construction of global phase equilibrium diagrams martín cismondi universidad nacional de córdoba...

51
Construction of Global Phase Equilibrium Diagrams Martín Cismondi Universidad Nacional de Córdoba - CONICET

Upload: lucy-porter

Post on 17-Dec-2015

216 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Construction of Global Phase Equilibrium Diagrams Martín Cismondi Universidad Nacional de Córdoba - CONICET

Construction of Global Phase Equilibrium Diagrams

Martín CismondiUniversidad Nacional de Córdoba - CONICET

Page 2: Construction of Global Phase Equilibrium Diagrams Martín Cismondi Universidad Nacional de Córdoba - CONICET

Introduction

• A real binary system show one of 5 (or 6) different types of phase behaviour.

• EOS modelling leads to the same possible types (+ other) .

• Correspondence between real and predicted type depends on the model and parameters.

Page 3: Construction of Global Phase Equilibrium Diagrams Martín Cismondi Universidad Nacional de Córdoba - CONICET

Type I: Unique Critical Line (LV)

0

20

40

60

80

100

120

220 270 320 370 420

Temperature [K]

Pre

ssu

re [

Bar

]

Pv2

A

Pv1

Page 4: Construction of Global Phase Equilibrium Diagrams Martín Cismondi Universidad Nacional de Córdoba - CONICET

Type II: Also a LL critical line and LLV

0

50

100

150

200

250

200 250 300 350 400 450 500 550

Temperature [K]

Pre

ssu

re [

Bar

]

BA

LLV Ps2

Ps1

Page 5: Construction of Global Phase Equilibrium Diagrams Martín Cismondi Universidad Nacional de Córdoba - CONICET

Type IV: Discontinuity in the LV critical line and second LLV region

0

50

100

150

200

250

300

350

400

200 250 300 350 400 450 500 550

Temperature [K]

Pre

ssu

re [

Bar

]

81

83

85

87

89

91

93

95

316 318 320 322 324 326 328Temperature [K]

B

D

E

D

E

UCEP

LCEP

LLV

LLV

LLV

Page 6: Construction of Global Phase Equilibrium Diagrams Martín Cismondi Universidad Nacional de Córdoba - CONICET

Type IV: T-x projection

220

270

320

370

420

470

520

0.4 0.5 0.6 0.7 0.8 0.9 1

Composition

Tem

per

atu

re [

K]

B D

E

UCEP

LCEP

UCEP

Page 7: Construction of Global Phase Equilibrium Diagrams Martín Cismondi Universidad Nacional de Córdoba - CONICET

Type III: “rearrangement” of critical lines

0

50

100

150

200

250

300

350

400

200 250 300 350 400 450 500 550

Temperature [K]

Pre

ssu

re [

Bar

]

C

DUCEP

Page 8: Construction of Global Phase Equilibrium Diagrams Martín Cismondi Universidad Nacional de Córdoba - CONICET

Type III: T-x projection

220

270

320

370

420

470

520

0.4 0.5 0.6 0.7 0.8 0.9 1

Composition

Tem

per

atu

re [

K]

C

D

UCEP

Page 9: Construction of Global Phase Equilibrium Diagrams Martín Cismondi Universidad Nacional de Córdoba - CONICET

Type V: Just like type IV but without LL immiscibility at low T

0

50

100

150

200

250

300

120 170 220 270 320 370 420 470

Temperature [K]

Pre

ssu

re [

Bar

]

30

35

40

45

50

55

60

65

70

180 182 184 186 188 190 192 194 196 198

Temperature [K]

Pre

ssu

re [

Bar

]

D

E D

E

UCEP

LCEPLLV

Page 10: Construction of Global Phase Equilibrium Diagrams Martín Cismondi Universidad Nacional de Córdoba - CONICET

Azeotropic lines and… Azeotropic End Points (AEP)

• PAEP (Pure, meeting a vapour pressure line)

• CAEP (Critical, meeting a critical line)

• HAEP (Heterogeneous, meeting a LLV line)

Page 11: Construction of Global Phase Equilibrium Diagrams Martín Cismondi Universidad Nacional de Córdoba - CONICET

One example of azeotropic line (P-T)

0

20

40

60

80

100

200 220 240 260 280 300 320 340 360 380

Temperature [K]

Pre

ssu

re [

Bar

]

CAEP

HAEP

Page 12: Construction of Global Phase Equilibrium Diagrams Martín Cismondi Universidad Nacional de Córdoba - CONICET

The same example in T-x

150

200

250

300

350

400

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Molar Fraction of CO2 DNN

Tem

per

atu

re [

K]

CAEP

HAEP

Page 13: Construction of Global Phase Equilibrium Diagrams Martín Cismondi Universidad Nacional de Córdoba - CONICET

System: Ethanol - n-Hexane

120

170

220

270

320

370

420

470

520

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Molar Fraction of Ethanol

Tem

per

atu

re [

K]

Cases with two azeotropic lines!

