control charts for variables distribution of the sample range · 6 control charts for variables 6.1...

20
6 Control Charts for Variables 6.1 Distribution of the Sample Range To generate R-charts and s-charts it is necessary to work with the sampling distributions of the sample range R and the sample standard deviation s. A brief summary of these distributions when sampling from a normal distribution will be given. The range R of a random sample X 1 ,X 2 ,...,X n is R = X (n) - X (1) where X (n) and X (1) are, respectively, the largest and smallest order statistics in a sample of size n. When taking a sample of size n from a N (0, 1) distribution, the pdf of R is: g(r; n)= n(n - 1) Z -∞ [Φ(x + r) - Φ(x)] n-2 φ(x)φ(x + r)dx r> 0 and the CDF of R is: G(r; n) = n Z -∞ [Φ(x + r) - Φ(x)] n-1 φ(x)dx = n Z 0 [Φ(x + r) - Φ(x)] n-1 + [Φ(x - r) + Φ(x) - 1] n-1 φ(x)dx r> 0 If the sample was taken from a N (02 ) distribution, then the relative range W = R/σ has pdf g(r; n). The moments of the range R can be derived from either the pdf above or from the moments of minimum and maximum order statistics X (1) and X (n) . The following tables contain the first two moments of X (1) , X (n) , and R for n =2, 3, 4, 5 from a N (0, 1) distribution. Exact values of E(X (1) ), E(X (n) ) and E(R) n 2 3 4 5 E(X (1) ) - 1 π - 3 2 π - 3 2 π 1+ 2a π - 5 4 π 1+ 6a π E(X (n) ) 1 π 3 2 π 3 2 π 1+ 2a π 5 4 π 1+ 6a π E(R) 2 π 3 π 3 π 1+ 2a π 5 2 π 1+ 6a π where a = arcsin(1/3) 0.3398369094. Exact values of E(X 2 (1) ), E(X 2 (n) ) and E(R 2 ) n 2 3 4 5 E(X 2 (1) ) 1 1+ 3 2π 1+ 3 π 1+ 5 3 4π + 5b 3 2π 2 E(X 2 (n) ) 1 1+ 3 2π 1+ 3 π 1+ 5 3 4π + 5b 3 2π 2 E(R 2 ) 2 2+ 3 3 π 2+ 6+3 3 π 2+ 5 3 2π + 5b 3 π 2 + 60c π 2 where b = arcsin(1.4) .2526802552 and c = arcsin(1/ 6) 0.42053434. 45

Upload: others

Post on 08-Jul-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Control Charts for Variables Distribution of the Sample Range · 6 Control Charts for Variables 6.1 Distribution of the Sample Range To generate R-charts and s-charts it is necessary

6 Control Charts for Variables

6.1 Distribution of the Sample Range

• To generate R-charts and s-charts it is necessary to work with the sampling distributions of thesample range R and the sample standard deviation s. A brief summary of these distributionswhen sampling from a normal distribution will be given.

• The range R of a random sample X1, X2, . . . , Xn is R = X(n) − X(1) where X(n) and X(1)

are, respectively, the largest and smallest order statistics in a sample of size n.

• When taking a sample of size n from a N(0, 1) distribution, the pdf of R is:

g(r;n) = n(n− 1)

∫ ∞−∞

[Φ(x+ r)− Φ(x)]n−2 φ(x)φ(x+ r)dx r > 0

and the CDF of R is:

G(r;n) = n

∫ ∞−∞

[Φ(x+ r)− Φ(x)]n−1 φ(x)dx

= n

∫ ∞0

{[Φ(x+ r)− Φ(x)]n−1 + [Φ(x− r) + Φ(x)− 1]n−1

}φ(x)dx r > 0

• If the sample was taken from a N(0, σ2) distribution, then the relative range W = R/σ haspdf g(r;n).

• The moments of the range R can be derived from either the pdf above or from the momentsof minimum and maximum order statistics X(1) and X(n). The following tables contain thefirst two moments of X(1), X(n), and R for n = 2, 3, 4, 5 from a N(0, 1) distribution.

Exact values of E(X(1)), E(X(n)) and E(R)

n 2 3 4 5

E(X(1)) − 1√π

− 3

2√π

− 3

2√π

(1 +

2a

π

)− 5

4√π

(1 +

6a

π

)

E(X(n))1√π

3

2√π

3

2√π

(1 +

2a

π

)5

4√π

(1 +

6a

π

)

E(R)2√π

3√π

3√π

(1 +

2a

π

)5

2√π

(1 +

6a

π

)where a = arcsin(1/3) ≈ 0.3398369094.

Exact values of E(X2(1)), E(X2

(n)) and E(R2)

n 2 3 4 5

E(X2(1)) 1 1 +

√3

2π1 +

√3

π1 +

5√3

4π+

5b√3

2π2

E(X2(n)) 1 1 +

√3

2π1 +

√3

π1 +

5√3

4π+

5b√3

2π2

E(R2) 2 2 +3√3

π2 +

6 + 3√3

π2 +

5√3

2π+

5b√3

π2+

60c

π2

where b = arcsin(1.4) ≈ .2526802552 and c = arcsin(1/√6) ≈ 0.42053434.

45

Page 2: Control Charts for Variables Distribution of the Sample Range · 6 Control Charts for Variables 6.1 Distribution of the Sample Range To generate R-charts and s-charts it is necessary

6.2 Distribution of the Sample Standard Deviation

• The sample standard deviation S of a random sample X1, X2, . . . , Xn is

S =

√√√√ 1

n− 1

n∑i=1

(Xi −X

)2.

• When taking a sample of size n from a N(µ, σ2) distribution, the pdf of S is:

g(s;n) =sν−1 νν/2 exp(−νs2/2σ2)

2(ν−2)/2 σν Γ(ν/2)s > 0

where ν = n− 1 ≥ 1.

• The first four moments of S are:

E(S) = σ

√2

n− 1

Γ(n2)

Γ(n−12

)E(S2) = σ2

E(S3) =nσ2E(S)

n− 1E(S4) =

(n+ 1

n− 1

)σ4

• From Jensen’s inequality: E(S) = E[(S2)1/2] < [E(S2)]1/2 = σ. So E(S) < σ.

• If we define

S∗ =

√n− 1

2

Γ(n−12

)

Γ(n2)S

then E(S∗) = σ.

• Therefore, we can use the sample standard deviation to get an unbiased estimate of σ is wejust multiply by the reciprocal of the biasing factor.

• The same is true if we consider the range R. That is, if multiply by the reciprocal of theappropriate biasing factor then we can get another unbiased estimate of σ.

Multipliers for constructing variables control charts

• The following table will be used throughout this section. It contains multipliers for construct-ing variables control charts including x, R, s, and individual (IMR) charts.

• We begin with x and R charts.

• The x-chart is used to check if the mean of a process characteristic is on aim.

• Because the variability of the process may cause the process mean to appear off aim, it is alsonecessary to check that the process variability is not too large.

• Therefore, the x-chart will be accompanied by either an R-chart or an s-chart, both of whichassess the stability of the variability of a process.

46

Page 3: Control Charts for Variables Distribution of the Sample Range · 6 Control Charts for Variables 6.1 Distribution of the Sample Range To generate R-charts and s-charts it is necessary

6 Control Charts for Variables

5347

Page 4: Control Charts for Variables Distribution of the Sample Range · 6 Control Charts for Variables 6.1 Distribution of the Sample Range To generate R-charts and s-charts it is necessary

6.3 x and R-charts

• Suppose the goal is to control the mean of some quality characteristic. Let random variableX correspond to the quality characteristic from a unit sampled from an in-control process.

• Suppose it is known that X ∼ N(µ, σ2) when the process is running in control. If a sample

of n independent units is taken from this population, then X ∼ N

(µ,σ2

n

).

• Suppose m samples of size n are collected. For each sample, we can calculate the:

Means x1, x2, . . . , xm and x = the mean of the m sample meansRanges R1, R2, . . . , Rm and R = the mean of the m sample ranges

6.3.1 For Known µ and σ

• The µx + 3σx control limits for the x-chart when µ and σ are known are:

UCL = µx + 3σx = A =3√n

Centerline = µx = µ (3)

LCL = µx − 3σx =

• To construct an R-chart, information about the relationship between the sample range R andthe standard deviation σ from a normal distribution is needed.

