems.

1 Introduction The field of ocular drug delivery is one of the most interesting and challenging

endeavors facing the pharmaceutical scientist. For instance, administration of

drugs to the ocular region with conventional drug delivery systems leads to a

short contact time of the formulations with the epithelium and fast elimination of

drugs. This transient residence time involves poor bioavailability of drugs which

can be explained by the tear production, non-productive absorption and

impermeability of corneal epithelium[1, 2]. So, various efforts have been made to

124

improve the bioavailability and the drug release and absorbing rate from

formulations or dosage forms[3].

In this context, mucoadhesive polymers, which are able to increase the ocular

bioavailability by enhancing the precorneal residence time, are being

investigated[4, 5].In this sense, the cationic polymer chitosan (CS) has attracted

a great deal of attention due to its mucoadhesive properties[6]. CS is a natural

nontoxic biopolymer produced by the deacetylation of chitin, a major component

of the shells of crustaceans[7]. It is well established that formulations containing

CS are able to enhance precorneal residence time and ocular bioavailability of

several drugs, such as terbinafine[8], gatifloxacin[9], amphotericin B[10],

natamycin[11], vancomycin[12], dorzolamide[13], mycophenolate mofetil[14],

indometacin[5], timolol[15], ofloxacin[16] and tobramicyn[17]. Moreover, the

ability of CS to effectively interact with the ocular mucosa has been attributed not

only to its cationic charge but also to its intrinsic properties[18]. Nevertheless, few

researchers have studied the bioavailability and the pharmacokinetics of CS itself

after ocular administration[19].

Another point concerning in the development of ophthalmic formulations

containing CS is the sterility. Ocular products must be sterile[20] and the most

common methods used for CS sterilization include exposure to steam, ethylene

oxide and γ-ray radiation[21]. However, given the nature of their action, the

different forms of sterilization can also attack the structure of the polymers,

resulting in hydrolysis, oxidation, chain scission and depolymerization[21]. CS is

relatively stable compared with other polysaccharides[22]. Notwithstanding, it has

already been proved that chain scission happens when CS is γ-irradiated[21, 20,

23-26]. Ethylene oxide can also react with the amine groups of the nucleophilic

N-groups of polymers, such as CS, causing chain depolymerization[27].

Moreover, ethylene oxide–treated membranes showed a higher degree of

hemolysis, compared to other sterilization methods[24]. It is also important to

mention that this gas is associated with toxicity, flammability and environmental

risks, as well as with possible material contamination with ethylene oxide

residues[26]. On the other hand, controversial results have been obtained for

steam sterilization of CS. Although, the high temperature and moist environment

125

created by the autoclave sterilization process usually changes the color and the

viscosity of CS[28, 21, 24], this physicochemical changes are often considered

irrelevant in the role of drug development[21, 24, 29].

Given this scenario, this work aimed to evaluate the pharmacokinetic

characteristics and the effects of stem sterilization on CS-based ocular inserts.

2 Material and Methods 2.1 Material Medium molecular weight (200.000 Da) CS was supplied by Sigma-Aldrich (St.

Louis, Mo, USA). Acetic acid was purchased from Merck (Darmstadt, Germany).

Technetium-99m (99mTc) was obtained from a 99Mo/99mTc generator acquired from

IPEN/CNEN (Brazil). All other reagents were of analytical grade.

2.2 Preparation of CS-based inserts Inserts were prepared as monolayer films by employing the solvent/ casting

technique, according to Rodrigues et al.[30]. First, 1,5 mL of acetic acid was

added to 100 mL of water. Next, 5 g of CS was added to this solution to produce

a viscous dispersion. This gel was magnetically stirred overnight to ensure

homogeneity of the polymer and casted, at room temperature, in circular silicone-

molded trays (SMT) containing individual 5 mm × 2 mm wells[31] to produce CS-

based inserts (CI). After casting, inserts were gently removed from the SMT and

stored in recipients, protected from light and air humidity.

2.3 Sterilization of CS-based inserts Inserts were, than, exposed to saturated steam at 121° C for 15 min at a

pressure of 115 kPa in order to produce sterilized CS inserts (SCI) [24].

Sterilization was confirmed by direct inoculation of the SCI, for 14 days, in 10 mL

of Fluid Thyoglycollate Medium (Merck, Darmstadt, Germany) and Sorbeyan-

126

Casein Digest Medium (Merck, Darmstadt, Germany), which were intended for

culture of anaerobic bacteria and yeast, and fungus and aerobic bacteria,

respectively. Fluid Thyoglycollate Medium and Sorbeyan-Casein Digest Medium

were prepared according to USP Pharmacopeia and autoclaved before use[32].

Each lot of medium was tested for growth promotion of aerobes, anaerobes and

fungi. 100 colony forming units (CFU) of Bacillus subtilis (ATCC 6633), Candida

albicans (ATCC 10231) and Aspergillus brasiliensis (ATCC 16404) (for Sorbeyan-

Casein Digest Medium) and Staphylococcus aureus (ATCC 6538) (for Fluid

Thyoglycollate Medium) purchased from ATCC (Manassas, USA) were

inoculated in a separate portion of the suitable medium. After 3 days (for

bacteria) or 5 days (for fungi) of incubation, at suitable conditions (22.5 ±2.5 °C

for Sorbeyan-Casein Digest Medium and 32.5 ± 2.5 °C for Fluid Thyoglycollate

Medium), growth of microorganisms was evaluated by turbidity. Non-sterilized CS

inserts (NCI) were used as positive control. Negative controls (growth media

without inserts and microorganisms) were prepared in order to verify that the

growth media were aseptic. All experiments were conducted in triplicate and

average values were taken[32, 33].

2.4 Characterization studies of NCI and SCI 2.4.1 Swelling studies Swelling studies of NCI and SCI were carried out in a phosphate buffer solution

pH 7.4 (PBS). Each insert was weighed and placed in PBS for predetermined

periods of time (5, 10, 20, 40, 60, and 90 min) as described by Eroglu et al.[34].

After immersion, the inserts were removed from the medium, the excessive water

on the surface was removed with a filter paper, and the swollen devices were

weighed. The degree of swelling was calculated by using Eq. 1[35].

[( ) ⁄ ](1)

The weight of the swollen insert after predetermined periods of time (t) is

represented by Wt. The original weight of the insert at zero time is represented by

W0. This experiment was performed in triplicate.

127

2.4.2 ATR-FTIR analysis Attenuated Total Reflectance Fourier Transformed Infrared spectroscopy (ATR-

FTIR) spectra of inserts before (NCI) and after sterilization (SCI) were recorded

on a PerkinElmer FTIR Spectrometer, Model Spectrum One (USA).

2.4.3 Thermal analysis The influence of the sterilization in the thermal properties of the CS inserts was

also evaluated. Thermogravimetric analyses (TG) data were collected on a TG-

50 Mettler STARe (Mettler Toledo, Columbus, USA) with alumina crucible.

Samples were heated at 10 °C/min from room temperature to 600 °C in a

dynamic nitrogen atmosphere at a flow rate of 20 mL/min. Differential Scanning

Calorimetry (DSC) measurements were carried out in a Shimadzu DSC50

(Shimadzu, Kyoto, Japan). Samples (NCI and SCI) were packed in an aluminum

crucible and heated at a rate of 10°C/min. Nitrogen, at the rate of 20 mL/min was

used as a purge gas during the role analysis. The specimens were heated from

−50°C to 200°C (RUN 1). Then, specimens were cooled to −50°C, at which point

they were reheated to 400°C at a rate of 10°C/min (RUN 2).

2.4.4 Morphological analysis The morphology of NCI and SCI was studied using a JEOL scanning electron

microscope (SEM), model JSM-6360LV (Tokyo, Japan), operating at 15 kV. The

samples were prepared by freezing the inserts in liquid nitrogen. After freezing,

inserts were fractured. Next, the surface and side of the inserts were analyzed.

The devices were analyzed at suitable acceleration voltages using varying

magnification for each sample. Representative micrographs were also taken.

128

2.5 In vivo pharmacokinetic studies 2.5.1 Animals Male Wistar rats (180 to 220 g) were obtained from the animal facility of the

Faculty of Pharmacy, Federal University of Minas Gerais. The animals were

housed in a temperature-controlled room (22-23 °C) with a 12-12h light-dark

cycle. Water and chow were available ad libitum. The experimental protocols

were performed in accordance with institutional guidelines approved by the

Ethics Committee on Animal Use of the Federal University of Minas Gerais, Brazil

(CEUA-UFMG), which are in accordance with the National Institutes of Health

(NIH) Guidelines for the Care and Use of Laboratory Animals (protocol number

211/13).

2.5.2 Radiolabeling of CS Scintigraphic images and ex vivo biodistribution study were based on the

administration of CS inserts radiolabeled with technetium-99m (99mTc) (99mTc-CI).

For radiolabeling of CS, the method developed by Soares et al.[36] was used

with slight modifications. Briefly, CS, at the concentration of 2 mg/mL, was

dispersed in acetic acid 1.5 v/v %. Then, the pH of the dispersion was adjusted to

5.0. This dispersion was radiolabeled with 99mTc by direct labeling method using

stannous chloride (20 μg) and sodium borohydride (50 μg) as reducing agents.

Radiochemical purity analysis of 99mTc-CS was performed by thin-layer

chromatography on silica gel strips (TLC-SG, Merck, Darmstadt, Germany),

using a two-solvent system: acid citric dextrose buffer (ACD) and methyl ethyl

ketone (MEK) to determine the amount of radiolabeled chitosan (99mTc-CS) and

free technetium (99mTcO4-), respectively [37]. 99mTc-CS was used to prepare the

radiolabeled inserts (99mTc-CI), as described earlier. Here, however, inserts were

dried for 2 hours, at 40 °C.

129

2.5.3 Scintigraphic images 99mTc-CI (18.5 MBq) was topically administered in the right eye of Wistar rats (n =

5). At 30 min, 2, 4, 6, 12 and 18 h post-administration, animals were anesthetized

intramuscularly with a solution of ketamine (70 mg/Kg) and xylazine (10 mg/Kg)

and then placed in a prone position under a gamma camera (Mediso, Hungary),

employing a low-energy high-resolution collimator (LEHR). Images were acquired

using a 256x256x16 matrix size with a 20% energy window set at 140 keV for a

period of 10 min.

2.5.4 Ex vivo biodistribution study

99mTc-CI (18.5 MBq) was topically administered in the right eye of Wistar rats (n =

5 for each time). At 6 and 18 h post-administration, animals were anesthetized

intramuscularly with a solution of ketamine (70 mg/Kg) and xylazine (10 mg/Kg)

and, then, euthanized. Organs and tissues of interest (spleen, liver, stomach,

small and large intestines, kidneys, blood and eyes) were removed. Then, each

organ and tissue was weighed and its associated radioactivity was determined in

an automatic gamma counter (Wizard, Finland).Results were expressed as the

percentage of radioactivity per gram of tissue (% cpm/g).

2.6 Statistical analysis Data from swelling index, weight of the inserts and ex vivo biodistribution study

were statistically analyzed by means of unpaired Student t test, using GraphPad

Prism 5.0 software.

3 Results CIs were produced as circular flexible films with 5 mm of diameter. In order to

evaluate the influence of steam sterilization on the physicochemical properties of

the membranes, characterization tests were performed and the data obtained for

NCI and SCI presented below.

130

The swelling indexes of NCI and SCI are shown in Fig. 1. It was observed that

inserts hydrated very quickly, reaching more than 80% of total hydration in the

first 20 min. The effect of sterilization on the swelling behavior of the inserts is,

also, presented in Fig. 3.1: steam sterilization decreased the water uptake from

CS inserts.

Figure 3. 1 - Swelling indexes of NCI and SCI. Values are

expressed as mean ± SD. *p<0.05. Unpaired Student t test.

Fig. 3.2 shows the ATR-FTIR spectra of inserts before and after sterilization. In

both spectra, respectively, two characteristic absorption bands of CS were

detected at 1634/1645 and 1539/1554 cm-1 and were attributed to amide I (C=O

stretching) and to N-H (amine) vibration overlapped to amide II (N-H vibration)

and acetate band, respectively. The overlapped wide absorption band at

3247/3289 cm-1 was due to the stretching vibration of the O-H and N-H bonds[38,

39, 30]. From the FTIR spectra of SCI, it can be seen that both amide II/acetate

band (1554 cm-1) and the 1406 cm-1 (C=O vibration of acetic acid) band

significantly decreased.

131

Figure 3. 2 - ATR-FTIR spectra of NCI (a) and SCI (b).

Fig. 3.3 shows DSC curves of NCI and SCI (a and b show first and second run,

respectively). Inserts presented a broad endothermic peak at 85.47/108.76 °C,

as well as a broad exothermic peak at 288.74/291.12 °C on the first and second

runs, respectively. Both peaks are widened and can be attributed to an

evaporation of residual water and a degradation of the main chain,

respectively[40, 41, 30].

132

Figure 3. 3 - DSC curves of NCI and SCI: RUN 1 (a) and RUN 2 (b)

Correspondent loss of weight was identified in thermograms of both NCI and SCI

(Fig. 3.4). It was noticed that, after sterilization, the first loss of weight (water

loss) took place in a higher temperature. No significant change in the degradation

of the main polymeric chain was caused by steam sterilization.

133

Figure 3. 4 - Thermograms (black lines) and first derivative of thermograms

(red lines) of NCI and SCI. Percent weight loss is also show (blue lines)

Morphological characterization of NCI and SCI was accessed by SEM analysis.

SEM pictures of inserts before and after steam sterilization are shown in Fig. 3.5.

From surface images (Fig. 3.5 c and d), it is possible to notice that the surface of

the inserts was homogeneous and did not change significantly after steam

sterilization. Lateral images (Fig. 3.5 a and b) show that the homogeneous and

compact polymeric matrix of the insert did not change due to steam sterilization.