PH

C

H

Page 14: Construction of Global Phase Equilibrium Diagrams Martín Cismondi Universidad Nacional de Córdoba - CONICET

Objectives

• Identification of predicted type

• Automated calculation of global phase equilibrium diagrams

• Automated calculation of Pxy, Txy and isoplethic diagrams from limiting points

Page 15: Construction of Global Phase Equilibrium Diagrams Martín Cismondi Universidad Nacional de Córdoba - CONICET

What do we need?• Strategy for construction of a GPED

without knowing the type in advance.• General method for CRIT lines calculation.• Location of isolated LL critical lines.• General methods for LLV and AZE lines.• Detection of CEP’s and AEP’s (critical and

azeotropic end points).• Classifications of Pxy, Txy and isoplethic

diagrams in terms of limiting points.• Methods for calculation of Pxy, Txy and

isoplethic segments.

Page 16: Construction of Global Phase Equilibrium Diagrams Martín Cismondi Universidad Nacional de Córdoba - CONICET

Algorithm:

Basic Structure

Critical line from C2 to…

Critical line Dfrom CP1 to UCEP

Critical Line Buntil UCEP

type I or II type III

LCEP

type I or V

not found

High PressureC1

E CA

Search for a high pressure critical point

found

type II or IV

type IV or V

Critical line from C2 to…

Critical line Dfrom CP1 to UCEP

Critical Line Buntil UCEP

type I or II type III

LCEP

type I or V

not found

High PressureC1

E CA

Search for a high pressure critical point

found

type II or IV

type IV or V

Page 17: Construction of Global Phase Equilibrium Diagrams Martín Cismondi Universidad Nacional de Córdoba - CONICET

Some remarks about the methods…

• Formulation in T, v and x, y, w…

• Solve using Newton J ΔX = -F ; Fn= XS - S

• Michelsen’s procedure for tracing lines J

(dX/dS) = (dF/dS) → Xnew= Xold + (dX/dS) ΔS

• ΔSnew = min (4 ΔSold / Niter , ΔSmax)

• The variable to be specified depends on dX/dS

Page 18: Construction of Global Phase Equilibrium Diagrams Martín Cismondi Universidad Nacional de Córdoba - CONICET

Calculation of critical points:Criticality conditions

tpd2=0 b = smallest eigenvalue λ1=0

tpd3=0 c = = 0

211

0

1

ss

s s

VTj

ijiij n

fzzB

,

ˆln

n1 = z1 + s u1; n2 = z2 + s u2 122

21 uu1z 2z

Page 19: Construction of Global Phase Equilibrium Diagrams Martín Cismondi Universidad Nacional de Córdoba - CONICET

How to locate an isolated LL critical line?

Tc

Tem

pera

ture

Xc Composition

P = 2000 bar

P = 2000 bar

0

200 K T

300 K

Composition Xc

PTn

,2

1ˆln1

Must be 0 and min at (T, P)

Page 20: Construction of Global Phase Equilibrium Diagrams Martín Cismondi Universidad Nacional de Córdoba - CONICET

LLV equilibrium and CEP’s

Page 21: Construction of Global Phase Equilibrium Diagrams Martín Cismondi Universidad Nacional de Córdoba - CONICET

Use of stability analysis in the search for a Critical End Point (CEP)

0.0 0.2 0.4 0.6 0.8 1.0-0.04

-0.02

0.00

0.02

0.04

0.06

0.08

0.10

tpd

Reduced tangent plane distance (tpd) curvesat four consecutive critical pointsat conditions close to an UCEP

Molar fraction of component 1

Page 22: Construction of Global Phase Equilibrium Diagrams Martín Cismondi Universidad Nacional de Córdoba - CONICET