• Suppose Xi ∼ N(µ, σ2) for i = 1, 2, . . . , n. Let x1, x2, . . . , xn be a random sample (realization)of size n.

• The range R = xmax − xmin.

• The relative range W = Rσ

is a random variable with µW = d2 and σW = d3. Values of d2and d3 for various sample sizes are given in the table.

• Motivation: Note that we can rewrite R as R = Wσ. Substitution yields:

µR = E(Wσ) = σE(W ) = σd2 where the value of d2 = E(W ) depends on n.

σ2R = Var(Wσ) = σ2Var(W ) = σ2σ2

W .

Thus, σR = σ σW = σd3 where the value of d3 depends on n.

• Using these values, the µR ± 3σR control limits for the R-chart are:

UCL = µR + 3σR = D2 = d2 + 3d3

Centerline = µR = d2σ (4)

LCL = µR − 3σR = D1 = d2 − 3d3

where D1 and D2 are constants that depend on sample size n and can be found in the table.

48

Page 5: Control Charts for Variables Distribution of the Sample Range · 6 Control Charts for Variables 6.1 Distribution of the Sample Range To generate R-charts and s-charts it is necessary

EXAMPLE 1: The following data represents m = 100 samples of size n = 4. The target isµ = 100. Assume σ = 2. The data can be found in the file xchart.dat.

Samples 1 to 50 Samples 51 to 100

99.98 102.05 102.85 99.81 98.73 103.48 99.77 98.2297.37 100.78 101.42 102.44 99.03 99.50 98.56 99.43

103.93 97.15 99.67 100.89 99.80 97.13 98.90 101.22100.58 101.07 99.76 99.68 101.33 100.14 99.75 97.69100.80 99.65 102.63 97.96 100.86 101.43 100.62 100.77100.21 101.27 97.39 100.52 98.53 98.77 100.17 103.22100.56 101.65 96.94 97.94 102.10 99.96 99.27 98.9898.24 100.44 100.74 102.11 99.72 100.48 99.80 99.91

100.62 99.12 100.07 100.49 97.17 97.61 98.86 101.73100.86 97.49 100.54 98.49 99.63 100.99 98.96 100.71100.23 99.42 103.33 100.98 102.49 98.10 100.65 101.0798.63 98.48 99.97 100.50 99.33 101.59 100.29 99.6595.74 102.26 102.33 101.09 103.09 100.38 105.95 98.8097.56 98.71 94.98 94.72 101.78 102.26 103.68 102.2197.99 98.60 98.74 95.99 99.22 98.28 100.44 98.20

101.14 101.37 98.23 97.53 98.16 100.34 98.10 102.7498.23 98.98 96.46 96.65 101.02 103.31 97.08 97.73

101.10 97.78 104.07 103.32 100.23 96.63 98.63 98.9599.41 100.52 102.26 99.70 103.35 100.01 99.73 98.3597.91 99.94 97.67 98.03 101.35 97.71 101.09 97.53

100.43 98.67 98.27 101.03 100.34 99.65 98.44 100.43102.45 98.51 102.47 98.46 98.72 97.35 99.86 101.2299.59 98.72 103.04 97.34 100.52 97.75 97.62 100.49

101.00 98.95 99.71 98.39 99.08 98.41 99.29 102.3797.41 98.71 102.95 98.80 100.03 99.31 100.71 99.41

102.27 103.36 96.41 95.91 99.43 100.13 96.95 103.00105.07 100.53 104.04 103.47 99.04 98.30 99.94 98.7099.78 101.18 100.92 100.32 99.03 99.86 100.43 101.2999.65 99.22 96.73 99.38 100.25 101.64 101.58 100.3298.89 102.56 99.34 97.45 100.14 102.45 102.76 100.3999.35 100.12 98.96 100.76 103.67 101.29 100.17 99.36

105.51 102.54 98.15 100.27 100.67 100.65 101.58 102.50103.96 99.51 97.26 101.02 99.24 100.83 99.76 100.42101.06 99.01 100.27 99.54 101.35 98.09 102.01 100.5296.77 98.26 103.82 99.93 103.45 101.28 103.74 100.1098.71 101.92 104.04 99.17 98.20 101.88 102.30 102.09

100.08 100.94 103.39 97.88 99.01 99.22 98.73 100.1596.82 101.23 99.18 98.39 100.83 103.30 102.47 102.8498.85 96.96 103.40 98.53 100.47 99.48 98.38 101.31

100.78 95.06 95.35 100.35 99.24 102.65 99.67 98.3898.97 102.39 102.22 100.36 98.76 *93.55*103.26 99.12 (91)96.82 98.59 97.85 102.41 100.15 96.61 100.49 102.5699.17 98.03 99.72 100.00 99.72 101.10 100.29 97.37

103.47 99.01 103.65 100.67 101.58 101.71 99.79 96.8497.11 98.83 98.87 99.29 99.00 100.39 100.55 98.5998.29 99.22 98.71 98.66 98.96 101.35 105.69 100.54

101.70 100.23 100.56 98.67 99.01 99.71 101.34 97.7699.36 98.50 100.23 102.87 99.67 98.49 99.88 100.8597.42 103.90 *92.69*101.20 (49) 95.65 101.33 95.25 101.46

102.09 103.48 98.27 99.51 99.22 98.84 100.29 98.72

49

Page 6: Control Charts for Variables Distribution of the Sample Range · 6 Control Charts for Variables 6.1 Distribution of the Sample Range To generate R-charts and s-charts it is necessary

XB

AR

AN

D R

AN

GE

CH

AR

TS

(K

NO

WN

MU

AN

D S

IGM

A)

Th

e S

HE

WH

AR

T P

roce

dure

Mea

ns

and

Ran

ges

Ch

art

Su

mm

ary

for

resp

onse

3 S

igm

a L

imit

s w

ith

n=

4 fo

rM

ean

3 S

igm

a L

imit

s w

ith

n=

4 fo

rR

ange

sam

ple

Su

bgr

oup

Sam

ple

Siz

eL

ower

Lim

itS

ub

grou

pM

ean

Up

per

Lim

it

Sp

ecia

lT

ests

Sig

nal

edL

ower

Lim

itS

ub

grou

pR

ange

Up

per

Lim

it

Sp

ecia

lT

ests

Sig

nal

ed

304

97.0

0000

099

.560

0010

3.00

000

05.

1100

009.

3963

507

314

97.0

0000

099

.797

5010

3.00

000

01.

8000

009.

3963

507

324

97.0

0000

010

1.61

750

103.

0000

00

7.36

0000

9.39

6350

7

334

97.0

0000

010

0.43

750

103.

0000

00

6.70

0000

9.39

6350

7

344

97.0

0000

099

.970

0010

3.00

000

02.

0500

009.

3963

507

354

97.0

0000

099

.695

0010

3.00

000

07.

0500

009.

3963

507

364

97.0

0000

010

0.96

000

103.

0000

00

5.33

0000

9.39

6350

7

374

97.0

0000

010

0.57

250

103.

0000

00

5.51

0000

9.39

6350

7

384

97.0

0000

098

.905

0010

3.00

000

04.

4100

009.

3963

507

394

97.0

0000

099

.435

0010

3.00

000

06.

4400

009.

3963

507

404

97.0

0000

097

.885

0010

3.00

000

05.

7200

009.

3963

507

414

97.0

0000

010

0.98

500

103.

0000

00

3.42

0000

9.39

6350

7

424

97.0

0000

098

.917

5010

3.00

000

05.

5900

009.

3963

507

434

97.0

0000

099

.230

0010

3.00

000

01.

9700

009.

3963

507

444

97.0

0000

010

1.70

000

103.

0000

00

4.64

0000

9.39

6350

7

454

97.0

0000

098

.525

0010

3.00

000

02.

1800

009.

3963

507

464

97.0

0000

098

.720

0010

3.00

000

00.

9300

009.

3963

507

474

97.0

0000

010

0.29

000

103.

0000

00

3.03

0000

9.39

6350

7

484

97.0

0000

010

0.24

000

103.

