numericna analiza

Upload: juredenk

Post on 08-Jul-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/19/2019 Numericna analiza

    1/412

  • 8/19/2019 Numericna analiza

    2/412

  • 8/19/2019 Numericna analiza

    3/412

  • 8/19/2019 Numericna analiza

    4/412

  • 8/19/2019 Numericna analiza

    5/412

  • 8/19/2019 Numericna analiza

    6/412

  • 8/19/2019 Numericna analiza

    7/412

  • 8/19/2019 Numericna analiza

    8/412

  • 8/19/2019 Numericna analiza

    9/412

  • 8/19/2019 Numericna analiza

    10/412

  • 8/19/2019 Numericna analiza

    11/412

  • 8/19/2019 Numericna analiza

    12/412

  • 8/19/2019 Numericna analiza

    13/412

    f ∈ X

    f ∞ := f ∞,[a,b ] := supa≤x≤b |f (x)|

    f ∞ := f ∞,xxx := max1≤i≤N |f (x i )|, xxx = ( x i)N i=1 .

    f

    X

    , f, g := ba f (x)g(x)ρ(x)dx, f, g ∈L 2ρ([a, b]), ρ > 0,

    f, g :=N

    i=1

    f (x i )g(x i)ρ(x i ), ρ(x i ) > 0,

    f, g + g, f = 2 f, g = 2 g, f α∈

    R

    αf,g = f,αg = α f, g .

    f := f 2 := f, f = b

    af (x)2ρ(x)dx,

    f := f 2,xxx := f, f = N

    i=1f (x i )2ρ(x i)

    ̃f

    ≈f

    ∈X

    X f̃ S ⊂X S X

    C ([a, b]) S

  • 8/19/2019 Numericna analiza

    14/412

    • P n { ≤n } • T n {

    ≤n } • R n,m { ≤n

    ≤m

    }

    • S 1,xxx { xxx = ( x i ) }

    • S k,xxx { ≤k xxx = ( x i )

    k −1 }• P k,xxx,ν ν ν { ≤k

    xxx = ( x i ) ν ν ν = ( ν i )

    }

    ̃f ∈ S f f ∈ X

    f − f̃ = inf s∈S f −s =: dist ( f, S ) .

    f S f − f̃ f S

    dist ∞ (f, S ) ̃f

    f ∈ X f ∈X

    λ i : X → R f

    • f xi λi f := f (x i )

    • r f x

    i

    λ i f := f ( )(x i ) = 0 , 1, . . . , r −1 • f λif :=

    1β i −α i β iα i f (x)dx

    • f λi f := ba f (x)s i (x)dx si • λif := N j =1 f (x j )s i (x j ) ̃f ∈ S S

    ̃

    f ∈ S

    λi ̃f f

    λ i f̃ = λ i f, za vse i.

  • 8/19/2019 Numericna analiza

    15/412

    ̃f f f ∈ X

    f 1 ≤ c < ∞

    ̃f

    ∈S f

    ∈X

    f − f̃ ≤c dist ( f, S ) f

    S n S = S n

    (S n ) n

    f̃ f

    ̃f ∈S S L( )

    ≤n P n = L x i

    ni=0 ,

    P n = L({ i}ni=0 ), i (x) :=n

    j =0 j = i

    x −x jx i −x j

    , x0 < x 1 < · · ·< x n ,

    i (x j ) = δ i,j

    P n = L({(x −x0)(x −x1) · · ·(x −x i−1)}ni=0 ), x0 ≤x1 ≤ · · · ≤xn .

    x 0 x 1 x 2 x 3 x 4

    x

    1

    x 0 x 1 x 2 x 3 x 4

    x

    1

    n = 4

  • 8/19/2019 Numericna analiza

    16/412

    δ i,j i j 0 T n

    a0 +n

    k=1

    (ak coskx + bk sin kx) .

    S 1,xxx

    x0 < x 1 < · · ·< x n

    1, (x −x i)+ , i = 0 , 1, . . . , n −1. n∈

    N

    zn+ := max ( z, 0)n

    . 0

    z0+ := 0, z < 0,1, z > 0,

    z = 0

    S 1,xxx

    H i (x) :=

    x

    −x i

    −1

    x i −x i−1 , xi−1 < x < x i , 0 < i,1, x = xi ,x i+1 −xx i+1 −x i

    , xi < x < x i+1 , i < n,

    0, sicer,

    , i = 0 , 1, . . . , n ,

    x 1 x 2 x 3 x 4

    x

    1

    x 1 x 2 x 3 x 4

    x

    1

  • 8/19/2019 Numericna analiza

    17/412

    H i supp H i H i [x i−1, x i+1 ]

    f ∈ S sss := ( s i) S ααα := ( α i ) f = i α is i δf = i δα i s i δαδαδα := ( δα i )

    S

    f =i

    α i s i , f + δf =i

    (α i + δα i )s i

    c = c(sss)

    δf f ≤ c(sss)

    δαδαδαααα

    δf f

    = δf δαδαδα ·

    αααf ·

    δαδαδαααα

    c(sss) = M m

    ,

    M := supδαδαδα =0

    δf δαδαδα

    = supδαδαδα =0

    i δα is iδαδαδα

    = supδαδαδα =1 i

    δα is i ,

    m := inf ααα =0

    f ααα

    = inf ααα =1

    iα i s i .

    c(sss) ≥ 1

    = ∞ M = sup

    ααα ∞ =1 iα iH i ∞ ≤ supααα ∞ =1 i |

    α i|H i ∞ ≤i

    H i ∞ = 1 ,

    i H i [x i−1, x i]

    m = inf ααα ∞ =1 i

    α iH i∞ ≥

    inf ααα ∞ =1

    max j | i

    α iH i (x j )

    |=

    = inf ααα ∞ =1

    max j |

    iα i δ i,j | = inf ααα ∞ =1 max j |α j | = 1 .