However, thickness of inserts lowered after sterilization (from about 50 to about

30 μm). In the same way, the weight of the inserts decreased from 3.55 ± 0.04 to

2.74 ± 0.06 mg (n=18; p< 0.001) after steam sterilization.

(a)

134

Figure 3. 5 - SEM pictures of NCI (a and c) and SCI (b and d). Lateral (a and b)

and surface (c and d) views

The effect of steam sterilization in the microbiological behavior of the inserts is

presented in Table 1. Results of positive and negative controls are also shown.

Steam sterilization was able to eliminate microorganisms from CS-based insert.

135

Table 1 - Microbial growth of controls and inserts before and after sterilization in Fluid

Thyoglycollate Medium and Sorbeyan-Casein Digest Mediuma.

Sample

Time of

incubation

(days)

Fluid Thyoglycollate

Medium

Sorbeyan-Casein

Digest Medium

Negative control 14 - -

Bacillus subtilis

(ATCC 6633) 3 NA +

Candida albicans

(ATCC 10231) 5 NA +

Aspergillus brasiliensis

(ATCC 16404) 5 NA +

Staphylococcus aureus

(ATCC 6538) 3 + NA

Non-sterilized inserts

(NCI) 14 + +

Sterilized inserts

(SCI) 14 - -

a (+): evident microbial growth after incubation.

(-): no evident microbial growth after incubation.

NA: not applicable data

For scintigraphic images and ex vivo biodistribution study, CS was radiolabeled

with the radionuclide 99mTc. After previous standardization of the CS radiolabeling

procedure, which included variation of the radiolabeling parameters, such as the

amount of stannous chloride and sodium borohydride, pH, temperature and

reaction time, the radiolabeling procedure was optimized. Amounts of 20 μg of

stannous chloride and 50 μg of sodium borohydride, pH of 5.0, temperature of

96°C and reaction time of 30 min were found to give the maximum radiolabeling

efficiency (87,39 ± 1,29 %). The results showed relatively low levels of 99mTcO2

and 99mTcO4-, 0,91 ± 1,09 % and 11,71 ± 0,20 %, respectively, allowing for

images in high quality.

Scintigraphic images, obtained after administration of 99mTc-CI in the right eye of

Wistar rats, are presented in Fig. 3.6. Qualitative analysis of the images showed

that the formulation remained in the right eye for the first six hours and, then,

136

began to be cleared from the ocular region, reaching the abdominal cavity (Fig.

3.6).

Figure 3. 6 - Scintigraphic images obtained 30 min, 2, 4, 6, 12 and 18 h after ocular

administration of 99m

Tc-CI.

Ex vivo biodistribution showed the destination of 99mTc-CI and the results are

presented in Fig. 3.7. At 6 h post-administration, 71.62 ± 21.89% of 99mTc-CI

remained in the right eye. On the other hand, at 18 h, 41.02 ± 17.92% of 99mTc-CI

persisted in the site of application. The portion of 99mTc-CI which was cleared

from the eye accumulated preferably in the gastrointestinal tract (mainly in the

large intestine), the kidneys and the liver.

137

Figure 3. 7 - Biodistribution profile obtained at 6 and 18 h after ocular

administration of 99m

Tc-CI in healthy Wistar rats (n = 5). Results are expressed as the percentage of radioactivity per gram of tissue (%cpm/g). Values are expressed as mean ± SD. *p<0.05. Unpaired Student t test.

4 Discussion Topical drug therapy is the primary form of treatment for a sort of ophthalmic

diseases, such as conjunctivitis, dry eye, anterior uveitis and glaucoma[42].

Nevertheless, ocular drug delivery remains among the most challenging

approaches to the administration of therapeutic agents to the human body[43]. In

general, the major challenge in ocular therapeutics is to maintain an effective

drug concentration at the site of action for appropriate period of time, in order to

achieve the expected pharmacological response[18]. In order to address this

problem, CS-based formulations have been extensively studied because of its

mucoadhesiveness and penetration enhancing proprieties, as well as by its good

biocompatibility with the ocular structure[18, 44, 45, 2, 46]. However, an

important issue when we talk about ophthalmic formulations excipients is the

sterilization of the final product. Although various research groups have been

studied sterilization of CS-containing products[29, 25, 23, 21, 47, 24, 20, 48], the

138

impact of different sterilization methods in the polymeric matrix structure still

remains unclear.

It seems that there is no perfect method when we deal with CS sterilization and

all of the well-established sterilization methods can cause unwanted effects on

CS structure. So, the main goal concerning the sterilization of CS formulation is

to determine if the harmful caused by sterilization will or will not impact the

behavior of the formulation. Compared do another common sterilization methods,

like dry heat, ethylene oxide or glutaraldehyde exposition and gamma-irradiation,

steam sterilization remain the cheaper, the safer and the simpler available

sterilization method[33]. However, the extension of the damage caused by steam

sterilization in CS polymeric chain has never been clarified.

In this work, the effects of steam sterilization on the physicochemical structure of

CS membranes were evaluated. From swelling index studies, it is possible to

notice that sterilization lowered the water uptake of the films, which means that

the films became more hydrophobic, as described by Rao et al.[24]. Moreover, it

means that the polymeric lattice became more closed after heat exposure. This

fact suggests that the intermolecular interactions between the polymeric chains

became stronger. Therefore, the stronger the intermolecular interactions, the

lower the diffusion of the water molecules in the hydrated matrix[49]. A possible

explanation for this matrix closure would be the loss of acetic acid, a volatile

plasticizer which is used to produce the CS membranes. Plasticizer acts placing

between the polymeric chains and, lowering the intermolecular interactions

between its chains. Once the plasticizer is lost, the number of intermolecular

interactions would enhance in order to produce a closed matrix. Loss of acetic

acid was confirmed by ATR-FTIR analysis, in which the common acetate bands

(1554 and 1406 cm-1) lowered or disappeared after steam sterilization.

Similarly, loss of weight (from 3.55 ± 0.04 to 2.74 ± 0.06 mg) and reduction of

thickness were noticed after steam sterilization. Since the loss of weight was

significantly high, it can be suggested that loss of water (another plasticizer) can,

also, take place during steam sterilization. This loss of plasticizers was also

confirmed by DSC data. In the first run (Fig. 3 a), it was observed that the loss of

139

the water remaining on the inserts took place in a higher temperature. Since the

water content of the inserts is lower and the membrane lattice will be more closed

(as explained before), it was harder to eliminate this residual water. So, more

heat was needed to produce the same effect. In the same way, the water content

of the membranes was found to be lower after sterilization (Fig. 3.4).

If, in one way, steam sterilization can change the arrangement of the CI by

changing the plasticizer content, in another way, the heat and the humidity did

not appear to change the structure of the main polymeric chain. No significant

changes of position or intensity of CS bands were notice on ATR-FTIR spectra

(Fig. 3.2) and, so, no significant changes in the behavior of the degradation of

the polymeric chain were detected (Fig. 3.3). So, it seems that the chemical

nature of CS is not significantly compromised by steam sterilization. More

essential, as shown before[24], steam sterilization was effective to eliminate

microorganism originally presented in NCI (Table 1).

So, taking in mind that it is possible to sterilize CS membranes by steam

sterilization with minor changes in the arrangement of the matrix and without

significant change in the polymeric matrix, another question remains when

dealing with CS administration in the eye: what happens to the polymer after

instillation? To solve this question, CS was radiolabeled with 99mTc and followed

the radiolabeled formulation in the body of Wistar rats by means of scintigraphic

images and ex vivo biodistribution study. The radiolabeling procedure with 99mTc

can yield to two mainly radiochemical impurities, 99mTcO4- and 99mTcO2. In both

mobile phases (ACD and MEK), 99mTcO4- reaches the top of the silica gel strip (Rf

= 0.9-1.0), whereas 99mTc-CS cannot travel much due to differences in the

molecular weight and it is retained at the base of the strip (Rf = 0.0)[37]. 99mTcO2,

similar to 99mTcO4-, migrates to the top of the silica gel strip with ACD and

remains at the point of application when MEK is used as eluent, like 99mTc-

CS[37]. Then, ACD was used to determine the purity of 99mTc-CS, whereas MEK

was used to quantify 99mTcO4-. Radiolabeling yield obtained in the present work

was considered to be appropriate (~90%) for further in vivo assays.

140

Scintigraphic images (Fig. 3.6) showed that, until 6 h after 99mTc-CI

administration, CS remained in the site of application (right eye), confirming the

ability of the polymer to stay in the eye and to enhance the precorneal residence

time of drugs, improving biodistribution. However, after 12 h, the polymer began

to migrate to other parts of the body. In order to clarify the destination of the

polymer, ex vivo biodistribution study was performed. As similar scintigraphic

images were obtained at 12 and 18 h after 99mTc-CI administration and the

difference between the extension of drainage were accessed at 6 and 18 h after

administration. Organs of the abdominal cavity, blood and eyes were collected in

order to identify the exact destination of 99mTc-CI. The main site of accumulation

of the radiolabeled polymer was the gastrointestinal tract (GIT), mainly the large

intestine, suggesting that the polymer is eliminated from the eye via nasolacrimal

tract and proceed to the GIT. Moreover, the polymer is absorbed and

accumulates in the kidneys and liver, which are common sites of accumulation of

CS after intravenous administration[36]. So, it can be suggested that, although

CS stays in the eye for a relatively long period of time, at some point, the body

itself begins to eliminate the polymer (biodegradation). It has already been

proved that humans produce two chitinases, acidic mammalian chitinase

(AMCase) and human chitotriosidase (HCHT), which are able to degrade

CS[50].Furthermore, AMCase have already been found in the tears[51].Besides

that, according to Robinson and Mlynek, the mucin layer replaces itself

approximately every 15-20 hours [20]. Here, it was shown the ability of CS to be

self-eliminated after eye administration, possibly via AMCase degradation and

mucin layer replacement. Even more important, it means that ocular inserts do

not need any effort to be removed after eye administration.

At 6 h post-administration, about 70% of 99mTc-CI remained in the right eye.

Similarly, Yuan et al.[52] studied the ocular distribution of a CS formulation, after

its eye administration, and found that at 112 min about 70% of the formulation

remained in the site of application. In order to assess the ocular

pharmacokinetics of CS, long-term studies were done using 124I-labeled CS[19].

In this work, Kuntner et al. showed that chitosan-containing solutions remained in

the eye even at 22 h after instillation. In the same way, here it was shown that

even at 18 h after CS inserts administration, a large amount of the formulation

141

(about 40%) still remained in the eye, thus confirming the good residence time of

the CS-based formulation, which is ascribed to the bioadhesion ability based on

its cationic activation[52]. According to Robinson and Mlynek, the mucin layer

replacement would be completed every 15-20 hours and this turnover would be

an important limiting factor[20]. So, theoretically, after this period of time, even

mucoadhesive formulations would be cleared from the eye.In this sense, efforts

should be devoted to the development of once-a-day medication[2]. Here it was

proved that, although a portion of the formulation was indeed cleared from the

eye, even at 18 h, a large amount of the formulation still was in the site of

administration, which means that mucoadhesive formulations would be able to

act for a period of time longer than one day.

5 Conclusion This study provided realistic information that proved that CS-based ocular inserts

can be conveniently sterilized by steam sterilization and that, once administrated

in the eye, the same insert maintains the CS mucoadhesiveness and

biodegradability properties. So, together, these data represent an important step

forward the manufacturing and the clinical application of those ocular inserts as

drug delivery systems.

Acknowledgements We are grateful to Research Pro-Rector of Federal University of Minas Gerais

(PRPq-UFMG), and the National Council for Scientific and Technological

Development (CNPq) for fellowship and financial support. We also thanks the

Coordination for the Improvement of Higher Education Personnel (CAPES) and

the Minas Gerais State Research Foundation (FAPEMIG) for their financial

support and the Center of Microscopy of Federal University of Minas Gerais

(http://www.microscopia.ufmg.br) for providing the equipment and technical

support for experiments involving scanning electron microscopy.

142

References 1. Achouri D, Alhanout K, Piccerelle P, Andrieu V. Recent advances in ocular

drug delivery. Drug Development and Industrial Pharmacy. 2013;39(11):1599-

617. doi:10.3109/03639045.2012.736515.

2. Ludwig A. The use of mucoadhesive polymers in ocular drug delivery.

Advanced Drug Delivery Reviews. 2005;57(11):1595-639.

doi:10.1016/j.addr.2005.07.005.

3. Zhou HY, Hao JL, Wang S, Zheng Y, Zhang WS. Nanoparticles in the ocular

drug delivery. International Journal of Ophthalmology. 2013;6(3):390-6.

doi:10.3980/j.issn.2222-3959.2013.03.25.

4. Chaiyasan W, Srinivas SP, Tiyaboonchai W. Mucoadhesive Chitosan-Dextran

Sulfate Nanoparticles for Sustained Drug Delivery to the Ocular Surface. Journal

of Ocular Pharmacology and Therapeutics. 2013;29(2):200-7.

doi:10.1089/jop.2012.0193.

5. Yamaguchi M, Ueda K, Isowaki A, Ohtori A, Takeuchi H, Ohguro N et al.

Mucoadhesive Properties of Chitosan-Coated Ophthalmic Lipid Emulsion

Containing Indomethacin in Tear Fluid. Biological & Pharmaceutical Bulletin.

2009;32(7):1266-71.

6. Arunkumar R, Prashanth KVH, Baskaran V. Promising interaction between

nanoencapsulated lutein with low molecular weight chitosan: Characterization

and bioavailability of lutein in vitro and in vivo. Food Chemistry. 2013;141(1):327-

37. doi:10.1016/j.foodchem.2013.02.108.