0000

00

4.37

0000

9.39

6350

7

494

97.0

0000

098

.802

5010

3.00

000

011

.210

000

9.39

6350

71

504

97.0

0000

010

0.83

750

103.

0000

00

5.21

0000

9.39

6350

7

514

97.0

0000

010

0.05

000

103.

0000

00

5.26

0000

9.39

6350

7

524

97.0

0000

099

.130

0010

3.00

000

00.

9400

009.

3963

507

534

97.0

0000

099

.262

5010

3.00

000

04.

0900

009.

3963

507

544

97.0

0000

099

.727

5010

3.00

000

03.

6400

009.

3963

507

554

97.0

0000

010

0.92

000

103.

0000

00

0.81

0000

9.39

6350

7

564

97.0

0000

010

0.17

250

103.

0000

00

4.69

0000

9.39

6350

7

574

97.0

0000

010

0.07

750

103.

0000

00

3.12

0000

9.39

6350

7

584

97.0

0000

099

.977

5010

3.00

000

00.

7600

009.

3963

507

XB

AR

AN

D R

AN

GE

CH

AR

TS

(K

NO

WN

MU

AN

D S

IGM

A)

Th

e S

HE

WH

AR

T P

roce

dure

Mea

ns

and

Ran

ges

Ch

art

Su

mm

ary

for

resp

onse

3 S

igm

a L

imit

s w

ith

n=

4 fo

rM

ean

3 S

igm

a L

imit

s w

ith

n=

4 fo

rR

ange

sam

ple

Su

bgr

oup

Sam

ple

Siz

eL

ower

Lim

itS

ub

grou

pM

ean

Up

per

Lim

it

Sp

ecia

lT

ests

Sig

nal

edL

ower

Lim

itS

ub

grou

pR

ange

Up

per

Lim

it

Sp

ecia

lT

ests

Sig

nal

ed

14

97.0

0000

010

1.17

250

103.

0000

00

3.04

0000

9.39

6350

7

24

97.0

0000

010

0.50

250

103.

0000

00

5.07

0000

9.39

6350

7

34

97.0

0000

010

0.41

000

103.

0000

00

6.78

0000

9.39

6350

7

44

97.0

0000

010

0.27

250

103.

0000

00

1.39

0000

9.39

6350

7

54

97.0

0000

010

0.26

000

103.

0000

00

4.67

0000

9.39

6350

7

64

97.0

0000

099

.847

5010

3.00

000

30

3.88

0000

9.39

6350

7

74

97.0

0000

099

.272

5010

3.00

000

04.

7100

009.

3963

507

84

97.0

0000

010

0.38

250

103.

0000

00

3.87

0000

9.39

6350

7

94

97.0

0000

010

0.07

500

103.

0000

00

1.50

0000

9.39

6350

7

104

97.0

0000

099

.345

0010

3.00

000

03.

3700

009.

3963

507

114

97.0

0000

010

0.99

000

103.

0000

00

3.91

0000

9.39

6350

7

124

97.0

0000

099

.395

0010

3.00

000

02.

0200

009.

3963

507

134

97.0

0000

010

0.35

500

103.

0000

00

6.59

0000

9.39

6350

7

144

97.0

0000

096

.492

5010

3.00

000

10

3.99

0000

9.39

6350

7

154

97.0

0000

097

.830

0010

3.00

000

50

2.75

0000

9.39

6350

7

164

97.0

0000

099

.567

5010

3.00

000

03.

8400

009.

3963

507

174

97.0

0000

097

.580

0010

3.00

000

02.

5200

009.

3963

507

184

97.0

0000

010

1.56

750

103.

0000

00

6.29

0000

9.39

6350

7

194

97.0

0000

010

0.47

250

103.

0000

00

2.85

0000

9.39

6350

7

204

97.0

0000

098

.387

5010

3.00

000

02.

2700

009.

3963

507

214

97.0

0000

099

.600

0010

3.00

000

02.

7600

009.

3963

507

224

97.0

0000

010

0.47

250

103.

0000

00

4.01

0000

9.39

6350

7

234

97.0

0000

099

.672

5010

3.00

000

05.

7000

009.

3963

507

244

97.0

0000

099

.512

5010

3.00

000

02.

6100

009.

3963

507

254

97.0

0000

099

.467

5010

3.00

000

05.

5400

009.

3963

507

264

97.0

0000

099

.487

5010

3.00

000

07.

4500

009.

3963

507

274

97.0

0000

010

3.27

750

103.

0000

01

04.

5400

009.

3963

507

284

97.0

0000

010

0.55

000

103.

0000

00

1.40

0000

9.39

6350

7

294

97.0

0000

098

.745

0010

3.00

000

02.

9200

009.

3963

507

50

Page 7: Control Charts for Variables Distribution of the Sample Range · 6 Control Charts for Variables 6.1 Distribution of the Sample Range To generate R-charts and s-charts it is necessary

XB

AR

AN

D R

AN

GE

CH

AR

TS

(K

NO

WN

MU

AN

D S

IGM

A)

Th

e S

HE

WH

AR

T P

roce

dure

Mea

ns

and

Ran

ges

Ch

art

Su

mm

ary

for

resp

onse

3 S

igm

a L

imit

s w

ith

n=

4 fo

rM

ean

3 S

igm

a L

imit

s w

ith

n=

4 fo

rR

ange

sam

ple

Su

bgr

oup

Sam

ple

Siz

eL

ower

Lim

itS

ub

grou

pM

ean

Up

per

Lim

it

Sp

ecia

lT

ests

Sig

nal

edL

ower

Lim

itS

ub

grou

pR

ange

Up

per

Lim

it

Sp

ecia

lT

ests

Sig

nal

ed

884

97.0

0000

010

2.36

000

103.

0000

00

2.47

0000

9.39

6350

7

894

97.0

0000

099

.910

0010

3.00

000

02.

9300

009.

3963

507

904

97.0

0000

099

.985

0010

3.00

000

04.

2700

009.

3963

507

914

97.0

0000

098

.672

5010

3.00

000

09.

7100

009.

3963

507

1

924

97.0

0000

099

.952

5010

3.00

000

05.

9500

009.

3963

507

934

97.0

0000

099

.620

0010

3.00

000

03.

7300

009.

3963

507

944

97.0

0000

099

.980

0010

3.00

000

04.

8700

009.

3963

507

954

97.0

0000

099

.632

5010

3.00

000

01.

9600

009.

3963

507

964

97.0

0000

010

1.63

500

103.

0000

00

6.73

0000

9.39

6350

7

974

97.0

0000

099

.455

0010

3.00

000

03.

5800

009.

3963

507

984

97.0

0000

099

.722

5010

3.00

000

02.

3600

009.

3963

507

994

97.0

0000

098

.422

5010

3.00

000

40

6.21

0000

9.39

6350

7

100

497

.000

000

99.2

6750

103.

0000

00

1.57

0000

9.39

6350

7

XB

AR

AN

D R

AN

GE

CH

AR

TS

(K

NO

WN

MU

AN

D S

IGM

A)

Th

e S

HE

WH

AR

T P

roce

dure

Mea

ns

and

Ran

ges

Ch

art

Su

mm

ary

for

resp

onse

3 S

igm

a L

imit

s w

ith

n=

4 fo

rM

ean

3 S

igm

a L

imit

s w

ith

n=

4 fo

rR

ange

sam

ple

Su

bgr

oup

Sam

ple

Siz

eL

ower

Lim

itS

ub

grou

pM

ean

Up

per

Lim

it

Sp

ecia

lT

ests

Sig

nal

edL

ower

Lim

itS

ub

grou

pR

ange

Up

per

Lim

it

Sp

ecia

lT

ests

Sig

nal

ed

594

97.0

0000

098

.842

5010

3.00

000

04.

5600

009.

3963

507

604

97.0

0000

010

0.07

250

103.

0000

00

2.03

0000

9.39

6350

7

614

97.0

0000

010

0.57

750

103.

0000

00

4.39

0000

9.39

6350

7

624

97.0

0000

010

0.21

500

103.

0000

00

2.26

0000

9.39

6350

7

634

97.0

0000

010

2.05

500

103.