  • 8/19/2019 Numericna analiza

    18/412

  • 8/19/2019 Numericna analiza

    19/412

    n

    Bn p2(x) =n

    i=0

    in

    2 ni

    x i (1 −x)n−i =n

    i=1

    in

    2 ni

    x i (1 −x)n−i =

    =n

    i=1

    in

    (n −1)!(i −1)! (n −i)!

    x i (1 −x)n−i =

    = xn−1

    i=0

    i + 1n

    n −1i

    x i (1 −x)n−1−i =

    = xn

    ((n −1) Bn−1 p1(x) + Bn−1 p0(x)) =

    =

    n

    −1

    n x2

    +

    1

    n x = x2

    +

    1

    n x(1 −x) = x2

    + O1

    n .

    Bn f f x∈[0, 1]

    f (x) = 1 · f (x) 1 Bn p0

    |f (x) −Bn f (x)| =n

    i=0f (x) − f

    in

    ni

    x i (1 −x)n−i ≤

    n

    i=0f (x)

    − f

    i

    n

    n

    ix i (1

    −x)n−i .

    i in x f

    I 1 := i | 0 ≤ i ≤n,in −x <

    14√ n , I 2 := {0, 1, . . . , n }\I 1.

    i∈ I 1

    i∈I 1f (x)

    − f

    i

    n

    n

    ix i (1

    −x)n−i

    ≤≤ω f ;

    14√ n

    i∈I 1ni

    x i (1 −x)n−i ≤

    ≤ω f ; 1

    4√ n n

    i=0

    ni

    x i (1 −x)n−i = ω f ; 14√ n .

    ω (f ; h) [a, b]

    ω (f ; h) := max|x−y|≤hx, y ∈[a, b]

    |f (x) −f (y)|,

  • 8/19/2019 Numericna analiza

    20/412

    Ω x ;h

    Ω x;h

    Ω x;h

    0.002 0.004 0.006 0.008 0.010h

    0.02

    0.04

    0.06

    0.08

    0.10

    ω (√ x; h) ω(ex ; h) ω (x; h) [0, 1] h

    h ↓0 i∈ I 2

    in −x ≥

    14√ n =⇒

    (i − nx)2n√ n ≥ 1,

    i∈I 2f (x) − f

    in

    ni

    x i (1 −x)n−i ≤

    ≤2 f ∞i∈I 2

    ni

    x i (1 −x)n−i ≤

    ≤2 f ∞i∈I 2

    (i − nx)2n√ n

    ni

    x i (1 −x)n−i ≤

    ≤2 f ∞√ nn

    i=0

    in

    2

    −2x in + x2 n

    ix i (1 −x)n−i =

    = 2 f ∞√ nn −1

    n x2 +

    1n

    x −2x2 + x2 == 2 f ∞

    x(1 −x)√ n ≤ 12√ n f ∞.

    f −Bn f ∞ ≤ω f ; 14√ n + 12√ n f ∞

  • 8/19/2019 Numericna analiza

    21/412

    n f (x) = sin5 x f (x) = |4x −2| −1

    [0, 1] c nα α

    f −Bn f ∞ ≈ max0≤i≤N |f (x i ) −Bn f (x i )| =: en = c nα + O (nα ) .

    α n, m = n + 2

    α ≈ln enem

    ln nm .

    O 1n O 1√ n

    0.2 0.4 0.6 0.8 1.0 x

    1.0

    0.5

    0.5

    1.0

    0.2 0.4 0.6 0.8 1.0 x

    1.0

    0.5

    0.5

    1.0

    f (x) = sin5 x f (x) = |4x −2| −1

    f ∈C 2([a, b]) f −Bn f ∞ = O

    1n2

    .

  • 8/19/2019 Numericna analiza

    22/412

    n α

    n α

    x = cos θ

    T n = a0 +n

    k=1

    (ak coskθ + bk sin kθ) .

    Bn : C ([0, 1]) →P n •

    • f ≥0 =⇒Bn f ≥0 • Bn 1 = 1 , Bn x = x, Bn x2 →x2 n → ∞

    C ([a, b])

    (Ln ) Ln : C ([a, b]) →C ([a, b])

    f

    −Ln f ∞

    →0, n

    → ∞,

    f = p0 p1 p2 pi (x) := xi f ∈C ([a, b]) Ln f ≥ g f −g ≥0 Ln (f −g) ≥0 Ln f ≥Ln g

    Ln |f | ≥ |Ln f |,

    |f | ≥f, |f | ≥ −f, L n |f | ≥Ln f, L n |f | ≥ −Ln f.

    ∆ n pi := Ln pi − pi , i = 0 , 1, 2, 0 n

    f ∈C ([a, b]) ε > 0 f

  • 8/19/2019 Numericna analiza

    23/412

    [a, b] ε > 0 δ > 0

    |x −y| < δ =⇒ |f (x) −f (y)| < ε, x, y ∈[a, b]. ε > 0 δ

    c := 2f ∞δ 2

    .

    x, y ∈[a, b], |x −y| ≥δ |f (x) −f (y)| ≤2 f ∞ ≤2 f ∞

    x −yδ

    2

    = c (x −y)2 . x, y ∈[a, b]

    |f (x) −f (y)| ≤ε + c(x −y)2. y x ∈ [a, b]

    f pi

    |f −f (y) p0| ≤ε p0 + c p2 −2yp1 + y2 p0 .

    |Ln f −f (y)Ln p0| ≤Ln |f −f (y) p0| ≤≤εLn p0 + c(Ln p2 −2yLn p1 + y2Ln p0).

    x∈[a, b] x = y

    |Ln f (y) −f (y)Ln p0(y)| ≤≤ εLn p0(y) + c Ln p2(y) −2yLn p1(y) + y2Ln p0(y) == ε (1 + ∆ n p0(y)) +

    + c ∆ n p2(y) + y2 −2y (y + ∆ n p1(y)) + y2(1 + ∆ n p0(y) == ε (1 + ∆ n p0(y)) + c ∆ n p2(y) −2y∆ n p1(y) + y2∆ n p0(y) ≤≤ ε (1 + ∆ n p0 ∞) + c ( ∆ n p2 ∞ + 2 p1 ∞ ∆ n p1 ∞ + p2 ∞ ∆ n p0 ∞) .