7. Georgieva V, Zvezdova D, Vlaev L. Non-isothermal kinetics of thermal

degradation of chitosan. Chemistry Central Journal. 2012;6:10.

doi:10.1186/1752-153x-6-81.

8. Tayel SA, El-Nabarawi MA, Tadros MI, Abd-Elsalam WH. Positively Charged

Polymeric Nanoparticle Reservoirs of Terbinafine Hydrochloride: Preclinical

Implications for Controlled Drug Delivery in the Aqueous Humor of Rabbits. Aaps

Pharmscitech. 2013;14(2):782-93. doi:10.1208/s12249-013-9964-y.

9. Abul Kalam M, Sultana Y, Ali A, Aqil M, Mishra AK, Chuttani K et al. Part II:

Enhancement of transcorneal delivery of gatifloxacin by solid lipid nanoparticles

in comparison to commercial aqueous eye drops. Journal of Biomedical Materials

Research Part A. 2013;101A(6):1828-36. doi:10.1002/jbm.a.34467.

143

10. Zhou WJ, Wang YY, Jian JY, Song SF. Self-aggregated nanoparticles based

on amphiphilic poly(lactic acid)-grafted-chitosan copolymer for ocular delivery of

amphotericin B. International Journal of Nanomedicine. 2013;8:3715-28.

doi:10.2147/ijn.s51186.

11. Bhatta RS, Chandasana H, Chhonker YS, Rathi C, Kumar D, Mitra K et al.

Mucoadhesive nanoparticles for prolonged ocular delivery of natamycin: In vitro

and pharmacokinetics studies. International Journal of Pharmaceutics.

2012;432(1-2):105-12. doi:10.1016/j.ijpharm.2012.04.060.

12. Khangtragool A. Comparison of Vehicles for Vancomycin Drug Delivery in

Extemporaneously Prepared Ophthalmic Solutions. Biomaterials and

Applications. 2012;506:481-4. doi:10.4028/www.scientific.net/AMR.506.481.

13. Warsi MH, Chaurasiya A, Jain GK, Pathan SA, Chander P, Singh AK et al.

Aqueous Humor Pharmacokinetics of Dorzolamide Loaded PLGAChitosan

Nanoparticles by Ultra Performance Liquid Chromatography. Current

Pharmaceutical Analysis. 2011;7(3):189-94.

14. Wu XG, Xin M, Yang LN, Shi WY. The Biological Characteristics and

Pharmacodynamics of a Mycophenolate Mofetil Nanosuspension Ophthalmic

Delivery System in Rabbits. Journal of Pharmaceutical Sciences.

2011;100(4):1350-61. doi:10.1002/jps.22356.

15. Cao YX, Zhang C, Shen WB, Cheng ZH, Yu LL, Ping QN. Poly(N-

isopropylacrylamide)-chitosan as thermosensitive in situ gel-forming system for

ocular drug delivery. Journal of Controlled Release. 2007;120(3):186-94.

doi:10.1016/j.jconrel.2007.05.009.

16. Di Colo G, Zambito Y, Burgalassi S, Serafini A, Saettone MF. Effect of

chitosan on in vitro release and ocular delivery of ofloxacin from erodible inserts

based on poly(ethylene oxide). International Journal of Pharmaceutics.

2002;248(1-2):115-22. doi:10.1016/s0378-5173(02)00421-0.

17. Felt O, Gurny R, Buri P, Baeyens V. Delivery of antibiotics to the eye using a

positively charged polysaccharide as vehicle. Aaps Pharmsci. 2001;3(4):7.

18. de la Fuente M, Raviña M, Paolicelli P, Sanchez A, Seijo B, Alonso MJ.

Chitosan-based nanostructures: A delivery platform for ocular therapeutics.

Advanced Drug Delivery Reviews. 2010;62(1):100-17.

doi:http://dx.doi.org/10.1016/j.addr.2009.11.026.

144

19. Kuntner C, Wanek T, Hoffer M, Dangl D, Hornof M, Kvaternik H et al.

Radiosynthesis and Assessment of Ocular Pharmacokinetics of I-124-Labeled

Chitosan in Rabbits Using Small-Animal PET. Molecular Imaging and Biology.

2011;13(2). doi:10.1007/s11307-010-0352-7.

20. Lim LY, Khor E, Koo O. Irradiation of chitosan. Journal of Biomedical

Materials Research. 1998;43(3):282-90.

21. Yang Y-M, Zhao Y-H, Liu X-H, Ding F, Gu X-S. The effect of different

sterilization procedures on chitosan dried powder. Journal of Applied Polymer

Science. 2007;104(3):1968-72. doi:10.1002/app.25906.

22. Rinaudo M. Properties and degradation of selected polysaccharides:

hyaluronan and chitosan. Corrosion Engineering Science and Technology.

2007;42(4):324-34. doi:10.1179/174327807x238945.

23. Shen K, Hu Q, Wang Z, Qu J. Effect of Co-60 irradiation on the properties of

chitosan rod. Materials Science & Engineering C-Materials for Biological

Applications. 2011;31(5):866-72. doi:10.1016/j.msec.2011.02.002.

24. Rao SB, Sharma CP. Use of chitosan as a biomaterial: Studies on its safety

and hemostatic potential. Journal of Biomedical Materials Research.

1997;34(1):21-8.

25. Jarry C, Leroux JC, Haeck J, Chaput C. Irradiating or autoclaving

chitosan/polyol solutions: Effect on thermogelling chitosan-beta-

glycerophosphate systems. Chemical & Pharmaceutical Bulletin.

2002;50(10):1335-40. doi:10.1248/cpb.50.1335.

26. Marreco PR, da Luz Moreira P, Genari SC, Moraes AM. Effects of different

sterilization methods on the morphology, mechanical properties, and cytotoxicity

of chitosan membranes used as wound dressings. Journal of Biomedical

Materials Research Part B-Applied Biomaterials. 2004;71B(2):268-77.

doi:10.1002/jbm.b.30081.

27. Munarin F, Bozzini S, Visai L, Tanzi MC, Petrini P. Sterilization treatments on

polysaccharides: Effects and side effects on pectin. Food Hydrocolloids.

2013;31(1):74-84. doi:10.1016/j.foodhyd.2012.09.017.

28. Fernandez-Saiz P, Lagaron JM, Ocio MJ. Optimization of the biocide

properties of chitosan for its application in the design of active films of interest in

the food area. Food Hydrocolloids. 2009;23(3):913-21.

doi:10.1016/j.foodhyd.2008.06.001.

145

29. Jarry C, Chaput C, Chenite A, Renaud MA, Buschmann M, Leroux JC.

Effects of steam sterilization on thermogelling chitosan-based gels. Journal of

Biomedical Materials Research. 2001;58(1):127-35. doi:10.1002/1097-

4636(2001)58:1<127::aid-jbm190>3.0.co;2-g.

30. Rodrigues LB, Leite HF, Yoshida MI, Saliba JB, Cunha AS, Faraco AAG. In

vitro release and characterization of chitosan films as dexamethasone carrier.

International Journal of Pharmaceutics. 2009;368(1-2):1-6.

doi:10.1016/j.ijpharm.2008.09.047.

31. Perumal VA, Lutchman D, Mackraj I, Govender T. Formulation of

monolayered films with drug and polymers of opposing solubilities. International

Journal of Pharmaceutics. 2008;358(1-2):184-91.

doi:10.1016/j.ijpharm.2008.03.005.

32. 30 U. United States Pharmacopoeial Convention. Mack Printing Rockville;

2007.

33. (BRASIL) ANDVS, CRUZ FO. Farmacopeia brasileira. Brasília: ANVISA:

FIOCRUZ; 2010.

34. Eroglu H, Sargon MF, Oener L. Chitosan formulations for steroid delivery:

Effect of formulation variables on in vitro characteristics. Drug Development and

Industrial Pharmacy. 2007;33(3):265-71. doi:10.1080/03639040600713134.

35. Dobaria NB, Badhan AC, Mashru RC. A Novel Itraconazole Bioadhesive Film

for Vaginal Delivery: Design, Optimization, and Physicodynamic Characterization.

Aaps Pharmscitech. 2009;10(3):951-9. doi:10.1208/s12249-009-9288-0.

36. Soares DCF, Ferreira TH, Ferreira CdA, Cardoso VN, Sousa EMBd. Boron

Nitride Nanotubes radiolabeled with< sup> 99m</sup> Tc: preparation,

physicochemical characterization, biodistribution study, and scintigraphic imaging

in Swiss mice. International Journal of Pharmaceutics. 2011.

37. Jing H, Guo Z, Guo W, Yang W, Xu P, Zhang X. Synthesis and

characterization of folic acid modified water-soluble chitosan derivatives for

folate-receptor-mediated targeting. Bioorganic & Medicinal Chemistry Letters.

2012;22(10):3418-24. doi:10.1016/j.bmcl.2012.03.102.

38. Kumirska J, Czerwicka M, Kaczynski Z, Bychowska A, Brzozowski K,

Thoeming J et al. Application of Spectroscopic Methods for Structural Analysis of

Chitin and Chitosan. Marine Drugs. 2010;8(5):1567-636.

doi:10.3390/md8051567.

146

39. Lawrie G, Keen I, Drew B, Chandler-Temple A, Rintoul L, Fredericks P et al.

Interactions between alginate and chitosan biopolymers characterized using

FTIR and XPS. Biomacromolecules. 2007;8(8):2533-41.

doi:10.1021/bm070014y.

40. Mucha M, Pawlak A. Thermal analysis of chitosan and its blends.

Thermochimica Acta. 2005;427(1-2):69-76. doi:10.1016/j.tca.2004.08.014.

41. Neto CGT, Giacometti JA, Job AE, Ferreira FC, Fonseca JLC, Pereira MR.

Thermal analysis of chitosan based networks. Carbohydrate Polymers.

2005;62(2):97-103. doi:10.1016/j.carbpol.2005.02.022.

42. Lee SS, Hughes P, Ross AD, Robinson MR. Biodegradable Implants for

Sustained Drug Release in the Eye. Pharmaceutical Research.

2010;27(10):2043-53. doi:10.1007/s11095-010-0159-x.

43. Liu S, Jones L, Gu FX. Nanomaterials for Ocular Drug Delivery.

Macromolecular Bioscience. 2012;12(5):608-20. doi:10.1002/mabi.201100419.

44. Wadhwa S, Paliwal R, Paliwal SR, Vyas SP. Chitosan and its Role in Ocular

Therapeutics. Mini-Reviews in Medicinal Chemistry. 2009;9(14):1639-47.

45. Aburahma MH, Mahmoud AA. Biodegradable Ocular Inserts for Sustained

Delivery of Brimonidine Tartarate: Preparation and In Vitro/In Vivo Evaluation.

Aaps Pharmscitech. 2011;12(4):1335-47. doi:10.1208/s12249-011-9701-3.

46. Kashikar VS. Ophthalmic mucoadhesive polymers-A literature review.

International Journal of Pharmaceutical Sciences Review and Research.

2011;7(1):68-73.

47. Rao SB, Sharma CP. Sterilization of chitosan: Implications. Journal of

Biomaterials Applications. 1995;10(2):136-43.

48. Desai KG, Park HJ. Study of gamma-irradiation effects on chitosan

microparticles. Drug Delivery. 2006;13(1):39-50.

doi:10.1080/10717540500309123.

49. Panomsuk SP, Hatanaka T, Aiba T, Katayama K, Koizumi T. A study of the

hydrophilic cellulose matrix: Effect of drugs on swelling properties. Chemical &

Pharmaceutical Bulletin. 1996;44(5):1039-42.

50. Eide B, Norberg AL, Heggset EB, Lindbom AR, V rum M, Eijsink VG et al.

Human chitotriosidase-catalyzed hydrolysis of chitosan. Biochemistry.

2011;51(1):487-95.

147

51. Musumeci M, Bellin M, Maltese A, Aragona P, Bucolo C, Musumeci S.

Chitinase levels in the tears of subjects with ocular allergies. Cornea.

2008;27(2):168-73.

52. Yuan X-B, Li H, Yuan Y-B. Preparation of cholesterol-modified chitosan self-

aggregated nanoparticles for delivery of drugs to ocular surface. Carbohydrate

Polymers. 2006;65(3). doi:10.1016/j.carbpol.2006.01.020.

148

DISCUSSÃO GERAL Manuscrito 1 O desenvolvimento de formas farmacêuticas oftálmicas é muito desafiador em

vista da anatomia e fisiologia desse órgão (GAUDANA et al., 2010). Uma terapia

ideal para doenças crônicas, como o glaucoma, seria aquela que mantivesse

níveis efetivos do fármaco por um período relativamente longo após uma única

aplicação (GAUDANA et al., 2009). Novos sistemas de liberação de fármacos

que promovam a liberação controlada do princípio ativo e aumentem a adesão

do paciente ao tratamento pela redução da frequência de aplicação tem sido

desenvolvidos com o objetivo de liberar o fármaco no sítio de ação (GAUDANA

et al., 2010; KUNO; FUJII, 2011). Da mesma forma, grande atenção tem sido

dada ao desenvolvimento de sistemas não invasivos (GAUDANA et al., 2009).

Em 2011, Robinson et al. desenvolveram sistemas poliméricos para liberação

controlada de bimatoprosta (NATARAJAN et al., 2012; ROBINSON, M. R.;

BURKE; SCHIFFMAN). Em 2013, Shafiee et al. propuseram sistemas DuraSite®

para reduzir a frequência de administração do bimatoprosta. O bimatoprosta

formulado no sistema DuraSite® apresentaram biodisponibilidade ocular

superior ao colírio convencional. Sistemas DuraSite® comerciais (AzaSite® e

Besivance®) ainda precisam ser administrados diariamente (SHAFIEE et al.,

2013).