0000

00

7.15

0000

9.39

6350

7

644

97.0

0000

010

2.48

250

103.

0000

05

01.

9000

009.

3963

507

654

97.0

0000

099

.035

0010

3.00

000

02.

2400

009.

3963

507

664

97.0

0000

099

.835

0010

3.00

000

04.

6400

009.

3963

507

674

97.0

0000

099

.785

0010

3.00

000

06.

2300

009.

3963

507

684

97.0

0000

098

.610

0010

3.00

000

03.

6000

009.

3963

507

694

97.0

0000

010

0.36

000

103.

0000

00

5.00

0000

9.39

6350

7

704

97.0

0000

099

.420

0010

3.00

000

03.

8200

009.

3963

507

714

97.0

0000

099

.715

0010

3.00

000

01.

9900

009.

3963

507

724

97.0

0000

099

.287

5010

3.00

000

03.

8700

009.

3963

507

734

97.0

0000

099

.095

0010

3.00

000

02.

9000

009.

3963

507

744

97.0

0000

099

.787

5010

3.00

000

03.

9600

009.

3963

507

754

97.0

0000

099

.865

0010

3.00

000

01.

4000

009.

3963

507

764

97.0

0000

099

.877

5010

3.00

000

06.

0500

009.

3963

507

774

97.0

0000

098

.995

0010

3.00

000

01.

6400

009.

3963

507

784

97.0

0000

010

0.15

250

103.

0000

00

2.26

0000

9.39

6350

7

794

97.0

0000

010

0.94

750

103.

0000

00

1.39

0000

9.39

6350

7

804

97.0

0000

010

1.43

500

103.

0000

00

2.62

0000

9.39

6350

7

814

97.0

0000

010

1.12

250

103.

0000

00

4.31

0000

9.39

6350

7

824

97.0

0000

010

1.35

000

103.

0000

00

1.85

0000

9.39

6350

7

834

97.0

0000

010

0.06

250

103.

0000

00

1.59

0000

9.39

6350

7

844

97.0

0000

010

0.49

250

103.

0000

00

3.92

0000

9.39

6350

7

854

97.0

0000

010

2.14

250

103.

0000

00

3.64

0000

9.39

6350

7

864

97.0

0000

010

1.11

750

103.

0000

02

04.

1000

009.

3963

507

874

97.0

0000

099

.277

5010

3.00

000

01.

4200

009.

3963

507

51

Page 8: Control Charts for Variables Distribution of the Sample Range · 6 Control Charts for Variables 6.1 Distribution of the Sample Range To generate R-charts and s-charts it is necessary

XBAR AND RANGE CHARTS (KNOWN MU AND SIGMA)

The SHEWHART Procedure

52

Page 9: Control Charts for Variables Distribution of the Sample Range · 6 Control Charts for Variables 6.1 Distribution of the Sample Range To generate R-charts and s-charts it is necessary

SAS Code for x and R charts for Example 1 assuming µ = 100 and σ = 2:

DM ’LOG; CLEAR; OUT; CLEAR;’;* ODS LISTING; * This is used if you want tables as text output;* ODS PRINTER PDF file=’c:\courses\st528\sas\xrchart.pdf’;OPTIONS NODATE NONUMBER LS=120 PS=120;

DATA in; INFILE ’c:\courses\st528\sas\xchart.dat’;DO sample =1 TO 100;DO unit = 1 TO 4;

INPUT response @@; OUTPUT;END; END;

TITLE ’XBAR AND RANGE CHARTS (KNOWN MU AND SIGMA)’;SYMBOL1 V=DOT WIDTH=.5;

PROC SHEWHART DATA=in ;XRCHART response*sample=’1’ / NPANELPOS=100 ZONES ZONELABELS

MU0=100 XSYMBOL=MU0SIGMA0=2 RSYMBOL=R0TESTS = 1 TO 8 LTESTS = 2TESTS2 = 1TABLETESTS ALLN SPLIT = ’/’;

LABEL RESPONSE = ’AVERAGE RESPONSE/RANGE’;RUN;

SAS Code for x and s charts for Example 1 assuming µ = 100 and σ = 2:

DM ’LOG; CLEAR; OUT; CLEAR;’;* ODS LISTING; * This is used if you want tables as text output;* ODS PRINTER PDF file=’C:\COURSES\ST528\SAS\xschart.pdf’;OPTIONS NODATE NONUMBER;

DATA IN; INFILE ’c:\courses\st528\sas\xchart.dat’;DO sample =1 TO 100;DO unit = 1 TO 4;

INPUT response @@; OUTPUT;END; END;

TITLE ’XBAR AND S CHARTS (KNOWN MU AND SIGMA)’;SYMBOL1 V=DOT WIDTH=1;

PROC SHEWHART DATA=IN ;XSCHART response*sample=’1’ / NPANELPOS=100 ZONES ZONELABELS

MU0=100 XSYMBOL=MU0SIGMA0=2 SSYMBOL=S0TESTS = 1 TO 8 LTESTS = 2 TESTS2 = 1TABLETESTS ALLN SPLIT = ’/’;

LABEL response = ’AVERAGE RESPONSE/STANDARD DEVIATION’;RUN;

53

Page 10: Control Charts for Variables Distribution of the Sample Range · 6 Control Charts for Variables 6.1 Distribution of the Sample Range To generate R-charts and s-charts it is necessary

6.3.2 For Unknown µ and σ

• For new processes, µ and σ are typically not known at startup. Thus, a set of m preliminarysamples must be collected in order to compute estimates of µ and σ.

– xi and Ri should be computed for each of the preliminary samples.

– The estimator of the unknown mean µ is µ̂ = x =

∑mi=1 xim

.

– The estimator of σ is σ̂ = Rd2

, where R =

∑mi=1Ri

m.

• Motivation for estimating σ based on sample ranges:

– Earlier we showed that µR = σd2. This implies σ = µR/d2.

– Replacing µR with µ̂R = R, we get σ̂ = R/d2. Then σ̂x =σ̂√n

=R

d2√n

• Substitution of the estimators into equations (3) and (4) for the unknown parameters yieldsthe following trial control limits for the x-chart:

UCL = µ̂+ 3σ̂√n

= A2 =3

d2√n

Centerline = µ̂ = x (5)

LCL = µ̂− 3σ̂√n

=

• Motivation for estimating σR based on sample ranges:

– Earlier we showed that σR = σd3. Replace σ with σ̂ = R/d2.

– Then σ̂R = σ̂d3 =Rd3d2

. We then substitute µ̂R and σ̂R into µ̂R ± 3σ̂R.

• The trial control limits for the R-chart are:

UCL = R̂ + 3σ̂R = D4 = 1 + 3d3d2

Centerline = R̂ = R (6)

LCL = R̂− 3σ̂R = D3 = 1− 3d3d2

where D3 and D4 are constants dependent on sample size with values given in the table.

• Because the x chart is dependent upon the variability of the process being in control, it is goodpractice to first check if the preliminary values of Ri indicate in-control process variability.

• The trial limits for R must be used to test whether or not the process was in control when thepreliminary samples were taken. When testing with the R-chart, it is common to use Rule 1only to determine if the process variability is out-of-control.

– If this test on the range indicates no out of control signals, adopt the trial control limitsas valid control limits for future process control testing.

54

Page 11: Control Charts for Variables Distribution of the Sample Range · 6 Control Charts for Variables 6.1 Distribution of the Sample Range To generate R-charts and s-charts it is necessary

– These can be revised as more in-control samples are collected.

– If any range points indicate an out-of-control process, an investigation for assignablecauses should be carried out.

– If an assignable cause is found, delete the point and recompute the trial control limits.

– If no assignable cause can be found, one of two things can be done.

(i) The point can be deleted and new limits computed. Continue with the precedingtest until acceptable limits are found.

(ii) Retain the point along with the trial control limits. Future points can be plotted tosee if they plot in control. If so, adopt the limits as valid.

• If the R-chart trial limits are adopted as valid, then perform the same test on the x-chart,using any subset of the rules proposed earlier. If both the x and R control limits are adoptedas valid, proceed with process control analysis.

• Once valid control limits have been computed, testing for process control can proceed.

– Collect samples from the same process.