    ∆ n pi ∞ →0 n Ln f −fL n p0 ∞ ≤2ε

    Ln f −f ∞ ≤ Ln f −fL n p0 ∞ + fL n p0 −fp 0 ∞ ≤2ε + f ∞ ∆ n p0 ∞. n f ∞ ∆ n p0 ∞ < ε,

    Ln f −f ∞ < 3 ε. Bn

    S 1,xxx xxx = ( x i )ni=0

    a := x0 < x 1 < · · ·< x n =: b.

  • 8/19/2019 Numericna analiza

    24/412

    ∆ x i := xi+1 −x i > 0

    ∆ x := max0≤i≤n−1 ∆ x i . n

    I 1,xxx : C ([0, 1]) →S 1,xxx : f →n

    i=0

    f (x i)H i ,

    H i I 1,xxx H i I 1,xxx

    x ∈ [a, b]

    i

    x i ≤ x ≤ xi+1 I 1,xxx f f x i xi+1 f I 1,xxx f

    I 1,xxx p2 − p2, p2(x) := x2 i x i ≤x ≤x i+1 H i H i+1

    |I 1,xxx p2(x) − p2(x)| = x2i H i (x) + x2i+1 H i+1 (x) −x2 == x

    2i

    x i+1

    −x

    ∆ x i + x2i+1

    x

    −x i

    ∆ x i −x2

    =

    =1

    ∆ x ix2i x i+1 −x2i+1 x i + x(x2i+1 −x2i ) −x2 =

    = −x2 + x(x i + x i+1 ) −x i x i+1 == ( x −x i)(x i+1 −x) ≤≤ (

    x i + x i+12 −x i)(x i+1 −

    xi + x i+12

    ) = ∆ x2i

    4 ≤ ∆ x2

    4 .

    i

    ∆ x (S 1,xxx )∆ x→0

    C ([0, 1]) H i

    S

    bn,i (x) :=n

    ix i (1

    −x)n−i .

    [0, 1] n → ∞

  • 8/19/2019 Numericna analiza

    25/412

    bn,i (bn,i )ni=0 P n [0, 1]

    k Bn f f

    f [0, 1] c > 0

    |f (x) −f (y)| ≤c|x −y|, x, y ∈[0, 1].

    |f (x) −Bn f (x)| ≤ c2√ n , x∈[0, 1],

    Bn f ≤n

    Bn f ≥g Bn f ≥Bn g f ∈ C 1([0, 1]) (Bn f )

    f n → ∞

    f −Bn f ∞ f (x) = √ x, x√ x, x 2√ x

    f

    f −Bn f ∞ = O 1n2

    .

    f ∈ C ([a, b])

    f c =⇒ ω(f ; h) ≤c h f =⇒ ω(f ; h) ≤ f ∞h lim

    h↓0ω (f ; h) = 0

    h < k =⇒ω (f ; h) ≤ω (f ; k)

    ω (f ; h + k) ≤ω (f ; h) + ω (f ; k) ω(f, h ) = O (h) f

    f (x) := √ xα 0 ≤ α ≤ 1 f ∈ C ([0, 1]) ω (f ; h) h

    f [0, 1]

    Bn f ≥Bn +1 f.

  • 8/19/2019 Numericna analiza

    26/412

    Bn f (0, 1) f (0, 1)

    P (u) = nk=0 bkuk (0, ∞) (bk )n

    k=0

    f ∈ C ([0, 1]) n ∈ N I 1f

    f (0) , f 1n

    , . . . , f n −1

    n, f (1) .

    p∈P 1 Bn f

    [0, 1] I 1f

    f

    ∈ C ([0, 1]) n

    ∈ N

    Bn f [0, 1] in

    , f in

    , i = 0 , 1, . . . , n .

  • 8/19/2019 Numericna analiza

    27/412

    X

    S ⊂ X f ∈ X S f ∗ ∈S

    f −f ∗ ≤f −s , za vsak s∈S.

    f ∗

    X = R 3, S = R 2 (f 1, f 2, f 3) 2 = f 21 + f 22 + f 23 .

    f ∗ f R 2 f −f ∗

    R 2

    f f f

    f

    R2

    R3

    R 3

    R 2

    X xxx = ( x i)N i=1 f, g = N i=1 f (x i )g(x i) 2 S P 1 f ∗ ∈ P 1 f ∈ X

    f −f ∗22 =N

    i=1(f (x i ) −f ∗(x i)) 2 .

    f ∗ f

  • 8/19/2019 Numericna analiza

    28/412

    x 0 x 1 x 2 x 3 x 4 x 5 x 6 x 7

    x

    X = L 2 ([a, b]) S = P n p∗

    b

    a

    (f (x)

    − p∗(x)) 2 dx

    ≤ b

    a

    (f (x)

    − p(x))2 dx, p

    P n ,

    f

    X = C ([a, b]) ∞ p∗

    maxa≤x≤b |f (x) − p∗(x)| ≤ maxa≤x≤b |f (x) − p(x)|,

    p∈P n ,

    f

    n = 5

    f (x) = ex [−1, 1]

    f − p∗2 = 0 .0000391087, f − p∗∞ = 0 .000107613,

    f − p∗2 = 0 .0000450258, f − p∗∞ = 0 .0000454396.

    2 0.0000391087 < 0.0000450258

  • 8/19/2019 Numericna analiza

    29/412

    1.0 0.5 0.5 1.0 x

    0.00004

    0.00002

    0.00002

    0.000040.00006

    0.00008

    0.0001

    napaka

    ex [−1, 1]

    S

    X S ⊂ X f ∈ X f ∗

    ∈S

    f ∈X K := K (f ; f ) f f inf s∈S

    f −s ≤ f −0 = f , f 0∈S

    s ∈ S K E := S ∩K E S

    g(s) := f −s S

    |g(s + h) −g(s)| = | f −(s + h) −f −s | ≤ h . g E S

    f ∗ ∈S f −f ∗ = inf s∈ S f −s = dist( f, S ).