Por outro lado, NATARAJAN et al. desenvolveram lipossomas para liberação

controlada de latanoprosta, um análogo de prostaglandina similar ao

bimatoprosta (NATARAJAN et al., 2012). A liberação controlada do latanoprosta

foi obtida; no entanto, o processo de produção dos lipossomas ainda envolve o

uso de solventes orgânicos que são indesejados na indústria farmacêutica. Em

2013, Giarmoukakis et al. também desenvolveram nanopartículas

biodegradáveis para liberação controlada de latanoprosta (GIARMOUKAKIS et

al., 2013). Infelizmente, procedimentos invasivos foram utilizados para

implantação periocular da formulação desenvolvida.

149

Nesse contexto, neste trabalho foram desenvolvidos inserts oculares a base de

quitosana para liberação controlada de bimatoprosta, um hipotensor ocular

altamente eficaz (WOODWARD et al., 2001). A principal inovação do sistema

apresentado neste trabalho, comparado, por exemplo, aos desenvolvidos por

Robinson et al (2011)., é que, enquanto os sistemas desenvolvidos por aquele

grupo precisam ser implantados na câmara anterior do olho, o que requer um

procedimento cirúrgico, os sistemas desenvolvidos neste trabalho podem ser

aplicados topicamente no saco conjuntival, por meio de um procedimento não

invasivo.

Os inserts foram preparados como membranas circulares flexiveis de 5 mm de

diametro e cerca de 50 μm de espessura (Figura 15). Os inserts oculares

usados comumente em animais e em estudos clínicos apresentam espessura

entre 70 a 500 μm (LISA LAND; BENJAMIN, 1994), sugerindo que os inserts

desenvolvidos neste trabalho apresentam espessura adequada para uso clínico.

Figura 15 - Esquema de produção e resultados de liberação de bimatoprosta em inserts

de quitosana

Os dados obtidos deste trabalho revelam que os inserts poliméricos de

quitosana para liberação controlada de bimatoprosta foram produzidos com

sucesso. Uma interação química forte entre o fármaco e o polímero foi obtida. A

formulação aumentou o tempo de residência precorneal do fármaco, comparado

aos colírios convencionais. A liberação controlada do fármaco foi provada por

efeitos farmacodinâmicos (redução da PIO e neuroproteção) e por estudos de

biodistribuição. Consequentemente, após a análise dos dados, pode-se concluir

150

que o dispositivo desenvolvido foi capaz de liberar bimatoprosta de forma

controlada por um mês após uma única aplicação. Esses resultados revelam

uma aplicação potencial dessa nova formulação no tratamento do glaucoma,

com o objetivo de aumentar a adesão do paciente ao tratamento por reduzir a

frequência de administração e aumentar a eficácia terapêutica do tratamento

médico do glaucoma, reduzindo, também, a possibilidade de efeitos colaterais.

Manuscrito 2 Analogamente aos filmes produzidos para bimatoprosta relatado anteriormente,

nesta etapa do trabalho planejou-se a obtenção de filmes polimérico de

quitosana para liberação de dorzolamida. Na primeira etapa de

desenvolvimento deste trabalho, foi verificada que a solubilidade da dorzolamida

era maior em meio hidrofílico que a da bimatoprosta (Franca, dissertação de

mestrado, 2010). Consequentemente, optou-se por desenvolver dispositivos

poliméricos na forma de blenda entre o quitosana e a hidroxietilcelulose com o

intuito de diminuir a capacidade de difundir na matriz polimérica da dorzolamida

por intermédio do aumento das interações nas cadeias poliméricas constantes

da blenda (Franca, dissertação de mestrado, 2010).

Outros trabalhos descritos na literatura relacionam a liberação de dorzolamida

com sistemas poliméricos, por exemplo: Papadimitriou et al. (2008), trabalhando

com nanopartículas de quitosana para liberação de dorzolamida, obtiveram perfil

de liberação in vitro semelhante ao apresentado neste trabalho. Essa formulação

não foi testada in vivo. Wadhwa et al. (2009) adicionou ácido hialurônico à

nanopartículas poliméricas de quitosana para liberação de dorzolamida e

somente 20% do fármaco foi liberado in vitro em 24 h. Essa formulação foi

testada em coelhos não glaucomatosos e foi capaz de reduzir a PIO por 72 h.

Natu et al. (2011) desenvolveram inserts poliméricos de poli-(ε-caprolactona) e

poli(óxido de etileno)-b-poli-(óxido de propileno)-b-poli-(óxido de etileno) como

carreadores de dorzolamida, que foram capazes de liberar o fármaco por 20 dias

e reduziram a PIO de coelhos normotensos e hipertensos durante três meses

151

(NATU; GASPAR; FONTES RIBEIRO; CABRITA; et al., 2011). No entanto,

esses inserts precisam ser implantados cirurgicamente na conjuntiva ocular e

esse procedimento causou conjuntivite em cerca de 9% dos animais tratados

(NATU; GASPAR; FONTES RIBEIRO; CABRITA; et al., 2011).

Visando simplificar a produção de dispositivos de liberação ocular sem utilizar

nanopartículas e polímeros hidrofóbicos, que necessitam trabalho com solventes

orgânicos, os inserts para liberação de dorzolamida foram preparados de forma

semelhante ao realizado para os inserts descritos no manuscrito 1, porém com a

adição de outro polímero, a hidroxietilcelulose, para formar a blenda poliméirca

com o quitosana (Figura 16).

Figura 16 - Resumo gráfico de liberação de dorzolamida em inserts de

quitosana/hidroxietilcelulose.

É importante observar que o processo utilizado para preparar os inserts é mais

fácil que o utilizado para produzir nanopartículas descritos acima. Além disso, os

inserts desenvolvidos neste trabalho também são capazes de liberar o fármaco

de maneira controlada in vivo reduzindo a PIO por um período relativamente

longo (duas semanas) mesmo sendo aplicado topicamente e sem causar danos

sérios ao olho.

O insert desenvolvido foi capaz de reduzir a PIO dos ratos com glaucoma

induzido, e, também, apresentou efeitos neuroprotetores, que foram

demonstrados pela contagem de células ganglionares (CGs). Embora tanto o

152

colírio como os inserts tenham reduzido a PIO pelo mesmo período (duas

semanas), a contagem de CGs foi diferente para esses dois tratamentos. Isso

pode ser explicado pela diferença na forma como o fármaco é liberado dessas

duas formulações. Os colírios liberam o fármaco imediatamente e, com isso, a

concentração do fármaco no olho irá reduzir ao longo do dia o que pode resultar

em incrementos transientes da PIO, e, por conseguinte, morte de CGs. Nas

formulações de liberação controlada, como os inserts, a quantidade de fármaco

liberada no olho é pequena e constante. Assim, o incremento transiente da PIO

durante o dia não acontecerá e as CGs serão protegidas. Não está bem

estabelecido se a elevação ou a flutuação da PIO é o fator de risco mais

importante para o desenvolvimento e a progressão da lesão glaucomatosa ou se

ambos os fatores interferem no desenvolvimento da doença (BOLAND;

QUIGLEY, 2007), mas parece que ambos os fatores são importantes para a

morte das CGs.

Considerando todos esses resultados, pode-se sugerir que os inserts oculares a

base de quitosana e a hidroxietilcelulose são formulações promissoras para

serem usadas como sistemas de liberação controlada de dorzolamida no

tratamento do glaucoma sendo considerada uma estratégia inovadora neste

caso.

Manuscrito 3 Quando se fala de excipientes para formulações oftálmicas, a esterilização do

produto final é uma questão importante. Embora diversos grupos de pesquisa

tenham estudado a esterilização de produtos contendo quitosana (DESAI, K. G.;

PARK, 2006; JARRY et al., 2001; JARRY et al., 2002; LIM, L. Y. et al., 1998;

RAO; SHARMA, 1995,1997; SHEN et al., 2011; YANG et al., 2007), o impacto

dos diferentes métodos de esterilização na estrutura da matriz polimérica ainda

não está bem esclarecido.

Parece que não existe um método perfeito para a esterilização de formulações

contendo quitosana e todos os métodos de esterilização bem estabelecidos

podem causar algum efeito indesejado na estrutura da matriz polimérica. Dessa

153

forma, o principal objetivo quando se trata da esterilização dessas formulações é

determinar se os danos causados pela esterilização irão ou não impactar

negativamente no comportamento da formulação. Comparado a outros métodos

de esterilização, como exposição ao calor seco, óxido de etileno ou radiação

gama, a esterilização por calor úmido continua sendo o método mais barato,

mais seguro e mais simples (PIANETTI, 2010). No entanto, a extensão do dano

causado pelo calor úmido à cadeia polimérica do quitosana não está claro na

literatura.

Por outro lado, está bem estabelecido que formulações contendo quitosana são

capazes de aumentar o tempo de residência precorneal e a biodisponibilidade

ocular de diversos fármacos como terbinafina (TAYEL et al., 2013),

gatifloxacina(ABUL KALAM et al., 2013), anfotericina B(ZHOU et al., 2013),

natamicina (BHATTA et al., 2012), vancomicina (KHANGTRAGOOL, 2012),

dorzolamida (WARSI et al., 2011), micofenolato de mofetila (WU et al., 2011),

indometacina (YAMAGUCHI et al., 2009), timolol (CAO et al., 2007), ofloxacino

(DI COLO et al., 2002) e tobramicina (FELT et al., 2001). Além disso, a

capacidade do quitosana de interagir efetivamente com a mucosa ocular tem

sido atribuída não somente à sua carga catiônica, mas, também, às suas

propriedades intrínsecas (DE LA FUENTE et al., 2010). No entanto, poucos

pesquisadores estudaram a biodisponibilidade e a farmacocinética do quitosana

em si após administração ocular (KUNTNER et al., 2011).

Nestes dois contextos, foram avaliados neste manuscrito, o impacto da

esterilização por calor úmido na estrutura físico-química dos inserts de quitosana

e as características farmacocinéticas destes inserts após aplicação ocular.

Com relação aos estudos de esterilização, este trabalho possibilitou demonstrar

que houveram algumas alterações na rede polimérica no sentido de torná-la

mais fechada ao influxo de água para dentro dos inserts. Esse fato sugere que

as interações intermoleculares entre as cadeias poliméricas se tornaram mais

fortes. Uma possível explicação para esse fechamento da matriz seria a perda

de ácido acético, um plastificante volátil usado para produzir as membranas. O

plastificante age colocando-se entre as cadeias poliméricas e reduzindo as

154

interações entre as cadeias. Se o plastificante é perdido, o número de interações

intermoleculares será maior produzindo, assim, uma matriz mais fechada. A

perda de ácido acético foi confirmada pela análise do espectro ATR-FTIR, no

qual as bandas de acetato (1554 e 1406 cm-1) diminuíram ou desapareceram

após a esterilização e pelo aumento do pH de superfície dos filmes (de 4 para 5).

Se, por um lado a esterilização por calor úmido mudou o arranjo da malha

polimérica presente nos inserts, por outro lado, o processo de degradação da

cadeia polimérica principal no DSC não foi alterado. Assim, pode-se sugerir que

a natureza química do quitosana não foi significativamente comprometida pela

esterilização por calor úmido.

Mais importante, como mostrado anteriormente (RAO; SHARMA, 1997), a

esterilização por calor úmido foi efetiva para eliminar os micro-organismos

originalmente presentes nos inserts não esterilizados. Este resultado permitiu

concluir que é possível esterilizas inserts de quitosana com pequenas mudanças

na organização da matriz polimérica, mas sem alterações na estrutura do

quitosana em si. Esse dados representam um importante avanço no processo

produtivo dos inserts de quitosana como formulações oftálmicas.

Já com relação às características farmacocinéticas o objetivo deste trabalho foi

elucidar o que acontece com os inserts de quitosana após administração ocular.

Para isso, o quitosana foi marcado com 99mTc e a formulação foi acompanhada

no corpo do rato por 18 h. A pureza de marcação do quitosana obtida nesse

trabalho foi próxima à pureza obtida por Banerjee et al., que obtiveram purezas

de marcação 80-85% e de 90%, quando marcaram nanopartículas de quitosana

com tecnécio (BANERJEE et al., 2002; BANERJEE et al., 2005).

Foi observado que, até 6 h após a administração, os inserts permaneceram no

sítio de aplicação, confirmando a capacidade do quitosana de permanecer no

olho, aumentando o tempo de residência pré-corneal de um possível fármaco

incorporado à formulação e, consequentemente, aumentando a

biodisponibilidade. No entanto, após 12 h, o polímero começou a migrar para

outras partes do corpo. O principal sítio de acúmulo do polímero foi o trato

155

gastrointestinal, sugerindo que o polímero é eliminado do olho via ducto

nasolacrimal, e os rins e o fígado, que são sítios comuns de acúmulo do

quitosana após administração endovenosa. Assim, podemos sugerir que,

embora o quitosana permaneça no olho por um período de tempo relativamente

longo, em algum momento o corpo começa a eliminar o polímero

(biodegradação). Já foi comprovado que os seres humanos produzem duas

quitinases (quitinase ácida de mamíferos (AMCase) e quitotriosidade humana

(HCHT)) que são capazes de degradar o quitosana (EIDE et al., 2011). A

AMCase já foi encontrada nas lágrimas (MUSUMECI et al., 2008). Além disso,

de acordo com Robinson and Mlynek (1995), a camada de mucina se renova

completamente em 15-20 h. Essas informações suportam os resultados desse

trabalho que indicam que os inserts de quitosana pode ser de fato

autoeliminados após administração ocular, seja pela degradação enzimática

(AMCase), seja pela renovação da camada de mucina. Independente do método

de eliminação do inserts, o mais importante é que os inserts não precisaram ser

removidos após administração ocular.