– Compute xi and Ri for each sample as the data becomes available.

– Plot these current values of xi and Ri on the control charts.

– Use a subset of the rules for the x-chart discussed earlier to determine if the process isrunning in control.

– If both charts show an out-of-control signal for the same sample, it is suggested to searchfor an assignable cause for a change in variability first because bringing the processvariability under control may return the process to the in-control state on the x-chart.

EXAMPLE 2: The melt index of an extrusion grad polyethylene compound is to be studied todetermine variation in this quality property and relate it to raw material, shift, and other changesin the process. Ability of the process to produce trial control limits is also to be studied. Samplesof size n = 4 are selected and the melt index is recorded. Data was collected over 7 days yieldingm = 20 samples. The data with the sample means and ranges are given in the following table.

– If any range points indicate an out-of-control process, an investigation for assignablecauses should be carried out.

– If an assignable cause can be found, delete the point and recompute the trial controllimits.

– If no assignable cause can be found, one of two things can be done.

(i) The point can be deleted and new limits computed. Continue with the precedingtest until acceptable limits are found.

(ii) Retain the point along with the trial control limits. Future points can be plotted tosee if they plot in control. If so, accept the limits as valid.

• If the R-chart trial limits are accepted as valid, then perform the same test on the x-chart,using any subset of the rules proposed earlier. If both the x and R control limits are acceptedas valid, proceed with process control analysis.

• Once valid control limits have been computed, process control testing can proceed.

– Samples should be collected from the same process.

– Compute the values of xi and Ri for each sample as the data becomes available.

– Plot the most current values of x and R on the control charts.

– Use a subset of the rules discussed earlier in this paper to determine if the process isrunning in control.

– If both charts show an out-of-control signal for the same sample, it is suggested to searchfor an assignable cause for a change in variability first because bringing the processvariability under control may return the process to the in-control state on the x-chart.

EXAMPLE 2: The melt index of an extrusion grad polyethylene compound is to be studied todetermine variation in this quality property and relate it to raw material, shift, and other changesin the process. Ability of the process to produce trial control limits is also to be studied. Samplesof n = 4 are selected and melt index values are collected. In an initial study, data was collectedover 7 days yielding m = 20 samples. The data with the sample means and ranges are given in thefollowing table.

6055

Page 12: Control Charts for Variables Distribution of the Sample Range · 6 Control Charts for Variables 6.1 Distribution of the Sample Range To generate R-charts and s-charts it is necessary

XBAR and RANGE Charts (Unknown MU and SIGMA)

The SHEWHART Procedure

XBAR and RANGE Charts (Unknown MU and SIGMA)

The SHEWHART Procedure

XBAR and RANGE Charts (Unknown MU and SIGMA)

The SHEWHART Procedure

Means and Ranges Chart Summary for INDEX

3 Sigma Limits with n=4 forMean

3 Sigma Limits with n=4 forRange

SAMPLE

SubgroupSample

SizeLower

LimitSubgroup

MeanUpper

Limit

SpecialTests

SignaledLower

LimitSubgroup

RangeUpper

Limit

SpecialTests

Signaled

1 4 221.37630 223.25000 248.69870 0 13.000000 42.788467

2 4 221.37630 236.25000 248.69870 0 19.000000 42.788467

3 4 221.37630 239.25000 248.69870 0 59.000000 42.788467 1

4 4 221.37630 236.50000 248.69870 0 39.000000 42.788467

5 4 221.37630 235.75000 248.69870 0 13.000000 42.788467

6 4 221.37630 244.25000 248.69870 0 33.000000 42.788467

7 4 221.37630 240.25000 248.69870 0 5.000000 42.788467

8 4 221.37630 247.75000 248.69870 5 0 31.000000 42.788467

9 4 221.37630 241.50000 248.69870 6 0 19.000000 42.788467

10 4 221.37630 229.00000 248.69870 0 18.000000 42.788467

11 4 221.37630 226.50000 248.69870 0 14.000000 42.788467

12 4 221.37630 233.75000 248.69870 0 16.000000 42.788467

13 4 221.37630 224.25000 248.69870 0 9.000000 42.788467

14 4 221.37630 225.75000 248.69870 56 0 10.000000 42.788467

15 4 221.37630 229.50000 248.69870 0 16.000000 42.788467

16 4 221.37630 236.25000 248.69870 0 9.000000 42.788467

17 4 221.37630 247.75000 248.69870 0 7.000000 42.788467

18 4 221.37630 239.75000 248.69870 0 17.000000 42.788467

19 4 221.37630 231.50000 248.69870 0 22.000000 42.788467

20 4 221.37630 232.00000 248.69870 0 6.000000 42.788467

56

Page 13: Control Charts for Variables Distribution of the Sample Range · 6 Control Charts for Variables 6.1 Distribution of the Sample Range To generate R-charts and s-charts it is necessary

XBAR and R Charts (Sample 3 Removed)

The SHEWHART Procedure

XBAR and R Charts (Samples 3,4,6,8 Removed)

The SHEWHART Procedure

57

Page 14: Control Charts for Variables Distribution of the Sample Range · 6 Control Charts for Variables 6.1 Distribution of the Sample Range To generate R-charts and s-charts it is necessary

XB

AR

an

d R

Ch

arts

(S

ampl

es 3

,4,6

,8 R

emov

ed)

Th

e S

HE

WH

AR

T P

roce

dure

XB

AR

an

d R

Ch

arts

(S

ampl

es 3

,4,6

,8 R

emov

ed)

Th

e S

HE

WH

AR

T P

roce

dure

Mea

ns

and

Ran

ges

Ch

art

Su

mm

ary

for

ind

ex

3 S

igm

a L

imit

s w

ith

n=

4 fo

rM

ean

3 S

igm

a L

imit

s w

ith

n=

4 fo

rR

ange

sam

ple

Su

bgr

oup

Sam

ple

Siz

eL

ower

Lim

itS

ub

grou

pM

ean

Up

per

Lim

it

Sp

ecia

lT

ests

Sig

nal

edL

ower

Lim

itS

ub

grou

pR

ange

Up

per

Lim

it

Sp

ecia

lT

ests

Sig

nal

ed

14

223.

6130

522

3.25

000

243.

0119

51

013

.000

000

30.3

7981

1

24

223.

6130

523

6.25

000

243.

0119

50

19.0

0000

030

.379

811

54

223.

6130

523

5.75

000

243.

0119

50

13.0

0000

030

.379

811

74

223.

6130

524

0.25

000

243.

0119

50

5.00

0000

30.3

7981

1

94

223.

6130

524

1.50

000

243.

0119

55

019

.000

000

30.3

7981

1

104

223.

6130

522

9.00

000

243.

0119

50

18.0

0000

030

.379

811

114

223.

6130

522

6.50

000

243.

0119

50

14.0

0000

030

.379

811

124

223.

6130

523

3.75

000

243.

0119

50

16.0

0000

030

.379

811

134

223.

6130

522

4.25

000

243.

0119

55

09.

0000

0030

.379

811

144

223.

6130

522

5.75

000

243.

0119

56

010

.000

000

30.3

7981

1

154

223.

6130

522

9.50

000

243.

0119

50

16.0

0000

030

.379

811

164

223.

6130

523

6.25

000

243.

0119

50

9.00

0000

30.3

7981

1

174

223.

6130

524

7.75

000

243.

0119

51

07.

0000

0030

.379

811

184

223.

6130

523

9.75

000

243.

0119

50

17.0

0000

030

.379

811

194

223.

6130

523

1.50

000

243.

0119

50

22.0

0000

030

.379

811

204

223.

6130

523

2.00

000

243.

0119

50

6.00

0000

30.3

7981

1

XB

AR

an

d R

Ch

arts

(S

ampl

e 3

Rem

oved

)

Th

e S

HE

WH

AR

T P

roce

dure

XB

AR

an

d R

Ch

arts

(S

ampl

e 3

Rem

oved

)

Th

e S

HE

WH

AR

T P

roce

dure

Mea

ns

and

Ran

ges

Ch

art

Su

mm

ary

for

ind

ex

3 S

igm

a L

imit

s w

ith

n=

4 fo

rM

ean

3 S

igm

a L

imit

s w

ith

n=

4 fo

rR

ange

sam

ple

Su

bgr

oup

Sam

ple

Siz

eL

ower

Lim

itS

ub

grou

pM

ean

Up

per

Lim

it

Sp

ecia

lT

ests

Sig

nal

edL

ower

Lim

itS

ub

grou

pR

ange

Up

per

Lim

it

Sp

ecia

lT

ests

Sig

nal

ed

14

222.