Calculation of a Critical End Point

Page 23: Construction of Global Phase Equilibrium Diagrams Martín Cismondi Universidad Nacional de Córdoba - CONICET

Calculation of LLV lines

Page 24: Construction of Global Phase Equilibrium Diagrams Martín Cismondi Universidad Nacional de Córdoba - CONICET

Examples: type II

100

120

140

160

180

200

220

240

260

280

300

320

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

A

B

Critical lines LLVE lines

CH4 Molar Fraction

Tem

pera

ture

(K)

100 120 140 160 180 200 220 240 260 280 300 3200

20

40

60

80

100

120

140

160

180

200

A

B

Critical lines LLVE lines Vapour pressure

CH4 + CO

2

SRK EOS

kij = 0.120

Pre

ssur

e (b

ar)

Temperature (K)

100

120

140

160

180

200

220

240

260

280

300

320

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

A

B

Critical lines LLVE lines

CH4 Molar Fraction

Tem

pera

ture

(K)

100 120 140 160 180 200 220 240 260 280 300 3200

20

40

60

80

100

120

140

160

180

200

A

B

Critical lines LLVE lines Vapour pressure

CH4 + CO

2

SRK EOS

kij = 0.120

Pre

ssur

e (b

ar)

Temperature (K)

minimum composition

Page 25: Construction of Global Phase Equilibrium Diagrams Martín Cismondi Universidad Nacional de Córdoba - CONICET

Split of LV critical line in type IV or V

140 150 160 170 180 190 200 210 220-80

-60

-40

-20

0

20

40

60

80

100

LCEPUCEP

unstablecritical line

E

D

Critical lines LLVE lines Vapour pressure

CH4 + C

6H

14

SRK EOS

kij = 0.00

Pre

ssur

e (b

ar)

Temperature (K)

140

160

180

200

220

240

0.90 0.92 0.94 0.96 0.98 1.00

unstablecriticalline

UCEP

LCEP

E

Critical lines LLVE lines

CO2 Molar Fraction

Tem

pera

ture

(K)

140 150 160 170 180 190 200 210 220-80

-60

-40

-20

0

20

40

60

80

100

LCEPUCEP

unstablecritical line

E

D

Critical lines LLVE lines Vapour pressure

CH4 + C

6H

14

SRK EOS

kij = 0.00

Pre

ssur

e (b

ar)

Temperature (K)

140

160

180

200

220

240

0.90 0.92 0.94 0.96 0.98 1.00

unstablecriticalline

UCEP

LCEP

E

Critical lines LLVE lines

CO2 Molar Fraction

Tem

pera

ture

(K)

Page 26: Construction of Global Phase Equilibrium Diagrams Martín Cismondi Universidad Nacional de Córdoba - CONICET

Transition

III

IV

II

200 300 400 500 600 7000

100

200

300

400

500

600

A

B

Critical lines LLVE lines Vapour pressure

kij = 0.078

Pre

ssur

e (b

ar)

Temperature (K)

240

260

280

300

320

340

360

380

400

420

440

0.85 0.90 0.95 1.00

A

B

kij = 0.078

Critical lines LLVE lines

CO2 Molar Fraction

Te

mp

era

ture

(K

)

200 300 400 500 600 7000

100

200

300

400

500

600

300 305 310 315 320

70

75

80

85

90

95

100

E

B

kij = 0.084

Pre

ssur

e (b

ar)

Temperature (K)

D

E

240

260

280

300

320

340

360

380

400

420

440

0.85 0.90 0.95 1.00

B

E

D

E

B

kij = 0.084

CO2 Molar Fraction

Te

mp

era

ture

(K

)

200 300 400 500 600 7000

100

200

300

400

500

600

300 305 310 315 320

70

75

80

85

90

95

100

C

C

kij = 0.090

Pre

ssur

e (b

ar)

Temperature (K)

D

C

240

260

280

300

320

340

360

380

400

420

440

0.85 0.90 0.95 1.00

C

D

C

kij = 0.090

CO2 Molar Fraction

Te

mp

era

ture

(K

)

200 300 400 500 600 7000

100

200

300

400

500

600

A

B

Critical lines LLVE lines Vapour pressure

kij = 0.078

Pre

ssur

e (b

ar)

Temperature (K)

240

260

280

300

320

340

360

380

400

420

440

0.85 0.90 0.95 1.00

A

B

kij = 0.078

Critical lines LLVE lines

CO2 Molar Fraction

Te

mp

era

ture

(K

)