  • 8/19/2019 Numericna analiza

    30/412

    X K ⊂ X u, v ∈K

    λu + (1 −λ)v , λ∈[0, 1], K K

    K

    X ε > 0 δ > 0 f, g ∈X f = g = 1

    12

    (f + g) > 1 −δ =⇒ f −g < ε.

    X

    f + g 2 + f −g 2 = 2( f 2 + g 2), f, g ∈X. f,g, f = g = 1 δ > 0

    12 (f + g) > 1 −δ

    f −g 2 = 4 −4 12 (f + g)2

    ≤ 4 1 −(1 −δ )2= 4 1 −1 + 2 δ −δ 2 < 8δ.

    ε > 0 δ = δ (ε) = 18 ε2

    S ⊂X X f ∈ X

    f ∗

    ∈S

    f −f ∗ = inf s∈ S f −s .

    f ∈X f ∗ ∈S S := S −f S f ∈ X

    f ∗

    d := inf s∈S

    s .

    d = 0 S (sn ) , s n ∈S

    0 = limn→∞

    sn = limn→∞sn ,

  • 8/19/2019 Numericna analiza

    31/412

    limn→∞

    sn = 0 =⇒0∈S ,

    S f

    f ∗ = f d > 0 d S := 1d S ,

    inf s∈S

    s = 1 , s ≥1, s∈S .

    (sn ) , sn ∈S , limn→∞sn = 1 . ε > 0 δ

    s̃n := 1

    snsn .

    sn −s̃n = sn − 1sn

    sn = 1 − 1sn sn →0, ko n → ∞,

    n0 n ≥n0 sn −s̃n < δ m, n ≥n0 S 12 (sm + sn )∈

    S

    12 (sm + sn )

    ≥ 1

    12

    (s̃m + s̃n ) = 1

    2 (sm + sn ) −(sm −s̃m ) −(sn −s̃n )

    ≥ 1

    2sm + sn −

    12

    sm −s̃m − 12

    sn −s̃n> 1−

    12

    δ − 12

    δ = 1 −δ. s̃m −s̃n < ε (s̃n )

    X

    s̃ = limn→∞s̃n , s̃∈X.

    sn −s̃ ≤sn −s̃n + s̃n −s̃ →0, ko n → ∞. s̃ (sn ) S s̃ ∈ S

    S X f ∈X f ∗ ∈S

    S X

  • 8/19/2019 Numericna analiza

    32/412

    S ⊂ X f ∗ ∈ S f̃ ∈ S f ∈X

    f ∗−f = f̃ −f ≤s −f , s∈S. λ 0 ≤λ ≤1 λf ∗ + (1 −λ) f̃ f ∗

    (λf ∗ + (1 −λ) f̃ ) −f = λ(f ∗−f ) + (1 −λ)( f̃ −f ) ≤≤ λ f ∗−f + (1 −λ) f̃ −f = f ∗−f .

    λf ∗ + (1 −λ) f̃ f

    X f, g ∈X, g = 0

    f + g = f + g , f = λ g λ

    X S ⊂X S f ∈X

    f ∗ ∈S f̃ ∈S f ∈S f −f ∗= f − f̃ ≤ f −s , s∈S.

    f ∈S f 0 = f −f = f −f ∗= f − f̃

    f = f ∗

    = f̃ f /∈ S

    12 f ∗ + f̃

    12 (f −f ∗) 12 f − f̃

    f −f ∗ = f − 12

    f ∗ + f̃ =12

    f −f ∗ + 12

    f − f̃ ≤

    ≤12

    f −f ∗ +12

    f − f̃ = f −f ∗. X λ

    12

    f −f ∗ = λ2

    f − f̃ .

  • 8/19/2019 Numericna analiza

    33/412

    λ = 1 λ = 1

    f = 11 −λ

    f ∗− λ1 −λ

    f̃ ∈S. f /

    S

    x, y = x1y1 + x2y2 x, y = 0 .8x1y1 + 1 .3x2y2 x, y = 1 .2x1y1 + 0 .9x2y2 x ∞ ≤ 1

    x 1 ≤ 1

    1 1

    1

    1

    1 1

    1

    1

    R 2

    ∞ C ([0, 1])

    f (x) := 32 x, 0 ≤x < 13 ,12 ,

    13 ≤x ≤1,

    g(x) := f (1 −x) f + g ∞ = max0≤x≤1 |f (x) + g(x)| = max13 ≤x≤23 |

    f (x) + g(x)| = 1 = f ∞ + g ∞, f g

    X

  • 8/19/2019 Numericna analiza

    34/412

    S

    X = R 2 ∞ f = 12 , 1

    S = {α (1, 0) |α∈R }.

    mins∈ S

    f −s = minα∈R max12 −α , |1 −0|

    = min

    |12

    −α

    |≤1

    max12 −α , 1 = 1

    S

    f

    f

    1 1

    1

    1S

    f f

    1 1

    1

    1

    {12 , 1}

    dist( f, S ) = 1

    α(1, 0)

    12 −α ≤ 1

    f

    S = {α (1, 1) |α∈R }.

    mins∈ S

    f −s = minα∈R max12 −α , |1 −α |

    = minα∈R34 −α +

    14 =

    14

    34 (1, 1) f

  • 8/19/2019 Numericna analiza

    35/412

    X S ⊂ X f ∈X S

    (sk )k∈

    N , sk

    ∈S,

    f ∈X lim

    k→∞f −sk = inf s∈S f −s .

    (sk )k∈N f ∈ X s∗ ∈ S

    s∗ f ∈ X S

    X S ⊂ X f

    ∈X f ∗

    ∈S

    S ⊂ X X f ∈X

    f ∗ ∈S

    R n 1

    X = R 3

    f = (1 , 3, 2)∈X

    L({(1, 0, 0), (0, 1, 0)})

    X

    X 0

    X = xxx = ( x1, x2, . . . ) | limn→∞xn = 0 , xxx ∞ = maxn∈N |xn |.