6980

722

3.25

000

246.

9335

10

13.0

0000

037

.954

121

24

222.

6980

723

6.25

000

246.

9335

10

19.0

0000

037

.954

121

44

222.

6980

723

6.50

000

246.

9335

10

39.0

0000

037

.954

121

1

54

222.

6980

723

5.75

000

246.

9335

10

13.0

0000

037

.954

121

64

222.

6980

724

4.25

000

246.

9335

10

33.0

0000

037

.954

121

74

222.

6980

724

0.25

000

246.

9335

10

5.00

0000

37.9

5412

1

84

222.

6980

724

7.75

000

246.

9335

11

50

31.0

0000

037

.954

121

94

222.

6980

724

1.50

000

246.

9335

16

019

.000

000

37.9

5412

1

104

222.

6980

722

9.00

000

246.

9335

10

18.0

0000

037

.954

121

114

222.

6980

722

6.50

000

246.

9335

10

14.0

0000

037

.954

121

124

222.

6980

723

3.75

000

246.

9335

10

16.0

0000

037

.954

121

134

222.

6980

722

4.25

000

246.

9335

15

09.

0000

0037

.954

121

144

222.

6980

722

5.75

000

246.

9335

16

010

.000

000

37.9

5412

1

154

222.

6980

722

9.50

000

246.

9335

10

16.0

0000

037

.954

121

164

222.

6980

723

6.25

000

246.

9335

10

9.00

0000

37.9

5412

1

174

222.

6980

724

7.75

000

246.

9335

11

07.

0000

0037

.954

121

184

222.

6980

723

9.75

000

246.

9335

10

17.0

0000

037

.954

121

194

222.

6980

723

1.50

000

246.

9335

10

22.0

0000

037

.954

121

204

222.

6980

723

2.00

000

246.

9335

10

6.00

0000

37.9

5412

1

58

Page 15: Control Charts for Variables Distribution of the Sample Range · 6 Control Charts for Variables 6.1 Distribution of the Sample Range To generate R-charts and s-charts it is necessary

SAS Code for x and R charts for Example 2 assuming µ and σ are unknown

DM ’LOG; CLEAR; OUT; CLEAR;’;* ODS LISTING; * This is used if you want tables as text output;* ODS PRINTER PDF file=’C:\COURSES\ST528\SAS\xrchrt2.pdf’;OPTIONS NODATE NONUMBER LS=120 PS=120;

DATA in;INPUT sample day shift @@;DO item = 1 TO 4;

INPUT index @@; OUTPUT;END;

LINES;1 1 3 218 224 220 231 2 1 1 228 236 247 2343 1 4 280 228 228 221 4 2 3 210 249 241 2465 2 1 243 240 230 230 6 2 4 225 250 258 2447 3 2 240 238 240 243 8 3 1 244 248 265 2349 3 4 238 233 252 243 10 4 2 228 238 220 230

11 4 4 218 232 230 226 12 4 3 226 231 236 24213 5 1 224 221 230 222 14 5 4 230 220 227 22615 5 3 224 228 226 240 16 6 1 232 240 241 23217 6 4 243 250 248 250 18 6 3 247 238 244 23019 7 1 224 228 228 246 20 7 4 236 230 230 232;

TITLE ’XBAR and RANGE Charts (Unknown MU and SIGMA)’;SYMBOL1 V=DOT WIDTH=1;

PROC SHEWHART DATA=in;XRCHART index*sample=’1’ / NPANELPOS=20 ZONES ZONELABELS

TESTS = 1 TO 8 LTESTS = 2 TESTS2 = 1TABLETEST ALLN SPLIT = ’/’;

LABEL RESPONSE = ’MEAN/RANGE’;RUN;

SAS Code for x and s charts for Example 2 assuming µ and σ are unknown

DM ’LOG; CLEAR; OUT; CLEAR;’;* ODS LISTING; * This is used if you want tables as text output;* ODS PRINTER PDF file=’C:\COURSES\ST528\SAS\xschrt2.pdf’;OPTIONS NODATE NONUMBER;

DATA in;INPUT sample day shift @@;DO item = 1 TO 4;

INPUT index @@; OUTPUT;END;

LINES;(same data set as above)

;TITLE ’XBAR and S Charts (Unknown MU and SIGMA)’;SYMBOL1 V=DOT WIDTH=1;

PROC SHEWHART DATA=in;XSCHART index*sample=’1’ / NPANELPOS=20 ZONES ZONELABELS

TESTS = 1 TO 8 LTESTS = 2 TESTS2 = 1TABLETEST ALLN SPLIT = ’/’;

LABEL RESPONSE = ’MEAN/STANDARD DEVIATION’;RUN;

59

Page 16: Control Charts for Variables Distribution of the Sample Range · 6 Control Charts for Variables 6.1 Distribution of the Sample Range To generate R-charts and s-charts it is necessary

6.4 x and s-charts

• The x and R-charts work well when the sample sizes are constant and relatively small.

• For larger sample sizes, say n > 10, the sample range fails to account for much of the infor-mation provided by the sample when the n− 2 middle observations are ignored.

• Therefore, it is suggested that the x and s-charts be used when the sample size is greater than10. Note: some references say that if n > 5 or 6 then x- and s-charts should be used.

• It is important to note that E(s2) = σ2 but E(s) 6= σ.

• Therefore, there exists a value c4 for each sample size n such that µs = E(s) = c4σ where

c4 =

(2

n− 1

) 12

Γ

(n2

(n−12

) . This implies E

(s

c4

)= σ.

• It can also be shown that σs = σ√

1− c24. Values of c4 can be found in the table.

6.4.1 For Known µ and σ

• The control limits for the x-chart when both µ and σ are known can be computed using theformulas in (3).

• Motivation for the UCL and LCL:

– Recall that S is not an unbiased estimator of σ. But, for each n, there exists a constantc4 such that µS = E(s) = c4σ. Therefore, when plotting sample standard deviations, thecenterline should be at c4σ.

– Because σ2s = σ2(1 − c24), we get σs = σ

√1− c24. This is substituted to find the UCL

and LCL for the s chart.

• Given a known value of σ and sample size n, the control limits for the s-chart are:

UCL = µs + 3σs =

Centerline = µs = c4σ (7)

LCL = µs − 3σs =

Values of B5 and B6 are given in the table for various values of n.

• For each sample (i = 1, . . . ,m), compute xi =

∑nj=1 xij

nand si =

√∑nj=1(xij − xi)2n− 1

.

The value of si is then plotted against i on the s-chart. Use Rule 1 and the above controllimits to determine if the variability of the process characteristic in control.

60

Page 17: Control Charts for Variables Distribution of the Sample Range · 6 Control Charts for Variables 6.1 Distribution of the Sample Range To generate R-charts and s-charts it is necessary

XB

AR

AN

D S

CH

AR

TS

(K

NO

WN

MU

AN

D S

IGM

A)

Th

e S

HE

WH

AR

T P

roce

dure

Mea

ns

and

Sta

nd

ard

Dev

iati

ons

Ch

art

Su

mm

ary

for

resp

onse

3 S

igm

a L

imit

s w

ith

n=

4 fo

rM

ean

3 S

igm

a L

imit

s w

ith

n=

4 fo

rS

td D

ev

sam

ple

Su

bgr

oup

Sam

ple

Siz

eL

ower

Lim

itS

ub

grou

pM

ean

Up

per

Lim

it

Sp

ecia

lT

ests

Sig

nal

edL

ower

Lim

itS

ub

grou

pS

tdD

evU

pp

erL

imit

Sp

ecia

lT

ests

Sig

nal

ed

304

97.0

0000

099

.560

0010

3.00

000

02.

1563

395

4.17

5498

7

314

97.0

0000

099

.797

5010

3.00

000

00.