200 300 400 500 600 7000

100

200

300

400

500

600

A

B

Critical lines LLVE lines Vapour pressure

kij = 0.078

Pre

ssur

e (b

ar)

Temperature (K)

240

260

280

300

320

340

360

380

400

420

440

0.85 0.90 0.95 1.00

A

B

kij = 0.078

Critical lines LLVE lines

CO2 Molar Fraction

Te

mp

era

ture

(K

)

200 300 400 500 600 7000

100

200

300

400

500

600

300 305 310 315 320

70

75

80

85

90

95

100

E

B

kij = 0.084

Pre

ssur

e (b

ar)

Temperature (K)

D

E

240

260

280

300

320

340

360

380

400

420

440

0.85 0.90 0.95 1.00

B

E

D

E

B

kij = 0.084

CO2 Molar Fraction

Te

mp

era

ture

(K

)

200 300 400 500 600 7000

100

200

300

400

500

600

300 305 310 315 320

70

75

80

85

90

95

100

E

B

kij = 0.084

Pre

ssur

e (b

ar)

Temperature (K)

D

E

240

260

280

300

320

340

360

380

400

420

440

0.85 0.90 0.95 1.00

B

E

D

E

B

kij = 0.084

CO2 Molar Fraction

Te

mp

era

ture

(K

)

200 300 400 500 600 7000

100

200

300

400

500

600

300 305 310 315 320

70

75

80

85

90

95

100

C

C

kij = 0.090

Pre

ssur

e (b

ar)

Temperature (K)

D

C

240

260

280

300

320

340

360

380

400

420

440

0.85 0.90 0.95 1.00

C

D

C

kij = 0.090

CO2 Molar Fraction

Te

mp

era

ture

(K

)

200 300 400 500 600 7000

100

200

300

400

500

600

300 305 310 315 320

70

75

80

85

90

95

100

C

C

kij = 0.090

Pre

ssur

e (b

ar)

Temperature (K)

D

C

240

260

280

300

320

340

360

380

400

420

440

0.85 0.90 0.95 1.00

C

D

C

kij = 0.090

CO2 Molar Fraction

Te

mp

era

ture

(K

)

Page 27: Construction of Global Phase Equilibrium Diagrams Martín Cismondi Universidad Nacional de Córdoba - CONICET

Our Classification for Adding Azeotropy

Line (a) Azeotropy (b) Usual Types 0 to P P, N or D I, II, V 0 to C N V P to P P, N or D I, II, V P to C P, N or D I H to P P II, IV H to C P II, IV C to C P or D I, II P to H H to P

P II

P to H H to C

P II

Page 28: Construction of Global Phase Equilibrium Diagrams Martín Cismondi Universidad Nacional de Córdoba - CONICET

Detection of AEP’s

• PAEP: compute

along each vapour pressure line

• CAEP: Pseudocritical point compute 1st

derivative along the LV critical line

• HAEP: crossing between L and V composition

compute y1 – x1 along LLV line

)0(ˆln)0(ˆln iVii

Li zz

0,,

2

2

TzTzv

P

v

P

Page 29: Construction of Global Phase Equilibrium Diagrams Martín Cismondi Universidad Nacional de Córdoba - CONICET

Calculation of azeotropic lines: variables and equations

Page 30: Construction of Global Phase Equilibrium Diagrams Martín Cismondi Universidad Nacional de Córdoba - CONICET

Illustration: Negative Azeotropy

0

10

20

30

40

50

60

70

80

140 160 180 200 220 240 260 280 300 320

Temperature [K]

Pre

ssu

re [

Bar

]

Page 31: Construction of Global Phase Equilibrium Diagrams Martín Cismondi Universidad Nacional de Córdoba - CONICET

Double Azeotropy: Minimum T in the azeotropic line

70

120

170

220

270

320

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Molar Fraction of CO2

Tem

per

atu

re [

K]

Page 32: Construction of Global Phase Equilibrium Diagrams Martín Cismondi Universidad Nacional de Córdoba - CONICET

0

5

10

15

20

25

30

190 200 210 220 230 240 250 260 270

Temperature [K]

Pre

ssur

e [B

ar]

PAEP

PAEP

Tmin

Bancroft point

(Pv1 = Pv2)

Page 33: Construction of Global Phase Equilibrium Diagrams Martín Cismondi Universidad Nacional de Córdoba - CONICET

Automated construction of complete Pxy and Txy diagrams

• Reading and storing the lines and points of the Global Phase Equilibrium Diagram. Identification of type.