    A = xxx∈X |∞

    n =12−

    nxn = 0

    X

    xxx∈X \ A xxx∈A

  • 8/19/2019 Numericna analiza

    36/412

    ∞ f ∈ X = C ([a, b])

    S ⊂ C ([a, b])

    f ∈ C ([a, b]) f ∗ ∈ S C ([a, b])

    S

    S S = P n S

    X = C ([a, b]) S = P n f ∈ C ([a, b]) p∗ ∈P n p∗

    E ⊂[a, b] E

    E ⊂ [a, b]

    f

    E

    f ∞,E = maxx∈E |f (x)| f

    E P n

    M n (E ; f ) := min p∈

    P nf − p ∞,E = min p∈P n maxx∈E |f (x) − p(x)| =: dist ∞,E (f,

    P n ) .

    p∗ ∈P n f

    r := f

    − p∗

    n + 1

    E = {x i |a ≤x0 < x 1 < .. . < x n ≤b}.

    p∗ =n

    i=0f (x i ) i ,

    ( i)ni=0

    P n

    p∗(x j ) =n

    i=0f (x i ) i (x j ) =

    n

    i=0f (x i )δ i,j = f (x j ), j = 0 , 1, . . . , n .

  • 8/19/2019 Numericna analiza

    37/412

    p∗ f E M n (E ; f ) = 0 p∗, ˜ p ∈ P n

    f xi ˜ p(x i) = f (x i) = p∗(x i) i = 0 , 1, . . . , n ˜ p(x i ) − p∗(x i ) = 0 i = 0 , 1, . . . , n ˜ p − p∗ n n + 1 ˜ p = p∗ p∗

    E

    E = {x i |a ≤x0 < x 1 < . . . < x n < x n +1 ≤b},

    f (x) = ex n = 1

    E = {a = x0 = 0 , x1 = 12

    , b = x2 = 1} α β

    M 1(E ; f )

    r(x) = f (x) − (αx + β )

    0.2 0.4 0.6 0.8 1.0 x

    0.4

    0.2

    0.2

    0.4

    residual

    r (x) = ex −(αx + β ) α ∈ (−∞, 1] α∈[1, e] α∈[e, ∞) α ≤ 1 α ≥ e

    β

    r (0) = −r (1) , β = 12

    (−α + e + 1) . β α ≤1 r r (0) =

    12

    (1 + α −e) ≤1 − 12

    e < 0

  • 8/19/2019 Numericna analiza

    38/412

    (α, β ) = 1, 12 e α ≥e r (α, β ) = e, 12

    r (0) = 12 1 < α < e r (0) α β α max |r ( 12 )|, |r (1) |

    α

    r12

    = −r (1) , α = 23 −2β + e + √ e .

    α max( |r (0) |, |r (1)|) |r ( 12 )| = |r (1) | β

    β = 14

    3 + 2√ e −e α = e −1. r α β

    r (0) = −r12

    = r (1) = 14

    √ e −12 .

    E M n (E ; f )

    r = f − p p ∈ P n x∈E m := max

    x∈E |f (x)

    − p(x)

    |= max

    0≤i≤n +1 |f (x

    i)−

    p(xi)|.

    r xi

    r (x i ) = f (x i) − p(x i ) = ( −1)i u i m. u i |u i| ≤1

    p m

    p(x) =n

    i=0a i x i .

    u0m + a0 + a1x0 + · · · + an xn0 = f (x0)−u1m + a0 + a1x1 + · · · + an xn1 = f (x1)

    · · ·

    (−1)n +1 un +1 m + a0 + a1xn +1 + · · · + an xnn +1 = f (xn +1 ).

    u i

    u0 1 x0 . . . xn0

    −u1 1 x1 . . . xn1

    (−1)n +1 un +1 1 xn +1 · · · xnn +1

    m

    a0

    an

    =

    f (x0)

    f (x1)

    f (xn +1 )

    .

  • 8/19/2019 Numericna analiza

    39/412

    A ∈ R n +2 ,n +2 A(−)i,j A

    i j

    D i := det A(−)i+1 ,1, i = 0 , 1, . . . , n + 1 .

    D i

    D i = V (x0, x1, . . . , x i−1, x i+1 , x i+2 , . . . , x n +1 ) .

    V (y0, y1, . . . , , y n ) =

    1 y0 . . . yn01 y1 . . . yn1

    1 yn · · · ynn=

    n

    i=0

    i−1

    j =0(yi −y j )

    x j ∈ E

    Di > 0

    i

    m

    m = |m| =D0f (x0) −D1f (x1) + · · ·+ ( −1)n +1 Dn +1 f (xn +1 )

    u0D0 + u1D1 + · · ·+ un +1 Dn +1 ≥

    n +1

    i=0(−1)iD if (x i )n +1

    i=0 |u i |D i≥

    n +1

    i=0(−1)i D i f (x i )

    n +1

    i=0D i

    .

    m u i 1 −1

    A det A = ±n +1

    i=0D i = 0

    f E u i = ε = ±1 ε i

    m m = |m| = M n (E ; f ) E

    f (x i )

    − p∗(x i) = ε(

    −1)iM n (E ; f ), i = 0 , 1, . . . , n .

    f ∈ C ([a, b]) E = {x i |x0 < x 1 < . . . < x n +1 }⊂[a, b] f E

    ε m = M n (E ; f ) > 0

    E

    M n (E ; f )

    f ∈ C ([a, b]) E = {x i | x0 < x 1 < . . . < x n +1 } ⊂ [a, b] q ∈ P n r = f −q

  • 8/19/2019 Numericna analiza

    40/412

    E |r (x i )| min

    0≤i≤n +1 |r (x i)| < M n (E ; f ) < max0≤i≤n +1 |r (x i)| .