8025

117

4.17

5498

7

324

97.0

0000

010

1.61

750

103.

0000

00

3.15

3932

74.

1754

987

334

97.0

0000

010

0.43

750

103.

0000

00

2.81

0935

54.

1754

987

344

97.0

0000

099

.970

0010

3.00

000

00.

8915

530

4.17

5498

7

354

97.0

0000

099

.695

0010

3.00

000

03.

0378

556

4.17

5498

7

364

97.0

0000

010

0.96

000

103.

0000

00

2.49

4968

34.

1754

987

374

97.0

0000

010

0.57

250

103.

0000

00

2.27

7826

14.

1754

987

384

97.0

0000

098

.905

0010

3.00

000

01.

8342

755

4.17

5498

7

394

97.0

0000

099

.435

0010

3.00

000

02.

7693

621

4.17

5498

7

404

97.0

0000

097

.885

0010

3.00

000

03.

1018

328

4.17

5498

7

414

97.0

0000

010

0.98

500

103.

0000

00

1.62

7892

34.

1754

987

424

97.0

0000

098

.917

5010

3.00

000

02.

4388

436

4.17

5498

7

434

97.0

0000

099

.230

0010

3.00

000

00.

8711

295

4.17

5498

7

444

97.0

0000

010

1.70

000

103.

0000

00

2.25

3323

54.

1754

987

454

97.0

0000

098

.525

0010

3.00

000

00.

9660

055

4.17

5498

7

464

97.0

0000

098

.720

0010

3.00

000

00.

3823

611

4.17

5498

7

474

97.0

0000

010

0.29

000

103.

0000

00

1.25

0200

04.

1754

987

484

97.0

0000

010

0.24

000

103.

0000

00

1.89

0238

14.

1754

987

494

97.0

0000

098

.802

5010

3.00

000

04.

8650

617

4.17

5498

71

504

97.0

0000

010

0.83

750

103.

0000

00

2.37

3876

94.

1754

987

514

97.0

0000

010

0.05

000

103.

0000

00

2.37

5892

84.

1754

987

524

97.0

0000

099

.130

0010

3.00

000

00.

4327

432

4.17

5498

7

534

97.0

0000

099

.262

5010

3.00

000

01.

7126

661

4.17

5498

7

544

97.0

0000

099

.727

5010

3.00

000

01.

5154

840

4.17

5498

7

554

97.0

0000

010

0.92

000

103.

0000

00

0.35

4118

64.

1754

987

564

97.0

0000

010

0.17

250

103.

0000

00

2.15

6546

24.

1754

987

574

97.0

0000

010

0.07

750

103.

0000

00

1.40

9595

14.

1754

987

584

97.0

0000

099

.977

5010

3.00

000

00.

3439

356

4.17

5498

7

XB

AR

AN

D S

CH

AR

TS

(K

NO

WN

MU

AN

D S

IGM

A)

Th

e S

HE

WH

AR

T P

roce

dure

Mea

ns

and

Sta

nd

ard

Dev

iati

ons

Ch

art

Su

mm

ary

for

resp

onse

3 S

igm

a L

imit

s w

ith

n=

4 fo

rM

ean

3 S

igm

a L

imit

s w

ith

n=

4 fo

rS

td D

ev

sam

ple

Su

bgr

oup

Sam

ple

Siz

eL

ower

Lim

itS

ub

grou

pM

ean

Up

per

Lim

it

Sp

ecia

lT

ests

Sig

nal

edL

ower

Lim

itS

ub

grou

pS

tdD

evU

pp

erL

imit

Sp

ecia

lT

ests

Sig

nal

ed

14

97.0

0000

010

1.17

250

103.

0000

00

1.51

2445

64.

1754

987

24

97.0

0000

010

0.50

250

103.

0000

00

2.19

7367

74.

1754

987

34

97.0

0000

010

0.41

000

103.

0000

00

2.81

6380

74.

1754

987

44

97.0

0000

010

0.27

250

103.

0000

00

0.66

9396

54.

1754

987

54

97.0

0000

010

0.26

000

103.

0000

00

1.96

3890

74.

1754

987

64

97.0

0000

099

.847

5010

3.00

000

30

1.69

7692

14.

1754

987

74

97.0

0000

099

.272

5010

3.00

000

02.

2004

753

4.17

5498

7

84

97.0

0000

010

0.38

250

103.

0000

00

1.60

2672

24.

1754

987

94

97.0

0000

010

0.07

500

103.

0000

00

0.67

8552

44.

1754

987

104

97.0

0000

099

.345

0010

3.00

000

01.

6222

721

4.17

5498

7

114

97.0

0000

010

0.99

000

103.

0000

00

1.68

5051

94.

1754

987

124

97.0

0000

099

.395

0010

3.00

000

00.

9956

740

4.17

5498

7

134

97.0

0000

010

0.35

500

103.

0000

00

3.12

8796

44.

1754

987

144

97.0

0000

096

.492

5010

3.00

000

10

1.95

6721

34.

1754

987

154

97.0

0000

097

.830

0010

3.00

000

50

1.26

9146

74.

1754

987

164

97.0

0000

099

.567

5010

3.00

000

01.

9716

385

4.17

5498

7

174

97.0

0000

097

.580

0010

3.00

000

01.

2249

898

4.17

5498

7

184

97.0

0000

010

1.56

750

103.

0000

00

2.82

2379

34.

1754

987

194

97.0

0000

010

0.47

250

103.

0000

00

1.28

1025

04.

1754

987

204

97.0

0000

098

.387

5010

3.00

000

01.

0457

653

4.17

5498

7

214

97.0

0000

099

.600

0010

3.00

000

01.

3376

098

4.17

5498

7

224

97.0

0000

010

0.47

250

103.

0000

00

2.29

5072

64.

1754

987

234

97.0

0000

099

.672

5010

3.00

000

02.

4286

262

4.17

5498

7

244

97.0

0000

099

.512

5010

3.00

000

01.

1296

128

4.17

5498

7

254

97.0

0000

099

.467

5010

3.00

000

02.

4069

673

4.17

5498

7

264

97.0

0000

099

.487

5010

3.00

000

03.

8733

308

4.17

5498

7

274

97.0

0000

010

3.27

750

103.

0000

01

01.

9476

717

4.17

5498

7

284

97.0

0000

010

0.55

000

103.

0000

00

0.62

7056

64.

1754

987

294

97.0

0000

098

.745

0010

3.00

000

01.

3550

031

4.17

5498

7

61

Page 18: Control Charts for Variables Distribution of the Sample Range · 6 Control Charts for Variables 6.1 Distribution of the Sample Range To generate R-charts and s-charts it is necessary

XB

AR

AN

D S

CH

AR

TS

(K

NO

WN

MU

AN

D S

IGM

A)

Th

e S

HE

WH

AR

T P

roce

dure

Mea

ns

and

Sta

nd

ard

Dev

iati

ons

Ch

art

Su

mm

ary

for

resp

onse

3 S

igm

a L

imit

s w

ith

n=

4 fo

rM

ean

3 S

igm

a L

imit

s w

ith

n=

4 fo

rS

td D

ev

sam

ple

Su

bgr

oup

Sam

ple

Siz

eL

ower

Lim

itS

ub

grou

pM

ean

Up

per

Lim

it

Sp

ecia

lT

ests

Sig

nal

edL

ower

Lim

itS

ub

grou

pS

tdD

evU

pp

erL

imit

Sp

ecia

lT

ests

Sig

nal

ed

594

97.0

0000

098

.842

5010

3.00

000

02.

0537

993

4.17

5498

7

604

97.0

0000

010

0.07

250

103.

0000

00

0.94

5458

44.

1754

987

614

97.0

0000

010

0.57

750

103.

0000

00

1.82

9706

34.

1754

987

624

97.0

0000

010

0.21

500

103.

0000

00

0.99

9783

34.

1754

987

634

97.0

0000

010

2.05

500

103.

0000

00

3.14

3400

54.

1754

987

644

97.0

0000

010

2.48

250

103.

0000

05

00.

8268

968

4.17

5498

7

654

97.0

0000

099

.035

0010

3.00

000

01.

0449

083

4.17

5498

7

664

97.0

0000

099

.835

0010

3.00

000

02.