• Detection of local temperature and pressure minima or maxima in critical lines.

• Determination of the pressures (or temperatures) at which the different lines intersect at the specified temperature (or pressure).

• Deduction, from the points obtained, of how many and which zones there will be.

• Calculation of each zone or two-phase region.

Page 34: Construction of Global Phase Equilibrium Diagrams Martín Cismondi Universidad Nacional de Córdoba - CONICET

T specified (NVP=2, NC=2, NLLV=1)

Composition

Pre

ssur

e

Page 35: Construction of Global Phase Equilibrium Diagrams Martín Cismondi Universidad Nacional de Córdoba - CONICET

Translating from limiting points to diagrams

Page 36: Construction of Global Phase Equilibrium Diagrams Martín Cismondi Universidad Nacional de Córdoba - CONICET

variables and equations…

Page 37: Construction of Global Phase Equilibrium Diagrams Martín Cismondi Universidad Nacional de Córdoba - CONICET

0

20

40

60

80

100

120

140

160

0.0 0.2 0.4 0.6 0.8 1.0

300 K

Ethane molar fraction

Pre

ssur

e (b

ar)

150

200

250

300

350

400

450

500

0.0 0.2 0.4 0.6 0.8 1.0

50 bar

Ethane molar fraction

Tem

pera

ture

(K

)

0

20

40

60

80

100

120

140

160

0.0 0.2 0.4 0.6 0.8 1.0

330 K

Ethane molar fraction

Pre

ssu

re (

bar)

150

200

250

300

350

400

450

500

0.0 0.2 0.4 0.6 0.8 1.0

120 bar

Ethane molar fraction

Tem

pera

ture

(K

)

0

20

40

60

80

100

120

140

160

0.0 0.2 0.4 0.6 0.8 1.0

300 K

Ethane molar fraction

Pre

ssur

e (b

ar)

150

200

250

300

350

400

450

500

0.0 0.2 0.4 0.6 0.8 1.0

50 bar

Ethane molar fraction

Tem

pera

ture

(K

)

0

20

40

60

80

100

120

140

160

0.0 0.2 0.4 0.6 0.8 1.0

330 K

Ethane molar fraction

Pre

ssu

re (

bar)

150

200

250

300

350

400

450

500

0.0 0.2 0.4 0.6 0.8 1.0

120 bar

Ethane molar fraction

Tem

pera

ture

(K

)

Page 38: Construction of Global Phase Equilibrium Diagrams Martín Cismondi Universidad Nacional de Córdoba - CONICET

Examples: Closed loops in Pxy diagrams

200 300 400 500 600 700 8000

100

200

300

400

500

600

700

800

900

770 775 780 785 7900

50

100

150

CO2 + n-Docosane

RK-PR EOS (kij=0.10)

Pre

ssu

re (

ba

r)

Temperature (K)

0

20

40

60

80

100

120

140

160

0.0 0.2 0.4 0.6 0.8 1.0

10

20

30

0.0 0.1 0.2 0.3

CO2 + n-Docosane

RK-PR EOS (kij=0.10)

CO2 Molar Fraction

Pre

ssur

e (b

ar)

774 K 776 K 778 K 780 K

200 300 400 500 600 700 8000

100

200

300

400

500

600

700

800

900

770 775 780 785 7900

50

100

150

CO2 + n-Docosane

RK-PR EOS (kij=0.10)

Pre

ssu

re (

ba

r)

Temperature (K)

0

20

40

60

80

100

120

140

160

0.0 0.2 0.4 0.6 0.8 1.0

10

20

30

0.0 0.1 0.2 0.3

CO2 + n-Docosane

RK-PR EOS (kij=0.10)

CO2 Molar Fraction

Pre

ssur

e (b

ar)

774 K 776 K 778 K 780 K

Page 39: Construction of Global Phase Equilibrium Diagrams Martín Cismondi Universidad Nacional de Córdoba - CONICET

• Detection of composition local minima or maxima in critical lines, as well as in vapour or liquid branches of LLV lines.

• Location of intersection points at specified composition.

• Deduction of the number and nature of the segments the isopleth will be constituted of.