    M n (E ; f ) = min p∈

    P nmaxx∈E

    |f (x) − p(x)| == min

    p∈P n

    maxx∈E

    |(f (x) −q (x)) −( p(x) −q (x)) ˜ p(x) |=

    = min˜ p∈

    P nmaxx∈E

    |(f (x) −q (x)) − ˜ p(x)| = M n (E ; f −q ). M n (E ; f −q )

    M n (E ; f −q ) =n +1

    i=0 (−1)iD i (f (x i) −q (x i ))

    n +1

    i=0D i

    =

    n +1

    i=0 D i |r (x i )|n +1

    i=0D i

    <

    < max0≤i≤n +1 |r (x i )|.

    |r (x i )| M n (E ; f ) < max

    0≤i≤n +1 |r (x i )|

    E

    |E | = n + 2

    f ∈C ([a, b]) P n G⊂[a, b]

    |G| = m ≥n + 2 , m < ∞, E ⊂G |E | = n + 2

    M n (E ; f ) ≥M n (E ; f ) E ⊂G, |E | = n + 2 . f G

    f E

    G E

    M n (E ; f ) = M n (G; f ).

    E ⊂G maxx∈E |

    f (x)

    − p(x)

    | ≤maxx∈G |

    f (x)

    − p(x)

    |, p

    P n

    .

    p G M n (E ; f ) ≤ M n (G; f )

  • 8/19/2019 Numericna analiza

    41/412

    p∗ f E r

    M n (E ; f ) = maxx∈E

    |f (x) − p∗(x)| ≥maxx∈G |f (x) − p∗(x)|(≥M n (G; f )!) y ∈G

    y /∈E

    |f (y) − p∗(y)| = |r (y)| > M n (E ; f ) = |r (x i)|.

    i 0 ≤ i ≤n xi < y < x i+1 a ≤y < x 0 y xi xn +1 < y ≤b y xi

    xi y xi 1r xi r y

    r xi 1 x

    xi y xi 1r xi

    r y r xi 1

    x

    x i < y < x i+1 j = i

    j = i + 1

    y x 0 x 1r y r x 0

    r x 1 x

    y

    x 0 x1

    r y

    r x 0

    r x1 x

    a ≤y < x 0 j = 0 j = n + 1

    j r E E = E \ {x j }∪ {y}

    j ∈ {i, i + 1} j ∈ {0, n + 1} E

    M n (E ; f ) = |r (x i )| = minx∈E |r (x)| < M n (E ; f ), E

  • 8/19/2019 Numericna analiza

    42/412

    G p∗ ˜ p f G

    M n (E ; f ) = maxx∈E

    |f (x) − p∗(x)| ≤maxx∈E |f (x) − ˜ p(x)| ≤maxx∈G |f (x) − ˜ p(x)| =

    = M n (G; f ) ˜ p f E

    ˜ p = p∗

    G →[a, b] f ∈ C ([a, b]) P n

    f [a, b] f E ⊂[a, b] E |E | = n + 2

    M n (E ; f ) ≥M n (E ; f ) E ⊂[a, b] |E | = n + 2

    M n ([a, b]; f ) = M n (E ; f ) .

    E

    G E

    E = {x i |a ≤x0 < x 1 < . . . < x n +1 ≤b} n + 2

    x i Ξ : E → Ξ(E ) = xxx = ( x i )n +1i=0

    K = {(x i )n +1i=0 | a ≤x0 ≤x1 ≤. . . ≤xn +1 ≤b}⊂R n +2 xxx → E := Ξ −1(xxx)

    K E

    m(xxx) := M n (Ξ−1(xxx); f ) =

    n +1

    i=0(−1)i D i f (x i)

    n +1

    i=0D i

    ,

    D i

    K R n +2 m K m(xxx) := 0 ,

    xi = xi+1

    i, 0 ≤ i ≤n. m K

    K m xi

  • 8/19/2019 Numericna analiza

    43/412

    n +1

    i=0D i m 0

    xxx = ( x i)n +1i=0 ∈K xxx = ( x

    i)n +1

    i=0 ∈K,

    x

    j =

    x

    j +1 j,

    K p ∈ P n

    f Ξ−1(xxx) m(xxx) = 0

    |m(xxx) −m(xxx)| = |m(xxx)| = min p∈P n f − p ∞,xxx ≤ f − p ∞,xxx == max

    x i |(f (x i) −f (x i)) + ( f (x i ) − p(x i)) | ≤≤maxx i |f (x i ) −f (x i )|+ maxx i |f (x i ) − p(x i )| == maxx i |f (x i ) −f (x i )|+ maxx i | p(x i ) − p(x i)| ≤≤ω (f ; xxx −xxx ∞) + ω ( p ; xxx −xxx ∞) .

    f p ω xxx −xxx ∞ →0 |m(xxx) −m(xxx)| →0 m K K K f ∈ P n

    xxx∗ ∈ K E = Ξ−1 (xxx∗)

    n + 2

    p f [a, b] n +2 [a, b] r = f − p

    f

    ∈C ([a, b]) p

    P n r = f − p r ∞

    n + 2 xi ∈ [a, b] x0 < x 1 < . . . < x n +1 p f [a, b]

    p∗ f [a, b] p∗ = p

    m := f − p ∞ ≥M n ([a, b];f ) = f − p∗∞ . p∗

    f − p∗∞ < m = f − p ∞ = max0≤i≤n +1 |f (x i ) − p(x i)|.

  • 8/19/2019 Numericna analiza

    44/412

    p∗(x i) − p(x i) = ( f (x i ) − p(x i )) −(f (x i ) − p∗(x i)) sgn(f (x i)− p(x i))( p∗(x i ) − p(x i)) =

    = |f (x i ) − p(x i )| −sgn(f (x i ) − p(x i ))( f (x i) − p∗(x i )) ≥≥m − f − p∗∞ > 0

    sgn(f (x i )− p(x i ))( p∗(x i+1 ) − p(x i+1 )) == sgn( f (x i ) − p(x i ))( f (x i+1 ) − p(x i+1 ))−

    −sgn(f (x i) − p(x i ))( f (x i+1 ) − p∗(x i+1 )) ≤≤ −m + f − p∗∞ < 0 .

    xi xi 1

    f p

    f p

    p p

    x xi xi 1

    f p

    f p

    p p

    x

    f − p f − p∗

    p∗− p ≤n x i xi+1 p∗− p∈P n

    (x i , x i+1 ), i = 0 , 1, . . . , n p∗− p ≡0 f (x) = xn p∗ ∈P n−1

    [−1, 1] x = cos θ θ ∈ [0, π ] θ = arccos x [0, π ] → [−1, 1] T n

    T n (x) := cos( nθ) = cos( n arccos x) .