Seis horas após a administração dos inserts, cerca de 70 % do 99mTc-quitosana

permaneceu no sítio de aplicação. Resultados similares foram obtidos por Yuan

et al., que estudaram a biodistribuição de de partículas de quitosana após

administração ocular e, após 112 min, cerca de 70 % da formulação permanecia

no sítio de aplicação (YUAN; LI; YUAN, 2006). Com o objetivo de avaliar a

farmacocinética do quitosana, estudos mais longos foram realizados utilizados

quitosana radiomarcado com 124I (KUNTNER et al., 2011). Nesse trabalho,

Kuntner et al. mostraram que soluções de quitosana permaneceram no olho 22 h

após a instilação. De forma semelhante, neste trabalho mesmo 18 h após a

administração dos inserts, uma grande quantidade da formulação (cerca de 40

%) permanecia no olho (Figura 20), confirmando o bom tempo de residência da

formulação à base de quitosana, associada à capacidade de bioadesão,

baseada na ativação catiônica (YUAN et al., 2006). De acordo com Robinson

and Mlynek, a camada de mucina seria completamente renovada a cada15-20 h

e esse processo de renovação seria um importante fator limitante para o

desenvolvimento de formulações mucoadesivas (ROBINSON, J. R.; MLYNEK,

1995) porque, teoricamente, após esse tempo, as formulações mucoadesivas

156

seriam completamente eliminadas da região ocular (LUDWIG, 2005). Os

resultados deste trabalho, no entanto, demonstram que, embora parte da

formulação foi, de fato eliminada do olho, mesmo após 18 h, uma grande

quantidade da formulação ainda estava no sítio de aplicação, o que significa que

a formulação mucoadesiva poderia atuar por um período maior do que o previsto

por Robinson e Mlynek.

Estes resultados permitem inferir que os inserts poliméricos de quitosana são um

grande passo na aplicação ocular como sistemas de liberação de fármacos.

157

CONCLUSÕES GERAIS E PERSPECTIVAS Os inserts poliméricos de quitosana para liberação controlada de bimatoprosta e

dorzolamida foram produzidos com sucesso. Esses inserts podem ser

convenientemente esterilizados por calor úmido e foram capazes de manter as

propriedades de mucoadesão e biodegradabilidade do polímero, quando

administrados no olho. Interações fortes entre os fármacos e a matriz

poliméricas foram caracterizadas. A formulação aumentou o tempo de residência

precorneal dos fármacos quando comparado aos colírios convencionais. A

liberação controlada do fármaco foi provada por efeitos farmacodinâmicos

(redução da PIO e neuroproteção) e por estudos de biodistribuição.

Os inserts de quitosana foram mais eficazes que as formulações convencionais

para o tratamento do glaucoma, sendo que os inserts contendo dorzolamida

foram efetivos por duas semanas, enquanto os inserts contendo bimatoprosta

foram efetivos por quatro semanas. Não foram observados efeitos tóxicos

decorrentes da aplicação das formulações.

Esse resultados revelam uma aplicação potencial dessas novas formulações no

tratamento do glaucoma, com o objetivo de aumentar a adesão do paciente ao

tratamento por reduzir a frequência de administração e aumentar a eficácia

terapêutica do tratamento médico do glaucoma. Além disso, representam um

importante avanço no processo produtivo e na aplicação clínica desse inserts de

quitosana como formulações oftálmicas e como estratégia inovadora no

tratamento do glaucoma.

Considerando esses resultados promissores, o estudo clínico de fase II, a

próxima etapa deste trabalho, já está sendo realizado. Esses experimentos tem

sido realizados no hospital das clínicas da UFMG, em colaboração com o Prof.

Dr. Sebastião Cronemberger Sobrinho, conforme protocolo aprovado no comitê

de ética e pesquisa sob o número 428.231, em 23/10/2013 (Anexo A).

158

REFERÊNCIA BIBLIOGRÁFICAS ABUL KALAM, M.; SULTANA, Y.; ALI, A.; AQIL, M.; MISHRA, A. K.; CHUTTANI, K.;ALJUFFALI, I. A.; ALSHAMSAN, A. Part II: Enhancement of transcorneal delivery of gatifloxacin by solid lipid nanoparticles in comparison to commercial aqueous eye drops. Journal of Biomedical Materials Research Part A, v. 101A, n. 6, p. 1828-1836, Jun 2013. ABURAHMA, M. H.; MAHMOUD, A. A. Biodegradable Ocular Inserts for Sustained Delivery of Brimonidine Tartarate: Preparation and In Vitro/In Vivo Evaluation. Aaps Pharmscitech, v. 12, n. 4, p. 1335-1347, Dec 2011. ACHOURI, D.; ALHANOUT, K.; PICCERELLE, P.; ANDRIEU, V. Recent advances in ocular drug delivery. Drug Development and Industrial Pharmacy, v. 39, n. 11, p. 1599-1617, Nov 2013. AGGARWAL, D.; GARG, A.; KAUR, I. P. Development of a topical niosomal preparation of acetazolamide: preparation and evaluation. Journal of Pharmacy and Pharmacology, v. 56, n. 12, p. 1509-1517, Dec 2004. AHMED, F.; CHAUDHARY, P.; SHARMA, S. C. Effects of increased intraocular pressure on rat retinal ganglion cells. International Journal of Developmental Neuroscience, v. 19, n. 2, p. 209-218, Apr 2001. AHMED, I.; PATTON, T. F. Importance of the noncorneal absorption route in topical ophthalmic drug delivery. Investigative Ophthalmology & Visual Science, v. 26, n. 4, p. 584-587, 1985 1985. ALMASIEH, M.; WILSON, A. M.; MORQUETTE, B.; VARGAS, J. L. C.; DI POLO, A. The molecular basis of retinal ganglion cell death in glaucoma. Progress in Retinal and Eye Research, v. 31, n. 2, p. 152-181, Mar 2012. ANDREWS, G. P.; LAVERTY, T. P.; JONES, D. S. Mucoadhesive polymeric platforms for controlled drug delivery. European Journal of Pharmaceutics and Biopharmaceutics, v. 71, n. 3, p. 505-518, Mar 2009. ANGADI, S. C.; MANJESHWAR, L. S.; AMINABHAVI, T. M. Interpenetrating polymer network blend microspheres of chitosan and hydroxyethyl cellulose for controlled release of isoniazid. International Journal of Biological Macromolecules, v. 47, n. 2, p. 171-179, Aug 1 2010. BANERJEE, T.; MITRA, S.; SINGH, A. K.; SHARMA, R. K.; MAITRA, A. Preparation, characterization and biodistribution of ultrafine chitosan nanoparticles. International Journal of Pharmaceutics, v. 243, n. 1-2, p. 93-105, Aug 28 2002. BANERJEE, T.; SINGH, A. K.; SHARMA, R. K.; MAITRA, A. N. Labeling efficiency and biodistribution of Technetium-99m labeled nanoparticles:

159

interference by colloidal tin oxide particles. International Journal of Pharmaceutics, v. 289, n. 1-2, p. 189-195, Jan 31 2005. BEAN, G. W.; CAMRAS, C. B. Commercially Available Prostaglandin Analogs for the Reduction of Intraocular Pressure: Similarities and Differences. Survey of Ophthalmology, v. 53, p. S69-S84, Nov 2008. BERNKOP-SCHNUERCH, A.; DUENNHAUPT, S. Chitosan-based drug delivery systems. European Journal of Pharmaceutics and Biopharmaceutics, v. 81, n. 3, p. 463-469, Aug 2012. BHATTA, R. S.; CHANDASANA, H.; CHHONKER, Y. S.; RATHI, C.; KUMAR, D. MITRA, K.; SHUKLA, P. K. Mucoadhesive nanoparticles for prolonged ocular delivery of natamycin: In vitro and pharmacokinetics studies. International Journal of Pharmaceutics, v. 432, n. 1-2, p. 105-112, Aug 2012. BOLAND, M. V.; QUIGLEY, H. A. Risk factors and open-angle glaucoma: Classification and application. Journal of Glaucoma, v. 16, n. 4, p. 406-418, Jun-Jul 2007. BOUHENNI, R. A.; DUNMIRE, J.; SEWELL, A.; EDWARD, D. P. Animal Models of Glaucoma. Journal of Biomedicine and Biotechnology, 2012 2012. BRUBAKER, R. F. Mechanism of action of bimatoprost (Luminan (TM)). Survey of Ophthalmology, v. 45, p. S347-S351, May 2001. ______. Targeting outflow facility in glaucoma management. Survey of Ophthalmology, v. 48, p. S17-S20, Apr 2003. BRUSCHI, M. L.; LARA, E. H. G.; MARTINS, C. H. G.; VINHOLIS, A. H. C.; CASEMIRO, L. A.; PANZERI, H.; GREMIAO, M. P. D. Preparation and antimicrobial activity of gelatin microparticles containing propolis against oral pathogens. Drug Development and Industrial Pharmacy, v. 32, n. 2, p. 229-238, 2006 2006. BURK, R. M.; WOODWARD, D. F. A historical perspective and recent advances in prostamide research and therapeutics. Current Opinion in Drug Discovery & Development, v. 10, n. 4, p. 413-421, Jul 2007. BURSCHKA, D.; CORSO, J. J.; DEWAN, M.; LAU, W.; LI, M.; LIN, H.; MARAYONG, P.; RAMEY, N.; HAGER, G. D.; HOFFMAN, B.; LARKIN, D.; HASSER, C. Navigating inner space: 3-D assistance for minimally invasive surgery. Robotics and Autonomous Systems, v. 52, n. 1, p. 5-26, Jul 2005. CAO, Y. X.; ZHANG, C.; SHEN, W. B.; CHENG, Z. H.; YU, L. L.; PING, Q. N. Poly(N-isopropylacrylamide)-chitosan as thermosensitive in situ gel-forming system for ocular drug delivery. Journal of Controlled Release, v. 120, n. 3, p. 186-194, Jul 2007.

160

CARVALHO, F. C.; BRUSCHI, M. L.; EVANGELISTA, R. C.; GREMIÃO, M. P. D. Mucoadhesive drug delivery systems. Brazilian Journal of Pharmaceutical Sciences, v. 46, n. 1, p. 1-17, 2010. CASSON, R. J.; CHIDLOW, G.; WOOD, J. P. M.; CROWSTON, J. G.; GOLDBERG, I. Definition of glaucoma: clinical and experimental concepts. Clinical and Experimental Ophthalmology, v. 40, n. 4, p. 341-349, May-Jun 2012. CHAIYASAN, W.; SRINIVAS, S. P.; TIYABOONCHAI, W. Mucoadhesive Chitosan-Dextran Sulfate Nanoparticles for Sustained Drug Delivery to the Ocular Surface. Journal of Ocular Pharmacology and Therapeutics, v. 29, n. 2, p. 200-207, Mar 2013. CHEN, R. H.; LIN, J. H.; YANG, M. H. Relationships between the chain flexibilities of chitosan molecules and the physical-properties of their casted films. Carbohydrate Polymers, v. 24, n. 1, p. 41-46, 1994 1994. CHMIELEWSKI, A. G. Chitosan and radiation chemistry. Radiation Physics and Chemistry, v. 79, n. 3, p. 272-275, // 2010. CHRISTIANSEN, G. A.; NAU, C. B.; MCLAREN, J. W.; JOHNSON, D. H. Mechanism of ocular hvpotensive action of bimatoprost (lumigan) in patients with ocular hypertension or glaucoma. Ophthalmology, v. 111, n. 9, p. 1658-1662, Sep 2004. CHRYSOSTOMOU, V.; REZANIA, F.; TROUNCE, I. A.; CROWSTON, J. G. Oxidative stress and mitochondrial dysfunction in glaucoma. Current Opinion in Pharmacology, 2012. COLEMAN, A. L. Glaucoma. Lancet, v. 354, n. 9192, p. 1803-1810, Nov 20 1999. COLEMAN, A. L.; MIGLIOR, S. Risk Factors for Glaucoma Onset and Progression. Survey of Ophthalmology, v. 53, p. S3-S10, Nov 2008. COLTHURST, M. J.; WILLIAMS, R. L.; HISCOTT, P. S.; GRIERSON, I. Biomaterials used in the posterior segment of the eye. Biomaterials, v. 21, n. 7, p. 649-665, Apr 2000. COOK, C.; FOSTER, P. Epidemiology of glaucoma: what's new? Canadian Journal of Ophthalmology-Journal Canadien D Ophtalmologie, v. 47, n. 3, p. 223-226, Jun 2012. CRONEMBERGER, S.; LOURENÇO, L. F. S.; SILVA, L. C.; CALIXTO, N.; PIRES, M. C. Prognosis of glaucoma in relation to blindness at a university hospital. Arquivos Brasileiros de Oftalmologia, v. 72, n. 2, p. 199-204, 2009. CURRAN, M. P. Bimatoprost A Review of its Use in Open-Angle Glaucoma and Ocular Hypertension. Drugs & Aging, v. 26, n. 12, p. 1049-1071, 2009 2009.