• Calculation of each segment of the isopleth.

Generation of Complete Isopleths

Page 40: Construction of Global Phase Equilibrium Diagrams Martín Cismondi Universidad Nacional de Córdoba - CONICET

Location of intersection points

100

200

300

400

500

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Ethane + Methanol

RK-PR EOS kij = 0.02

lij = 0.20

Critical lines LLVE lines

Ethane Molar Fraction

Te

mp

era

ture

(K

)

z=0.

45

z=0.

71

z=0.

94

z=0.

97C

L

C

L2

L1

L

V

100

200

300

400

500

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Ethane + Methanol

RK-PR EOS kij = 0.02

lij = 0.20

Critical lines LLVE lines

Ethane Molar Fraction

Te

mp

era

ture

(K

)

z=0.

45

z=0.

71

z=0.

94

z=0.

97C

L

C

L2

L1

L

V

Page 41: Construction of Global Phase Equilibrium Diagrams Martín Cismondi Universidad Nacional de Córdoba - CONICET

Number and nature of segments

NV

NL

NC

RI Phase

Behav. Type

Segments of the isopleth homogeneity boundary

Portions of LLV line to print

Isopleth Case

0 0 1 III ( C | LTDP)y ( C | HPLP)x All 3 0 1 1 II/III/IV ( C | LTDP)y ( L | C)x ( L | HPLP)x/y Tmin to L 7

0 2 0 III/IV ( L1 | LTDP)y ( L2 | L1)x ( L2 | HPLP)y

Tmin to L2 L1 to K

11

1 1 1 II/III (V | LTDP)y (C | V)y (L | C)x (L | HPLP)y Tmin to V 17

Page 42: Construction of Global Phase Equilibrium Diagrams Martín Cismondi Universidad Nacional de Córdoba - CONICET

Calculation of each segment

Numerical continuation method• Sensitivities are used to

– Choose which variable to specify for next point– Estimate values for all variables

P

T

vv

y

x

Xy

x

ln

ln

lnln

ln

ln

2

1

0

)(

ln)(),,(ˆln),,(ˆln

),,(ˆln),,(ˆln

ln),,(ln

ln),,(ln

22

11

SXg

zXgvTyfvTxf

vTyfvTxf

PvTyP

PvTxP

F

spec

iphase

yy

xx

yy

xx

yy

xx

Page 43: Construction of Global Phase Equilibrium Diagrams Martín Cismondi Universidad Nacional de Córdoba - CONICET

Global Diagram: P-T projection

200 250 300 350 400 450 5000

20

40

60

80

100

120

140

160

180

200

Ethane + Methanol

D

C

Critical lines LLVE lines Vapour pressure

RK-PR EOS kij = 0.02

lij = 0.20

Pre

ssur

e (

bar

)

Temperature (K)

Page 44: Construction of Global Phase Equilibrium Diagrams Martín Cismondi Universidad Nacional de Córdoba - CONICET

100

200

300

400

500

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Ethane + Methanol

RK-PR EOS kij = 0.02

lij = 0.20

Critical lines LLVE lines

Ethane Molar Fraction

Te

mp

era

ture

(K

)

z=0.

45

z=0.

71

z=0.

94

z=0.

97C

L

C

L2

L1

L

V

100

200

300

400

500

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Ethane + Methanol

RK-PR EOS kij = 0.02

lij = 0.20

Critical lines LLVE lines

Ethane Molar Fraction

Te

mp

era

ture

(K

)

z=0.

45

z=0.

71

z=0.

94

z=0.

97C

L

C

L2

L1

L

V

Global Diagram: T-x projection

Page 45: Construction of Global Phase Equilibrium Diagrams Martín Cismondi Universidad Nacional de Córdoba - CONICET

200 250 300 350 400 4500

50

100

150

200

250

Critical

point

Isopleth for z = 0.45(case 7 in Table 1)

LLVE

LLE LVE

Vapour

phase

Liquid phase

P

ress

ure

(bar)

Temperature (K)

200 250 300 350 400 4500

50

100

150

200

250

Critical

point

Isopleth for z = 0.45(case 7 in Table 1)

LLVE

LLE LVE

Vapour

phase

Liquid phase

P

ress

ure

(bar)

Temperature (K)

Ethane-Methanol. RK-PR EOS.