    T n ≤n x cos(nθ) =

    1

    2e−inθ + einθ = 1

    2(e−iθ )n + ( eiθ )n

    e±iθ = cos θ ±i sin θ = x ±i 1 −x2 = x ± x2 −1

  • 8/19/2019 Numericna analiza

    45/412

    cos(nθ) = 12

    x − x2 −1 n + x + x2 −1 n ==

    12

    n

    j =0

    n j (−1)

    n

    − j

    x j

    (x2

    −1)n − j

    2 +

    n

    j =0

    n j x

    j(x

    2

    −1)n − j

    2 .

    12 1 + ( −1)n− j = 0 n − j 1

    cos(nθ) =n

    j =0n− j sod

    n j

    x j (x2 −1)n − j

    2 ∈P n .

    T n

    12

    n

    j =0

    n j

    + 12

    n

    j =0

    n j

    (−1)n− j = 12

    ((1 + 1) n + (1 −1)n ) = 2 n−1 = 0 .

    T n n

    T 0

    T 1

    T 2

    T 3T 4

    1.0 0.5 0.5 1.0 x

    1.0

    0.5

    0.5

    1.0

    T i

    T n

  • 8/19/2019 Numericna analiza

    46/412

    xk = cos θk = cos kπ

    n , k = 0 , 1, . . . , n ,

    T n (xk ) = cos( n arccos xk ) = cos( kπ ) = (

    −1)k , k = 0 , 1, . . . , n .

    |T n | ≤ 1 T n ∈ C ([−1, 1]) T n ∞ = 1 n + 1 xk

    2−n +1 T n (x) = xn −. . . f (x) = xn P n−1 p∗ = f −2−n +1 T n ∈ P n−1

    f n 2−n +1 T n [−1, 1]

    dist ∞ (xn , P n−1) = 2 −

    n +1

    P n

    yi ∈[−1, 1] ω(x) = ( x −y1) · · ·(x −yn ) ω ∞ [−1, 1]

    ω = 2−n +1 T n T n

    cos k + 12

    πn

    , k = 0 , 1, . . . , n −1.

    [a, b]

    f ∈ C ([a, b]) p ∈ P n r = f − p E = {x i | a ≤ x0 < x 1 M n ([a, b]; f ). p∗− p = ( f − p) −(f − p∗)

    [a, b] E ⊂ [a, b] u i = ε =

    ±1

    n +2 E E M n (E ; f )

  • 8/19/2019 Numericna analiza

    47/412

    p∗ ∈ P n f ∈C ([a, b]) ε > 0 E 0 :=

    {x i |

    a

    ≤x0 < x 1 < . . . < x n +1

    ≤b

    }

    k := 0

    p∗k f E k

    y ∈[a, b], |f (y) − p∗k (y)| = f − p∗k ∞ |f (y) − p∗k (y)| −M n (E k ; f ) < ε

    x j ∈E k y r k

    E k+1 := E k

    \ {x j

    } ∪ {y

    } j

    k

    ε

    f ∈C ([a, b]) ( p∗k )k≥0 p∗

    f [a, b] c > 0 0 < θ < 1

    0 ≤ f − p∗k ∞−M n ([a, b];f ) ≤c θk .

    f − p∗k ∞ →f − p∗∞ p∗k − p∗∞ →0, k → ∞. M n (E k ; f )

    E k+1 = {yi | y0 < y1 < . . . < y n +1 } := E k \ {x j } ∪ {y} rk := f − p∗k

    M n (E k+1 ; f ) = M n (E k+1 ; r k ) =

    n +1

    i=0 D i |r k (yi )|n +1

    i=0D i

    =n +1

    i=0θ(k)i |r k (yi)| ≥

    ≥ min0≤i≤n +1 |r k (yi )|n +1

    i=0θ(k)i = min0≤i≤n +1 |r k (yi )| = M n (E k ; f ) ,

    θ(k)i := D in +1

    j =0D j

    D i

    E k+1 n +1

    i=0θ(k)i = 1 0 < θ

    (k)i < 1

  • 8/19/2019 Numericna analiza

    48/412

    θ 0 < θ < 1 θ(k)i 0 θ(k)i > 1 −θ > 0 i k

    M n (E k+1 ; f ) −M n (E k ; f ) =n +1

    i=0θ

    (k)i |r k (yi )| −

    n +1

    i=0θ

    (k)i M n (E k ; f ) =

    =n +1

    i=0θ(k)i (|r k (yi)| −M n (E k ; f )) ≥

    ≥ (1 −θ) ( |r k (y)| −M n (E k ; f )) ≥ ≥ (1 −θ) (M n ([a, b]; f ) −M n (E k ; f )) ≥0.

    0 ≤M n ([a, b]; f ) −M n (E k+1 ; f ) == ( M n ([a, b]; f ) −M n (E k ; f )) −(M n (E k+1 ; f ) −M n (E k ; f )) ≤≤ (M n ([a, b]; f ) −M n (E k ; f ))(1 −(1 −θ)) == θ (M n ([a, b]; f ) −M n (E k ; f )) .

    k

    0 ≤M n ([a, b]; f ) −M n (E k ; f ) ≤θk (M n ([a, b]; f ) −M n (E 0; f )) . M n (E k ; f ) → M n ([a, b];f ) k → ∞ p∗k → p∗

    k → ∞

    |r k (y)| −M n ([a, b]; f ) ≤ |r k (y)| −M n (E k ; f ) ≤≤

    11 −θ

    (M n (E k+1 ; f ) −M n (E k ; f )) ≤≤

    11 −θ

    (M n ([a, b]; f ) −M n (E k ; f )) ≤≤

    θk

    1 −θ (M n ([a, b]; f ) −M n (E 0; f )) .