1992

347

4.17

5498

7

674

97.0

0000

099

.785

0010

3.00

000

02.

9149

557

4.17

5498

7

684

97.0

0000

098

.610

0010

3.00

000

01.

4900

559

4.17

5498

7

694

97.0

0000

010

0.36

000

103.

0000

00

2.12

1288

94.

1754

987

704

97.0

0000

099

.420

0010

3.00

000

02.

0824

665

4.17

5498

7

714

97.0

0000

099

.715

0010

3.00

000

00.

9186

403

4.17

5498

7

724

97.0

0000

099

.287

5010

3.00

000

01.

6470

453

4.17

5498

7

734

97.0

0000

099

.095

0010

3.00

000

01.

6290

386

4.17

5498

7

744

97.0

0000

099

.787

5010

3.00

000

01.

7620

892

4.17

5498

7

754

97.0

0000

099

.865

0010

3.00

000

00.

6471

218

4.17

5498

7

764

97.0

0000

099

.877

5010

3.00

000

02.

4889

271

4.17

5498

7

774

97.0

0000

098

.995

0010

3.00

000

00.

6988

324

4.17

5498

7

784

97.0

0000

010

0.15

250

103.

0000

00

0.95

1573

34.

1754

987

794

97.0

0000

010

0.94

750

103.

0000

00

0.76

5914

54.

1754

987

804

97.0

0000

010

1.43

500

103.

0000

00

1.36

0747

34.

1754

987

814

97.0

0000

010

1.12

250

103.

0000

00

1.87

3630

64.

1754

987

824

97.0

0000

010

1.35

000

103.

0000

00

0.88

0870

84.

1754

987

834

97.0

0000

010

0.06

250

103.

0000

00

0.70

3532

84.

1754

987

844

97.0

0000

010

0.49

250

103.

0000

00

1.71

3755

64.

1754

987

854

97.0

0000

010

2.14

250

103.

0000

00

1.74

9025

94.

1754

987

864

97.0

0000

010

1.11

750

103.

0000

02

01.

9525

432

4.17

5498

7

874

97.0

0000

099

.277

5010

3.00

000

00.

6153

251

4.17

5498

7

XB

AR

AN

D S

CH

AR

TS

(K

NO

WN

MU

AN

D S

IGM

A)

Th

e S

HE

WH

AR

T P

roce

dure

Mea

ns

and

Sta

nd

ard

Dev

iati

ons

Ch

art

Su

mm

ary

for

resp

onse

3 S

igm

a L

imit

s w

ith

n=

4 fo

rM

ean

3 S

igm

a L

imit

s w

ith

n=

4 fo

rS

td D

ev

sam

ple

Su

bgr

oup

Sam

ple

Siz

eL

ower

Lim

itS

ub

grou

pM

ean

Up

per

Lim

it

Sp

ecia

lT

ests

Sig

nal

edL

ower

Lim

itS

ub

grou

pS

tdD

evU

pp

erL

imit

Sp

ecia

lT

ests

Sig

nal

ed

884

97.0

0000

010

2.36

000

103.

0000

00

1.07

5019

44.

1754

987

894

97.0

0000

099

.910

0010

3.00

000

01.

2648

320

4.17

5498

7

904

97.0

0000

099

.985

0010

3.00

000

01.

8558

466

4.17

5498

7

914

97.0

0000

098

.672

5010

3.00

000

03.

9788

221

4.17

5498

7

924

97.0

0000

099

.952

5010

3.00

000

02.

4697

689

4.17

5498

7

934

97.0

0000

099

.620

0010

3.00

000

01.

6033

091

4.17

5498

7

944

97.0

0000

099

.980

0010

3.00

000

02.

2692

583

4.17

5498

7

954

97.0

0000

099

.632

5010

3.00

000

00.

9836

115

4.17

5498

7

964

97.0

0000

010

1.63

500

103.

0000

00

2.87

9751

14.

1754

987

974

97.0

0000

099

.455

0010

3.00

000

01.

4932

403

4.17

5498

7

984

97.0

0000

099

.722

5010

3.00

000

00.

9691

706

4.17

5498

7

994

97.0

0000

098

.422

5010

3.00

000

40

3.43

6639

64.

1754

987

100

497

.000

000

99.2

6750

103.

0000

00

0.71

4207

04.

1754

987

XBAR AND S CHARTS (KNOWN MU AND SIGMA)

The SHEWHART Procedure

62

Page 19: Control Charts for Variables Distribution of the Sample Range · 6 Control Charts for Variables 6.1 Distribution of the Sample Range To generate R-charts and s-charts it is necessary

6.4.2 For Unknown µ and σ

• When both µ and σ are unknown, estimates of these parameters must be computed based onm preliminary samples. Let:

x =

∑mi=1 xim

be the mean of the sample means and

s =

∑mi=1 sim

be the mean of the sample standard deviations.

• Therefore, the estimator of µ is x.

• Because E(s) = E(si) for each i, we have E(s) = c4σ. It follows that E

(s

c4

)= σ.

Thus, an unbiased estimator of σ is σ̂ =s

c4and, σ̂s = σ̂

√1− c24 =

s

c4

√1− c24.

• The trial control limits for the x-chart are:

UCL = µ̂+ 3σ̂√n

=

Centerline = µ̂ = x (8)

LCL = µ̂− 3σ̂√n

=

• The trial control limits for the s-chart are:

UCL = µ̂s + 3σ̂s =

Centerline = µ̂s = s (9)

LCL = µ̂s + 3σ̂s =

where B3 and B4 can be found in the table.

• These trial control limits must be tested in the same fashion as the trial control limits for thex- and R-charts were tested.

• That is, plot the si values on the s-chart analogously to the way the Ri values are plotted onthe R-chart.

• Once acceptable control limits have been found for both charts, proceed with process controlanalysis.

63

Page 20: Control Charts for Variables Distribution of the Sample Range · 6 Control Charts for Variables 6.1 Distribution of the Sample Range To generate R-charts and s-charts it is necessary

XBAR and S Charts (Unknown MU and SIGMA)

The SHEWHART Procedure

XBAR and S Charts (Unknown MU and SIGMA)

The SHEWHART Procedure

XBAR and S Charts (Unknown MU and SIGMA)

The SHEWHART Procedure

Means and Standard Deviations Chart Summary for index

3 Sigma Limits with n=4 forMean

3 Sigma Limits with n=4 forStd Dev

sample

SubgroupSample

SizeLower

LimitSubgroup

MeanUpper

Limit

SpecialTests

SignaledLower

LimitSubgroup

Std DevUpper

Limit

SpecialTests

Signaled

1 4 221.43037 223.25000 248.64463 0 5.737305 18.938856

2 4 221.43037 236.25000 248.64463 0 7.932003 18.938856

3 4 221.43037 239.25000 248.64463 0 27.366342 18.938856 1

4 4 221.43037 236.50000 248.64463 0 17.972201 18.938856

5 4 221.43037 235.75000 248.64463 0 6.751543 18.938856

6 4 221.43037 244.25000 248.64463 0 14.056434 18.938856

7 4 221.43037 240.25000 248.64463 0 2.061553 18.938856

8 4 221.43037 247.75000 248.64463 5 0 12.919623 18.938856

9 4 221.43037 241.50000 248.64463 6 0 8.103497 18.938856

10 4 221.43037 229.00000 248.64463 0 7.393691 18.938856

11 4 221.43037 226.50000 248.64463 0 6.191392 18.938856

12 4 221.43037 233.75000 248.64463 0 6.849574 18.938856

13 4 221.43037 224.25000 248.64463 0 4.031129 18.938856

14 4 221.43037 225.75000 248.64463 56 0 4.193249 18.938856

15 4 221.43037 229.50000 248.64463 0 7.187953 18.938856

16 4 221.43037 236.25000 248.64463 0 4.924429 18.938856

17 4 221.43037 247.75000 248.64463 0 3.304038 18.938856

18 4 221.43037 239.75000 248.64463 0 7.500000 18.938856

19 4 221.43037 231.50000 248.64463 0 9.848858 18.938856

20 4 221.43037 232.00000 248.64463 0 2.828427 18.938856

64