Page 46: Construction of Global Phase Equilibrium Diagrams Martín Cismondi Universidad Nacional de Córdoba - CONICET

200 250 300 350 400 4500

50

100

150

200

250

300

Critical point

LLVE

LLE

LVEVapour

phase

Dense phase

Pre

ssure

(bar)

Temperature (K)

Isopleth for z = 0.71(case 3 in Table 1)

( C | LTDP)y

( C | HPLP)x

200 250 300 350 400 4500

50

100

150

200

250

300

Critical point

LLVE

LLE

LVEVapour

phase

Dense phase

Pre

ssure

(bar)

Temperature (K)

Isopleth for z = 0.71(case 3 in Table 1)

( C | LTDP)y

( C | HPLP)x

Ethane-Methanol. RK-PR EOS.

Page 47: Construction of Global Phase Equilibrium Diagrams Martín Cismondi Universidad Nacional de Córdoba - CONICET

200 250 300 3500

50

100

150

200

320 321 322 323 324 325 32656

57

58

59

60

61

62

LLE

LVE Vapour

phase

Liquid phase

P

ress

ure

(bar)

Temperature (K)

Isopleth for z = 0.94(case 11 in Table 1)

LVE

LLVE

LLVE

LLE

LVE Vapour

phase

Liquid phase

Ethane-Methanol. RK-PR EOS.

Page 48: Construction of Global Phase Equilibrium Diagrams Martín Cismondi Universidad Nacional de Córdoba - CONICET

200 250 3000

50

100

150

314 315 316 317 318 319 320 321 322 323

52

53

54

55

56

57

58

LLE

P

ress

ure

(bar)

Temperature (K)

Isopleth for z = 0.97(case 17 in Table 1) Critical point

LIIVE LIVE

LLVE

LLE

LVE Vapour

phase

Liquid phase

Ethane-Methanol. RK-PR EOS.

Page 49: Construction of Global Phase Equilibrium Diagrams Martín Cismondi Universidad Nacional de Córdoba - CONICET

Modular Approach

• One general subroutine for calculation of P, and derivatives wrt T, V and n

(given T, V and n)

• Model specific subroutines for calculation of Ar and derivatives wrt T, V and n

if̂ln

Page 50: Construction of Global Phase Equilibrium Diagrams Martín Cismondi Universidad Nacional de Córdoba - CONICET

Conclusions• We have provided strategies for constructing

GPED’s from scratch.

• Types I to V, with or without azeotropy.

• Pxy, Txy and Isopleths can be derived.

• Strength: based on the GPED

• Weakness: everything is based on the GPED

www.gpec.plapiqui.edu.arwww.gpec.efn.uncor.edu

Page 51: Construction of Global Phase Equilibrium Diagrams Martín Cismondi Universidad Nacional de Córdoba - CONICET

References

• Global phase equilibrium calculations– Cismondi, M., Michelsen, M. “Global Phase Equilibrium Calculations: Critical Lines,

Critical End Points and Liquid-Liquid-Vapour Equilibrium in Binary Mixtures”. The Journal of Supercritical Fluids, Vol. 39, 287-295. 2007.

– Cismondi, M., Michelsen, M. “Automated Calculation of Complete Pxy and Txy Diagrams for Binary Systems”. Fluid Phase Equilibria, Vol. 259, 228-234. 2007.

– Cismondi, M., Michelsen, M. L., Zabaloy, M.S. “Automated generation of phase diagrams for binary systems with azeotropic behavior”. Industrial and Engineering Chemistry Research, Vol. 47 Issue 23, 9728–9743. 2008.

• GPEC (the program)– Cismondi, M., Nuñez, D. N., Zabaloy, M. S., Brignole, E. A., Michelsen, M. L.,

Mollerup, J. M. “GPEC: A Program for Global Phase Equilibrium Calculations in Binary Systems” (Oral Presentation). EQUIFASE 2006. Morelia, Michoacán, México. October 21-25,  2006.

• Models and their pure compound parameters– Cismondi, M., Mollerup, J. “Development and Application of a Three-Parameter RK-PR

Equation of State”. Fluid Phase Equilibria, Vol. 232, 74-89. 2005.– Cismondi, M., Brignole, E. A., Mollerup, J. “Rescaling of Three-Parameter Equations of

State: PC-SAFT and SPHCT”. Fluid Phase Equilibria, Vol. 234, 108-121. 2005.