161

DA SILVA, M. J. L. Conhecimentos sobre prevenção e tratamento de glaucoma entre pacientes de unidade hospitalar. Arq Bras Oftalmol, v. 67, n. 5, p. 785-90, 2004. DAVE, V.; SHARMA, S.; YADAV, S.; PALIWAL, S. Advancement and tribulations in ocular drug delivery. International Journal of Drug Delivery, v. 4, n. 1, p. 1-8, 2012. DAVIES, S. S.; JU, W. K.; NEUFELD, A. H.; ABRAN, D.; CHEMTOB, S.; ROBERTS, L. J. Hydrolysis of bimatoprost (Lumigan) to its free acid by ocular tissue in vitro. Journal of Ocular Pharmacology and Therapeutics, v. 19, n. 1, p. 45-54, Feb 2003. DE BARROS, A. L. B.; MOTA, L. G.; FERREIRA, C. A.; CARDOSO, V. N. Kit formulation for 99mTc-labeling of HYNIC-βAla-Bombesin(7–14). Applied Radiation and Isotopes, v. 70, n. 10, p. 2440-2445, 10// 2012. DE LA FUENTE, M.; RAVIÑA, M.; PAOLICELLI, P.; SANCHEZ, A.; SEIJO, B.; ALONSO, M. J. Chitosan-based nanostructures: A delivery platform for ocular therapeutics. Advanced Drug Delivery Reviews, v. 62, n. 1, p. 100-117, 1/31/ 2010. DESAI, K. G.; PARK, H. J. Study of gamma-irradiation effects on chitosan microparticles. Drug Delivery, v. 13, n. 1, p. 39-50, Jan-Feb 2006. DESAI, P. V.; CAPRIOLI, J. The treatment of normal-tension glaucoma. Glaucoma: an Open Window to Neurodegeneration and Neuroprotection, v. 173, p. 195-210, 2008 2008. DI COLO, G.; ZAMBITO, Y.; BURGALASSI, S.; SERAFINI, A.; SAETTONE, M. F. Effect of chitosan on in vitro release and ocular delivery of ofloxacin from erodible inserts based on poly(ethylene oxide). International Journal of Pharmaceutics, v. 248, n. 1-2, p. 115-122, Nov 2002. DIAS, J. F. P.; ALMEIDA, H. G.; PRATA JÚNIOR, J. A. Glaucoma. 3. Rio de Janeiro: Cultura Médica, 2007. DOBARIA, N. B.; BADHAN, A. C.; MASHRU, R. C. A Novel Itraconazole Bioadhesive Film for Vaginal Delivery: Design, Optimization, and Physicodynamic Characterization. Aaps Pharmscitech, v. 10, n. 3, p. 951-959, Sep 2009. EIDE, . B. NORBERG, A. L. HEGGSET, E. B. LINDBOM, A. R. V RUM, K. M.; EIJSINK, V. G. H.; SØRLIE, M. Human chitotriosidase-catalyzed hydrolysis of chitosan. Biochemistry, v. 51, n. 1, p. 487-495, 2011. EL-GAZAYERLY, O. N.; HIKAL, A. H. Preparation and evaluation of acetazolamide liposomes as an ocular delivery system. International Journal of Pharmaceutics, v. 158, n. 2, p. 121-127, Dec 8 1997.

162

EROGLU, H.; SARGON, M. F.; OENER, L. Chitosan formulations for steroid delivery: Effect of formulation variables on in vitro characteristics. Drug Development and Industrial Pharmacy, v. 33, n. 3, p. 265-271, Mar 2007. Farmacopeia brasileira. Brasília: 2010. FECHTNER, R. D.; WEINREB, R. N. Mechanisms of optic-nerve damage in primary open-angle glaucoma. Survey of Ophthalmology, v. 39, n. 1, p. 23-42, 1994. FELT, O.; FURRER, P.; MAYER, J. M.; PLAZONNET, B.; BURI, P.; GURNY, R. Topical use of chitosan in ophthalmology: tolerance assessment and evaluation of precorneal retention. International Journal of Pharmaceutics, v. 180, n. 2, p. 185-193, Apr 15 1999. FELT, O.; GURNY, R.; BURI, P.; BAEYENS, V. Delivery of antibiotics to the eye using a positively charged polysaccharide as vehicle. Aaps Pharmsci, v. 3, n. 4, p. 7, 2001. FERNANDEZ-SAIZ, P.; LAGARON, J. M.; OCIO, M. J. Optimization of the biocide properties of chitosan for its application in the design of active films of interest in the food area. Food Hydrocolloids, v. 23, n. 3, p. 913-921, May 2009. FLORENCE, A. T.; ATTWOOD, D. Princípios Físico-Químicos em Farmácia. São Paulo: Edusp, 2003. FRANCA, J. R. Desenvolvimento de sistemas poliméricos para liberação tópica e prolongada de fármacos sintéticos e e de extrato vegetal. 2011. 149 (Mestrado). Produtos Farmacêuticos, Universidade Federal de Minas Gerais, Belo Horizonte. GASEROD, O.; JOLLIFFE, I. G.; HAMPSON, F. C.; DETTMAR, P. W.; SKJAK-BRAEK, G. The enhancement of the bioadhesive properties of calcium alginate gel beads by coating with chitosan. International Journal of Pharmaceutics, v. 175, n. 2, p. 237-246, Dec 15 1998. GAUDANA, R.; ANANTHULA, H. K.; PARENKY, A.; MITRA, A. K. Ocular Drug Delivery. Aaps Journal, v. 12, n. 3, p. 348-360, Sep 2010. GAUDANA, R.; JWALA, J.; BODDU, S. H. S.; MITRA, A. K. Recent Perspectives in Ocular Drug Delivery. Pharmaceutical Research, v. 26, n. 5, p. 1197-1216, May 2009. GEORGE, M.; ABRAHAM, T. E. Polyionic hydrocolloids for the intestinal delivery of protein drugs: Alginate and chitosan - a review. Journal of Controlled Release, v. 114, n. 1, p. 1-14, Aug 10 2006. GEORGIEVA, V.; ZVEZDOVA, D.; VLAEV, L. Non-isothermal kinetics of thermal degradation of chitosan. Chemistry Central Journal, v. 6, p. 10, Aug 2012.

163

GHATE, D.; EDELHAUSER, H. F. Barriers to glaucoma drug delivery. Journal of Glaucoma, v. 17, n. 2, p. 147-156, Mar 2008. GHELANI, T. K.; SETH, A. K.; SAINI, V.; KUMAR, S.; YADAV, Y. C.; SINGHAL, S. In vivo and ocular safety study of dorsolamide hcl ocular insert. ______. In vivo and ocular safety study of dorsolamide HCL ocular insert. Pharmacologyonline, v. 2, p. 1179-1187, // 2011. GIANNANTONI, A.; DI STASI, S. M.; CHANCELLOR, M. B.; COSTANTINI, E.; PORENA, M. New frontiers in intravesical therapies and drug delivery. European Urology, v. 50, n. 6, p. 1183-1193, Dec 2006. GIARMOUKAKIS, A.; LABIRIS, G.; SIDEROUDI, H.; TSIMALI, Z.; KOUTSOSPYROU, N.; AVGOUSTAKIS, K.; KOZOBOLIS, V. Biodegradable nanoparticles for controlled subconjunctival delivery of latanoprost acid: In vitro and in vivo evaluation. Preliminary results. Experimental Eye Research, v. 112, p. 29-36, Jul 2013. GOOCH, N.; MOLOKHIA, S. A.; CONDIE, R.; BURR, R. M.; ARCHER, B.; AMBATI, B. K.; WIROSTKO, B. Ocular drug delivery for glaucoma management. Pharmaceutics, v. 4, n. 1, p. 197-211, 2012. GRABOVAC, V.; GUGGI, D.; BERNKOP-SCHNURCH, A. Comparison of the mucoadhesive properties of various polymers. Advanced Drug Delivery Reviews, v. 57, n. 11, p. 1713-1723, Nov 3 2005. GULSEN, D.; CHAUHAN, A. Dispersion of microemulsion drops in HEMA hydrogel: a potential ophthalmic drug delivery vehicle. International Journal of Pharmaceutics, v. 292, n. 1-2, p. 95-117, 2005. GUPTA, H.; AQIL, M.; KHAR, R. K.; ALI, A.; BHATNAGAR, A.; MITTAL, G. Sparfloxacin-loaded PLGA nanoparticles for sustained ocular drug delivery. Nanomedicine-Nanotechnology Biology and Medicine, v. 6, n. 2, Apr 2010. GUPTA, H.; AQIL, M.; KHAR, R. K.; ALI, A.; BHATNAGAR, A.; MITTAL, G. Biodegradable levofloxacin nanoparticles for sustained ocular drug delivery. Journal of drug targeting, v. 19, n. 6, p. 409-417, 2011. GUYTON, A.C. Fisiologia Humana, 6. ed, Rio de Janeiro: Editora Guanabara, 1998 HAMILTON, V.; YUAN, Y.; RIGNEY, D. A.; PUCKETT, A. D.; ONG, J. L.; YANG, Y.; ELDER, S. H.; BUMGARDNER, J. D. Characterization of chitosan films and effects on fibroblast cell attachment and proliferation. Journal of Materials Science-Materials in Medicine, v. 17, n. 12, p. 1373-1381, Dec 2006.

164

HASAN, A. A. Formulation and evaluation of dorzolamide hydrochloride-loaded nanoparticles as controlled release drug delivery system. Asian Journal of Pharmaceutics, v. 6, n. 1, p. 67, 2012. HATHOUT, R. M.; MANSOUR, S.; MORTADA, N. D.; GUINEDI, A. S. Liposomes as an ocular delivery system for acetazolamide: In vitro and in vivo studies. Aaps Pharmscitech, v. 8, n. 1, 2007 2007. HEJAZI, R.; AMIJI, M. Chitosan-based gastrointestinal delivery systems. Journal of Controlled Release, v. 89, n. 2, p. 151-165, Apr 29 2003. HENDERER, J.; RAPUANO, C. Ocular pharmacology. Brunton LL, Lazo JS, Parker KL. Goodman & Gilman’s The Pharmacological Basis of Therapeutics. 11th ed. New York, NY: McGraw-Hill Medical, p. 1707-1738, 2006. HO, C. Y.; PAI, T. W.; CHANG, H. T.; CHEN, H. Y. An atomatic fundus image analysis system for clinical diagnosis of glaucoma. 2011. p.559-564. HUSAIN, S.; WHITLOCK, N. A.; RICE, D. S.; CROSSON, C. E. Effects of latanoprost on rodent intraocular pressure. Experimental Eye Research, v. 83, n. 6, p. 1453-1458, Dec 2006. ICH. Validation of Analytical Procedures: Methodology Q2B ICH - International Conference on Harmonisation of Technical Requirements For Registration Of Pharmaceuticals For Human Use 1996. ITO, Y. A.; WALTER, M. A. NGenetics and Environmental Stress Factor Contributions to Anterior Segment Malformations and Glaucoma. 2013. JANSOOK, P.; STEFANSSON, E.; THORSTEINSDOTTIR, M.; SIGURDSSON, B. B.; KRISTJANSDOTTIR, S. S.; BAS, J. F.; SIGURDSSON, H. H.; LOFTSSON, T. Cyclodextrin solubilization of carbonic anhydrase inhibitor drugs: Formulation of dorzolamide eye drop microparticle suspension. European Journal of Pharmaceutics and Biopharmaceutics, v. 76, n. 2, p. 208-214, Oct 2010. JARRY, C.; CHAPUT, C.; CHENITE, A.; RENAUD, M. A.; BUSCHMANN, M.; LEROUX, J. C. Effects of steam sterilization on thermogelling chitosan-based gels. Journal of Biomedical Materials Research, v. 58, n. 1, p. 127-135, Feb 2001. JARRY, C.; LEROUX, J. C.; HAECK, J.; CHAPUT, C. Irradiating or autoclaving chitosan/polyol solutions: Effect on thermogelling chitosan-beta-glycerophosphate systems. Chemical & Pharmaceutical Bulletin, v. 50, n. 10, p. 1335-1340, Oct 2002. JING, H.; GUO, Z.; GUO, W.; YANG, W.; XU, P.; ZHANG, X. Synthesis and characterization of folic acid modified water-soluble chitosan derivatives for

165

folate-receptor-mediated targeting. Bioorganic & Medicinal Chemistry Letters, v. 22, n. 10, p. 3418-3424, May 15 2012. JOHNSON, T. V.; TOMAREV, S. I. Rodent models of glaucoma. Brain Research Bulletin, v. 81, n. 2-3, p. 349-358, Feb 2010. KASHIKAR, V. S. Ophthalmic mucoadhesive polymers-A literature review. International Journal of Pharmaceutical Sciences Review and Research, v. 7, n. 1, p. 68-73, // 2011. KATZUNG, B. G. Basic & clinical pharmacology. 9. New York: Lange Medical BooksMcGraw Hill 2004. KAUR, I. P.; SINGH, M.; KANWAR, M. Formulation and evaluation of ophthalmic preparations of acetazolamide. International Journal of Pharmaceutics, v. 199, n. 2, p. 119-127, Apr 2000. KEARNS, V. R.; WILLIAMS, R. L. Drug delivery systems for the eye. Expert Review of Medical Devices, v. 6, n. 3, p. 277-290, May 2009. KEAN, T; THANOU, M. Biodegradation, biodistribution and toxicity of chitosan. Advanced Drug Delivery Reviews, v. 62, p. 3-11, 2010. KHANGTRAGOOL, A. Comparison of Vehicles for Vancomycin Drug Delivery in Extemporaneously Prepared Ophthalmic Solutions. Biomaterials and Applications, v. 506, p. 481-484, 2012. KHURANA, S.; MADHAV, N. V. S.; TANGRI, P. Mucoadhesive drug delivery: mechanism and methods of evaluation. KIM, J.; CHAUHAN, A. Dexamethasone transport and ocular delivery from poly(hydroxyethyl methacrylate) gels. International Journal of Pharmaceutics, v. 353, n. 1-2, p. 205-222, 2008. KRAUSS, A. H. P.; WOODWARD, D. F. Update on the mechanism of action of bimatoprost: A review and discussion of new evidence. Survey of Ophthalmology, v. 49, p. S5-S11, Mar 2004. KULKARNI, S. V.; DAMJI, K. F.; BUYS, Y. M. Medical management of primary open-angle glaucoma: Best practices associated with enhanced patient compliance and persistency. Patient preference and adherence, v. 2, p. 303, 2008. KUMIRSKA, J.; CZERWICKA, M.; KACZYNSKI, Z.; BYCHOWSKA, A.; BRZOZOWSKI, K.; THOEMING, J.; STEPNOWSKI, P. Application of Spectroscopic Methods for Structural Analysis of Chitin and Chitosan. Marine Drugs, v. 8, n. 5, p. 1567-1636, May 2010. KUNO, N.; FUJII, S. Recent Advances in Ocular Drug Delivery Systems. Polymers, v. 3, n. 1, p. 193-221, 2011.

166

KUNTNER, C.; WANEK, T.; HOFFER, M.; DANGL, D.; HORNOF, M.; KVATERNIK, H.; LANGER, O. Radiosynthesis and Assessment of Ocular Pharmacokinetics of I-124-Labeled Chitosan in Rabbits Using Small-Animal PET. Molecular Imaging and Biology, v. 13, n. 2, Apr 2011. LAVERTU, M.; XIA, Z.; SERREQI, A. N.; BERRADA, M.; RODRIGUES, A.; WANG, D.; BUSCHMANN, M. D.; GUPTA, A. A validated H-1 NMR method for the determination of the degree of deacetylation of chitosan. Journal of Pharmaceutical and Biomedical Analysis, v. 32, n. 6, p. 1149-1158, Aug 21 2003. LAVIK, E.; KUEHN, M. H.; KWON, Y. H. Novel drug delivery systems for glaucoma. Eye, v. 25, n. 5, p. 578-586, May 2011. LAWRIE, G.; KEEN, I.; DREW, B.; CHANDLER-TEMPLE, A.; RINTOUL, L.; FREDERICKS, P.; GRONDAHL, L. Interactions between alginate and chitosan biopolymers characterized using FTIR and XPS. Biomacromolecules, v. 8, n. 8, p. 2533-2541, Aug 2007. LEE, P. J.; LIU, C. J. L.; WOJCIECHOWSKI, R.; BAILEY-WILSON, J. E.; CHENG, C. Y. Structure Function Correlations Using Scanning Laser Polarimetry in Primary Angle-Closure Glaucoma and Primary Open-Angle Glaucoma. American Journal of Ophthalmology, v. 149, n. 5, p. 817-825, May 2010. LEE, S. S.; HUGHES, P.; ROSS, A. D.; ROBINSON, M. R. Biodegradable Implants for Sustained Drug Release in the Eye. Pharmaceutical Research, v. 27, n. 10, p. 2043-2053, Oct 2010. LEWIS, T. L.; BARNEBEY, H. S.; BARTLETT, J. D.; BLUME, A. J.; FINGERET, M.; LALLE, P. A.; MANN, D. F. Optometric Clinical Practice Guideline: Care of the Patient with Open Angle Glaucoma. American Optometric Association, 2002. LI, B.; LI, J.; XIA, J.; KENNEDY, J. F.; YIE, X.; LIU, T. G. Effect of gamma irradiation on the condensed state structure and mechanical properties of konjac glucomannan/chitosan blend films. Carbohydrate Polymers, v. 83, n. 1, p. 44-51, Jan 1 2011. LI, J. J.; XU, Z. H. Physical characterization of a chitosan-based hydrogel delivery system. Journal of Pharmaceutical Sciences, v. 91, n. 7, p. 1669-1677, Jul 2002. LIANG, Y.; WOODWARD, D. F.; GUZMAN, V. M.; LI, C.; SCOTT, D. F.; WANG, J. W.; WHEELER, L. A.; GARST, M. E.; LANDSVERK, K.; SACHS, G.; KRAUSS, AH- P.; CORNELL, C.; MARTOS, J.; PETTIT, S.; FLIRI, H. Identification and pharmacological characterization of the prostaglandin FP receptor and FP receptor variant complexes. British Journal of Pharmacology, v. 154, n. 5, p. 1079-1093, Jul 2008.

167

LIM, K. S.; NAU, C. B.; O'BYRNE, M. M.; HODGE, D. O.; TORIS, C. B.; MCLAREN, J. W.; JOHNSON, D. H. Mechanism of action of bimatoprost, latanoprost, and travoprost in healthy subjects - A crossover study. Ophthalmology, v. 115, n. 5, p. 790-795, May 2008. LIM, L. Y.; KHOR, E.; KOO, O. Irradiation of chitosan. Journal of Biomedical Materials Research, v. 43, n. 3, p. 282-290, // 1998. LISA LAND, D.; BENJAMIN, W. J. Sizes and shapes of conjunctival inserts. International Contact Lens Clinic, v. 21, n. 11–12, p. 212-217, 11// 1994. LIU, S.; JONES, L.; GU, F. X. Nanomaterials for Ocular Drug Delivery. Macromolecular Bioscience, v. 12, n. 5, p. 608-620, May 2012. LIU, W. G.; DE YAO, K. Chitosan and its derivatives - a promising non-viral vector for gene transfection. Journal of Controlled Release, v. 83, n. 1, p. 1-11, Sep 18 2002. LOTTI, V. J.; SCHMITT, C. J.; GAUTHERON, P. D. Topical ocular hypotensive activity and ocular penetration of dichlorphenamide sodium in rabbits. Graefes Archive for Clinical and Experimental Ophthalmology, v. 222, n. 1, p. 13-19, 1984 1984. LUDWIG, A. The use of mucoadhesive polymers in ocular drug delivery. Advanced Drug Delivery Reviews, v. 57, n. 11, p. 1595-1639, Nov 3 2005. MARRECO, P. R.; DA LUZ MOREIRA, P.; GENARI, S. C.; MORAES, A. M. Effects of different sterilization methods on the morphology, mechanical properties, and cytotoxicity of chitosan membranes used as wound dressings. Journal of Biomedical Materials Research Part B-Applied Biomaterials, v. 71B, n. 2, p. 268-277, Nov 15 2004. MCKINNON, S. J.; GOLDBERG, L. D.; PEEPLES, P.; WALT, J. G.; BRAMLEY, T. J. Current management of glaucoma and the need for complete therapy. Am J Manag Care, v. 14, n. 1 Suppl, p. S20-7, 2008. MINCIONE, F.; SCOZZAFAVA, A.; SUPURAN, C. T. The development of topically acting carbonic anhydrase inhibitors as antiglaucoma agents. Current Pharmaceutical Design, v. 14, n. 7, p. 649-654, Mar 2008. MORENO, M. C.; MARCOS, H. J. A.; CROXATTO, J. O.; SANDE, P. H.; CAMPANELLI, J.; JALIFFA, C. O.; BENOZZI, J.; ROSENSTEIN, R. E. A new experimental model of glaucoma in rats through intracameral injections of hyaluronic acid. Experimental Eye Research, v. 81, n. 1, p. 71-80, Jul 2005. MORGAN, J. E. Retina ganglion cell degeneration in glaucoma: an opportunity missed? A review. Clinical & experimental ophthalmology, v. 40, n. 4, p. 364-368, 2012.

168

MUCHA, M.; PAWLAK, A. Thermal analysis of chitosan and its blends. Thermochimica Acta, v. 427, n. 1-2, p. 69-76, Mar 2005. MUNARIN, F.; BOZZINI, S.; VISAI, L.; TANZI, M. C.; PETRINI, P. Sterilization treatments on polysaccharides: Effects and side effects on pectin. Food Hydrocolloids, v. 31, n. 1, p. 74-84, May 2013. MUNEMASA, Y.; KITAOKA, Y. Molecular mechanisms of retinal ganglion cell degeneration in glaucoma and future prospects for cell body and axonal protection. Frontiers in Cellular Neuroscience, v. 6, Jan 9 2013. MUSUMECI, M.; BELLIN, M.; MALTESE, A.; ARAGONA, P.; BUCOLO, C.; MUSUMECI, S. Chitinase levels in the tears of subjects with ocular allergies. Cornea, v. 27, n. 2, p. 168-173, Feb 2008. NATARAJAN, J. V.; ANG, M.; DARWITAN, A.; CHATTOPADHYAY, S.; WONG, T. T.; VENKATRAMAN, S. S. Nanomedicine for glaucoma: liposomes provide sustained release of latanoprost in the eye. International Journal of Nanomedicine, v. 7, p. 123, 2012. NATU, M. V.; GASPAR, M. N.; FONTES RIBEIRO, C. A.; CABRITA, A. M.; DE SOUSA, H. C.; GIL, M. H. In vitro and in vivo evaluation of an intraocular implant for glaucoma treatment. International Journal of Pharmaceutics, v. 415, n. 1-2, p. 73-82, Aug 30 2011. NATU, M. V.; GASPAR, M. N.; FONTES RIBEIRO, C. A.; CORREIA, I. J.; SILVA, D.; DE SOUSA, H. C.; GIL, M. H. A poly(epsilon-caprolactone) device for sustained release of an anti-glaucoma drug. Biomedical Materials, v. 6, n. 2, Apr 2011. NETO, C. G. T.; GIACOMETTI, J. A.; JOB, A. E.; FERREIRA, F. C.; FONSECA, J. L. C.; PEREIRA, M. R. Thermal analysis of chitosan based networks. Carbohydrate Polymers, v. 62, n. 2, p. 97-103, Nov 10 2005. NICE Clinical Guideline 85: Glaucoma - Diagnosis and management of chronic open angle glaucoma and ocular hypertension London: 2009. NUNAN, E. A.; CARDOSO, V. N.; MORAES-SANTOS, T. Technetium-99m labeling of tityustoxin and venom from the scorpion Tityus serrulatus. Applied Radiation and Isotopes, v. 57, n. 6, p. 849-852, 12// 2002. ORÉFICE, F.; FERNANDES, R. S.; ORÉFICE, J. L. Sistemas para administração controlada de drogas em oftalmologia. In: ORÉFICE, R. L.;PEREIRA, M. D. M., et al (Ed.). Biomateriais: Fundamentos & Aplicações. Rio de Janeiro: Cutura Médica, 2006. p.437-446. PANG, I. H.; WANG, W. H.; CLARK, A. F. Acute effects of glaucoma medications on rat intraocular pressure. Experimental Eye Research, v. 80, n. 2, p. 207-214, Feb 2005.

169

PANOMSUK, S. P.; HATANAKA, T.; AIBA, T.; KATAYAMA, K.; KOIZUMI, T. A study of the hydrophilic cellulose matrix: Effect of drugs on swelling properties. Chemical & Pharmaceutical Bulletin, v. 44, n. 5, p. 1039-1042, May 1996. PAPADIMITRIOU, S.; BIKIARIS, D.; AVGOUSTAKIS, K.; KARAVAS, E.; GEORGARAKIS, M. Chitosan nanoparticles loaded with dorzolamide and pramipexole. Carbohydrate Polymers, v. 73, n. 1, p. 44-54, Jul 4 2008. PARANHOS, A. J.; OMI, C. A.; PRATA, J. A. J.; MELO, L. A. S. J.;TEIXEIRA, S. H. 3° Consenso Brasileiro de Glaucoma Primário de Ângulo Aberto. São Paulo: Sociedade Brasileira de Glaucoma, 2009. PARIKH, R. S.; PARIKH, S. R.; NAVIN, S.; ARUN, E.; THOMAS, R. Practical approach to medical management of glaucoma. Indian Journal of Ophthalmology, v. 56, n. 3, p. 223-230, May-Jun 2008. PERUGINI, P.; GENTA, I.; CONTI, B.; MODENA, T.; PAVANETTO, F. Periodontal delivery of ipriflavone: new chitosan/PLGA film delivery system for a lipophilic drug. International Journal of Pharmaceutics, v. 252, n. 1-2, p. 1-9, Feb 18 2003. PERUMAL, V. A.; LUTCHMAN, D.; MACKRAJ, I.; GOVENDER, T. Formulation of monolayered films with drug and polymers of opposing solubilities. International Journal of Pharmaceutics, v. 358, n. 1-2, p. 184-191, Jun 2008. PROTOCOLO CLÍNICO E DIRETRIZES TERAPÊUTICAS: Glaucoma Boa Vista: 2007. PUTNAM, M. L.; SCHOENWALD, R. D.; DUFFEL, M. W.; BARFKNECHT, C. F.; SEGARRA, T. M.; CAMPBELL, D. A. Ocular disposition of aminozolamide in the rabbit eye. Investigative Ophthalmology & Visual Science, v. 28, n. 8, p. 1373-1382, Aug 1987. QUIGLEY, H. A. Glaucoma. Lancet, v. 377, n. 9774, p. 1367-1377, Apr 16 2011. QUINT, M.-P.; GROVE, J.; THOMAS, S. M. Dorsolamide Hydrochloride. Analytical profiles of drug substances and excipients, v. 26, p. 283-317, 1999. RAFUSE, P. E.; BUYS, Y. M.; DAMJI, K. E.; HARASYMOWYCZ, P.; LAJOIE, C.; MIKELBERG, F. S.; MURPHY, P. H.; NICOLELA, M.; TINGEY, D. P. Canadian Ophthalmological Society evidence-based clinical practice guidelines for the management of glaucoma in the adult eye Canadian Ophthalmological Society Glaucoma Clinical Practice Guideline Expert Committee. Canadian Journal of Ophthalmology-Journal Canadien D Ophtalmologie, v. 44, p. S7-S54, Jun 2009. RAO, S. B.; SHARMA, C. P. Sterilization of chitosan: Implications. Journal of Biomaterials Applications, v. 10, n. 2, p. 136-143, Oct 1995.

170

______. Use of chitosan as a biomaterial: Studies on its safety and hemostatic potential. Journal of Biomedical Materials Research, v. 34, n. 1, p. 21-28, // 1997. RAWAS-QALAJI, M.; WILLIAMS, C.-A. Advances in Ocular Drug Delivery. Current Eye Research, v. 37, n. 5, p. 345-356, May 2012. REDESCHI, M. C. M. Preparação e caracterização de filmes a base de xiloglucana extraída de sementes de Hymenaea Courbaril (Jatobá). 2006. 95 (Mestrado). Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista, Araraquara. RESNIKOFF, S.; PASCOLINI, D.; ETYA'ALE, D.; KOCUR, I.; PARARAJASEGARAM, R.; POKHAREL, G. P.; MARIOTTI, S. P. Global data on visual impairment in the year 2002. Bulletin of the World Health Organization, v. 82, n. 11, p. 844-851, Nov 2004. RIBEIRO, T. G. Desenvolvimento de um dispositivo polimérico para liberação de fármaco oleoso: nerolidol. . 2010. 105 (Mestrado). Departamento de Produtos Farmacêuticos, Universidade Federal de Minas Gerais, Belo Horizonte. RINAUDO, M. Properties and degradation of selected polysaccharides: hyaluronan and chitosan. Corrosion Engineering Science and Technology, v. 42, n. 4, p. 324-334, Dec 2007. ROBINSON, J. R.; MLYNEK, G. M. Bioadhesive and phase-change polymers for ocular drug-delivery. Advanced Drug Delivery Reviews, v. 16, n. 1, p. 45-50, Aug 1995. ROBINSON, M. R.; BURKE, J.; SCHIFFMAN, R. Treating ocular condition e.g. glaucoma, comprises providing biodegradable sustained release implants containing therapeutic agent e.g. bimatoprost and latanoprost and implanting the implants into the anterior chamber of an eye: Allergan Inc. RODRIGUES, L. B.; LEITE, H. F.; YOSHIDA, M. I.; SALIBA, J. B.; CUNHA, A. S.; FARACO, A. A. G. In vitro release and characterization of chitosan films as dexamethasone carrier. International Journal of Pharmaceutics, v. 368, n. 1-2, p. 1-6, Feb 2009. SAKAI, Y.; YASUEDA, S. I.; OHTORI, A. Stability of latanoprost in an ophthalmic lipid emulsion using polyvinyl alcohol. International Journal of Pharmaceutics, v. 305, n. 1-2, p. 176-179, 2005. SAKATA, K.; SAKATA, L. M.; SAKATA, V. M.; SANTINI, C.; HOPKER, L. M.; BERNARDES, R.; YABUMOTO, C.; MOREIRA, A.T. R. Prevalence of glaucoma in a south Brazilian population: Projeto glaucoma. Investigative Ophthalmology & Visual Science, v. 48, n. 11, p. 4974-4979, Nov 2007.

171

SALAMAT-MILLER, N.; CHITTCHANG, M.; JOHNSTON, T. P. The use of mucoadhesive polymers in buccal drug delivery. Advanced Drug Delivery Reviews, v. 57, n. 11, p. 1666-1691, Nov 3 2005. SALOMAO, S. R.; MITSUHIRO, M. R. K. H.; BELFORT, R., JR. Visual impairment and blindness: an overview of prevalence and causes in Brazil. Anais Da Academia Brasileira De Ciencias, v. 81, n. 3, p. 539-549, Sep 2009. SASAKI, H.; YAMAMURA, K.; NISHIDA, K.; NAKAMURA, J.; ICHIKAWA, M. Delivery of drugs to the eye by topical application. Progress in Retinal and Eye Research, v. 15, n. 2, 1996 1996. Saúde e Economia: Glaucoma. Brasília: 2009. SEMALTY, M.; SEMALTY, A.; KUMAR, G. Formulation and Characterization of Mucoadhesive Buccal Films of Glipizide. Indian Journal of Pharmaceutical Sciences, v. 70, n. 1, p. 43-48, Jan-Feb 2008. SHAFIEE, A.; BOWMAN, L. M.; HOU, E.; HOSSEINI, K. Ocular pharmacokinetics of bimatoprost formulated in DuraSite compared to bimatoprost 0.03% ophthalmic solution in pigmented rabbit eyes. Clinical Ophthalmology, v. 7, p. 1549-1556, 2013. SHARMA, P.; SAMPLE, P. A.; ZANGWILL, L. M.; SCHUMAN, J. S. Diagnostic Tools for Glaucoma Detection and Management. Survey of Ophthalmology, v. 53, n. 6, Supplement, p. S17-S32, 11// 2008. SHEN, K.; HU, Q.; WANG, Z.; QU, J. Effect of Co-60 irradiation on the properties of chitosan rod. Materials Science & Engineering C-Materials for Biological Applications, v. 31, n. 5, p. 866-872, Jul 20 2011. SIGURDSSON, H. H.; STEFANSSON, E.; GUDMUNDSDOTTIR, E.; EYSTEINSSON, T.; THORSTEINSDOTTIR, M.; LOFTSSON, T. Cyclodextrin formulation of dorzolamide and its distribution in the eye after topical administration. Journal of Controlled Release, v. 102, n. 1, p. 255-262, Jan 2005. SILVER, L. H.; BRINZOLAMIDE COMFORT STUDY, G. Ocular comfort of brinzolamide 1.0% ophthalmic suspension compared with dorzolamide 2.0% ophthalmic solution: Results from two multicenter comfort studies. Survey of Ophthalmology, v. 44, p. S141-S145, Jan 2000. SMART, J. D. The basics and underlying mechanisms of mucoadhesion. Advanced Drug Delivery Reviews, v. 57, n. 11, p. 1556-1568, Nov 3 2005. SNYDER, L. R.; KIRKLAND, J. J.; GLAJCH, J. L. Practical HPLC method development. John Wiley & Sons, 1997. SOARES, D. C. F.; FERREIRA, T. H.; FERREIRA, C. A.; CARDOSO, V. N.; SOUSA, E. M. B. Boron Nitride Nanotubes radiolabeled with< sup> 99m</sup>

172

Tc: preparation, physicochemical characterization, biodistribution study, and scintigraphic imaging in Swiss mice. International Journal of Pharmaceutics, 2011. SPIELMANN, H. Ocular irritation. In Vitro Methods in Pharmaceutical Research, p. 265-287, 1997. TAKAHASHI, H.; CHEN, R.; OKAMOTO, H.; DANJO, K. Acetaminophen particle design using chitosan and a spray-drying technique. Chemical and pharmaceutical bulletin, v. 53, n. 1, p. 37-41, 2005. TAKANO, N.; TSURUMA, K.; OHNO, Y.; SHIMAZAWA, M.; HARA, H. Bimatoprost protects retinal neuronal damage via Akt pathway. European Journal of Pharmacology, v. 702, n. 1-3, p. 56-61, Feb 2013. TANDALE, Y. N.; WAGH, V. D. Formulation and evaluation of dorzolamide hydrochloride polymeric film. Int J PharmTech Res, v. 3, p. 1817-24, 2011. TARRIDE, J.-E.; BURKE, N.; HOPKINS, R. B.; GOEREE, R.; HODGE, W. G. New glaucoma diagnostic technologies: a systematic review of economic studies. Canadian Journal of Ophthalmology / Journal Canadien d'Ophtalmologie, v. 46, n. 1, p. 89-91, 2// 2011. TAYEL, S. A.; EL-NABARAWI, M. A.; TADROS, M. I.; ABD-ELSALAM, W. H. Positively Charged Polymeric Nanoparticle Reservoirs of Terbinafine Hydrochloride: Preclinical Implications for Controlled Drug Delivery in the Aqueous Humor of Rabbits. Aaps Pharmscitech, v. 14, n. 2, p. 782-793, Jun 2013. TORIS, C. B.; GABELT, B. A. T.; KAUFMAN, P. L. Update on the Mechanism of Action of Topical Prostaglandins for Intraocular Pressure Reduction. Survey of Ophthalmology, v. 53, p. S107-S120, Nov 2008. URCOLA, J. H.; HERNANDEZ, M.; VECINO, E. Three experimental glaucoma models in rats: Comparison of the effects of intraocular pressure elevation on retinal ganglion cell size and death. Experimental Eye Research, v. 83, n. 2, p. 429-437, Aug 2006. VAAJANEN, A.; VAPAATALO, H. Local Ocular Renin-Angiotensin System - A Target for Glaucoma Therapy? Basic & Clinical Pharmacology & Toxicology, v. 109, n. 4, p. 217-224, Oct 2011. VAJARANANT, T. S.; NAYAK, S.; WILENSKY, J.; T. JOSLIN, C. E. Gender and glaucoma: what we know and what we need to know. Current Opinion in Ophthalmology, v. 21, n. 2, p. 91-99, Mar 2010. VALENTA, C. The use of mucoadhesive polymers in vaginal delivery. Advanced Drug Delivery Reviews, v. 57, n. 11, p. 1692-1712, Nov 3 2005.

173

WADHWA, S.; PALIWAL, R.; PALIWAL, S. R.; VYAS, S. P. Chitosan and its Role in Ocular Therapeutics. Mini-Reviews in Medicinal Chemistry, v. 9, n. 14, p. 1639-1647, Dec 2009. WARSI, M. H.; CHAURASIYA, A.; JAIN, G. K.; PATHAN, S. A.; CHANDER, P.; SINGH, A. K.; TALEGAONKAR, S.; AHMAD, F. J.; KHAR, R. K. Aqueous Humor Pharmacokinetics of Dorzolamide Loaded PLGAChitosan Nanoparticles by Ultra Performance Liquid Chromatography. Current Pharmaceutical Analysis, v. 7, n. 3, p. 189-194, Aug 2011. WEINREB, R. N.; KHAW, P. T. Primary open-angle glaucoma. The Lancet, v. 363, n. 9422, p. 1711-1720, 2004. WESKA, R. F.; MOURA, J. M.; BATISTA, L. M.; RIZZI, J.; PINTO, L. A. A. Optimization of deacetylation in the production of chitosan from shrimp wastes: Use of response surface methodology. Journal of Food Engineering, v. 80, n. 3, p. 749-753, Jun 2007. WILSON, C. G.; ZHU, Y. P.; FRIER, M.; RAO, L. S.; GILCHRIST, P.; PERKINS, A. C. Ocular contact time of a carbomer gel (GelTears) in humans. British Journal of Ophthalmology, v. 82, n. 10, Oct 1998. WOODWARD, D. F.; KRAUSS, A. H. P.; CHEN, J.; LAI, R. K.; SPADA, C. S.; BURK, R. M.; ANDREWS, S. W.; SHI, L.; LIANG, Y.; KEDZIE, K. M.; CHEN, R.; GIL, D. W.; KHARLAMB, A.; ARCHEAMPONG, A.; LING, J.; MADHU, C.; NI, J.; RIX, P.; USANSKY, J.; USANSKY, H.; WEBER, A.; WELTY, D.; YANG, W.; TANG-LIU, D. D. S.; GARST, M. E.; BRAR, B.; WHEELER, L. A.; KAPLAN, L. J. The pharmacology of bimatoprost (Lumigan (TM)). Survey of Ophthalmology, v. 45, p. S337-S345, May 2001. WU, X. G.; XIN, M.; YANG, L. N.; SHI, W. Y. The Biological Characteristics and Pharmacodynamics of a Mycophenolate Mofetil Nanosuspension Ophthalmic Delivery System in Rabbits. Journal of Pharmaceutical Sciences, v. 100, n. 4, p. 1350-1361, Apr 2011. YAMAGUCHI, M.; UEDA, K.; ISOWAKI, A.; OHTORI, A.; TAKEUCHI, H.; OHGURO, N.; TOJO, K. Mucoadhesive Properties of Chitosan-Coated Ophthalmic Lipid Emulsion Containing Indomethacin in Tear Fluid. Biological & Pharmaceutical Bulletin, v. 32, n. 7, p. 1266-1271, Jul 2009. YANG, Y.-M.; ZHAO, Y.-H.; LIU, X.-H; DING, F.; GU, X.-S. The effect of different sterilization procedures on chitosan dried powder. Journal of Applied Polymer Science, v. 104, n. 3, p. 1968-1972, May 5 2007. YUAN, X.-B.; LI, H.; YUAN, Y.-B. Preparation of cholesterol-modified chitosan self-aggregated nanoparticles for delivery of drugs to ocular surface. Carbohydrate Polymers, v. 65, n. 3, Aug 15 2006.

174

ZAMBITO, Y.; DI COLO, G. Chitosan and its derivatives as intraocular penetration enhancers. Journal of Drug Delivery Science and Technology, v. 20, n. 1, p. 45-52, Jan-Feb 2010. ZEIMER, R. C.; WILENSKY, J. T.; GIESER, D. K.; VIANA, M. A. G. Association between intraocular-pressure peaks and progression of visual-field loss. Ophthalmology, v. 98, n. 1, p. 64-69, Jan 1991. Zheng, F.; Shi, X.-W.; Yang, G.-F.; Gong, L.-L.; Yuan, H.-Y.; Cui, Y.-J.; Wang, Y.; Du, Y.-M.; Li, Y. Chitosan nanoparticle as gene therapy vector via gastrointestinal mucosa administration: Results of an in vitro and in vivo study. Life Sciences, v. 80, n. 4, p. 388-396, Jan 2 2007. ZHOU, W. J.; WANG, Y. Y.; JIAN, J. Y.; SONG, S. F. Self-aggregated nanoparticles based on amphiphilic poly(lactic acid)-grafted-chitosan copolymer for ocular delivery of amphotericin B. International Journal of Nanomedicine, v. 8, p. 3715-3728, 2013.

175

ANEXO A - PATENTE SOLICITADA PARA OS FILMES POLIMÉRICOS DESENVOLVIDOS

176

177

ANEXO B - PROTOCOLO APROVADO PARA ESTUDOS EM ANIMAIS NO CETEA-UFMG

178

ANEXO C - PROTOCOLO APROVADO PARA ESTUDOS EM HUMANOS NO COMITÊ DE ÉTICA E PESQUISA - CEP/UFMG

179