    c

    c = 11 −θ

    (M n ([a, b]; f ) −M n (E 0; f )) > 0. θ θ

    θ(k)i i 0 D i Di

    i xi xi+1 ∈ E k (E k )

    E = {x i |x0 ≤x1 ≤. . . ≤x = x +1 ≤. . . ≤xn +1 }, p f

    E f E

  • 8/19/2019 Numericna analiza

    49/412

    r := f − p r [a, b] ε > 0 δ > 0 |r (x) −r (y)| < ε

    |x −y| < δ, x, y ∈[a, b]. ε 0 < ε < M n (E 0; f ) δ

    ε E (E k ) k E k = {x i | x0 < x 1 < . . . < x n +1 }

    |x i −x i| < δ i E k |r (x i) −r (x i)| < ε |r (x i )| < ε + |r (x i )| p f (x i) = p (x i ) r (x i ) = 0 |r (x i )| < ε < M n (E 0; f ) i

    M n (E 0; f ) > ε > maxi |r (x i )| = maxi |f (x i ) − p (x i )| ≥

    ≥ min p∈P n maxi |f (x i ) − p (x i)| = M n (E k ; f ) .

    0.5 1.0 1.5 2.0 x

    0.2

    0.1

    0.1

    0.2

    r k

    r k p∗ ∈P 4 e2x [0, 2]

    r k p∗ ∈P 4

    e2x [0, 2]

    M n (E k ; f ) E k+1 |r k (y)| M n (E k ; f )

    E k r k |r k|

    f ∈C ([a, b]) ε > 0

  • 8/19/2019 Numericna analiza

    50/412

    k E k

    ×10 ×10

    ×10

    ×10 ×10 ×10 ×10 ×10 ×10 ×10

    |f (y) − p∗k (y)|−M n (E k ; f ) E k

    p∗ ∈ P n f ∈C ([a, b]) ε > 0 E 0 := {x i |a ≤x0 < x 1 < . . . < x n ≤b} k := 0

    p∗k f E k

    y ∈[a, b] |r k (y)| = r k ∞ |r k (y)| −M n (E k ; f ) < ε z0 := a zn +2 := b

    r k (zi ) = 0 , zi ∈(x i−1, x i ) i = 1 , 2, . . . , n + 1 yi ∈(zi , zi+1 ) sgn(r k (x i )) r k (yi) = i = 0 , 1, . . . , n + 1

    E k+1 := {yi |y0 < y1 < . . . < y n +1 } k

    n + 1 f ∈ C 1([a, b])

    r k (zi , zi+1 ) r k rk

    O(n)

  • 8/19/2019 Numericna analiza

    51/412

    xi yi xi 1

    r xi

    r yi

    r xi 1 zi 1 zi zi 1 zi 2

    r

    x

    yi

    P n

    S

    f f f = ( f i )ni=0 [a, b]⊂

    R [a, b]

    V (xxx; f f f ) := V ((x j )n j =0 ;f f f ) := V (x0, x1, . . . , x n ; f f f ) := det ( f i(x j ))ni,j =0

    x j ∈[a, b] p =

    n

    i=0α i f i

    f f f := ( f 0, f 1, . . . , f n ) x j ∈I j ⊂[a, b]

    f f f = (1 ,x ,x 2) [a, b]

    V (x0, x1, x2; f f f ) =1 1 1x0 x1 x2x20 x21 x22

    = ( x2 −x1)(x2 −x0)(x1 −x0) = 0

    x i x f f f = (1 , x2) [−1, 1]

    V (x0, x1; f f f ) = 1 1x20 x21= ( x1 −x0)(x1 + x0)

    V (x0, x1; f f f ) = 0 x1 = −x0 = x0

  • 8/19/2019 Numericna analiza

    52/412

    |E | = n +1 (f i(x j )) ni,j =0

    f f f := ( f 0, f 1, . . . , f n ) [a, b] ⊂ R xxx := ( x i )ni=0 , x0 < x 1 < . . . < x n +1 xi ∈ [a, b]

    V (xxx; f f f )

    xxx = ( x i )ni=0 yyy = ( yi)ni=0 V (xxx; f f f )V (yyy; f f f ) < 0 f i [a, b]

    xxx yyy α∈(0, 1)

    V (αxxx + (1 −α)yyy; f f f ) = 0 f i αxxx + (1

    −α)yyy

    V 0 i j i > j αx i + (1 −α)yi = αx j + (1 −α)y j α(x i −x j ) = (1 −α)(y j −yi) α > 0

    x i −x j > 0 (1−α) > 0 y j −yi < 0

    {1, cos θ , . . . , cos nθ, sin θ , . . . , sin nθ} n ∈ N [0, 2π) [−π, π )

    −π ≤

    θ0 < θ

    1 <

    · · ·< θ

    2n < π.

    cos kθ = eikθ + e−ikθ

    2 =

    ωk + ω−k2

    , sin kθ = eikθ −e−ikθ

    2i =

    ωk −ω−k2i

    {ω−n , ω−n +1 , . . . , 1, . . . , ω n−1, ωn}

    ω j = eiθ j ∈ {z |z ∈C ; |z| = 1}

    p(x) = αx + β f (x) = ex [0, 1]

    f

    ∈C 1([a, b])

    E 0 = {a, a+ b2 , b}.

  • 8/19/2019 Numericna analiza

    53/412

    f (x) = sin(3 x) [0, 2π]

    P 3

    cosh x [

    −1, 1]

    [−1, 1] |x|

    E 0 = {−23

    , −13

    , 13

    , 23}.

    dist ∞ (xn , P n−1) = 2 −

    n +1 , [−1, 1] . f (x) = x [0, 2]

    S = L{ex , e2x}

    • 1, x2, x3 • 1, xx , e2x •

    12 + x

    , 13 + x

    , 14 + x

    [0, 1]

    • 1, x2, x3 • {|x|, |1 −x|} • {x + 1 , ex}

    [−1, 1]

    F = 1

    Q(x) , xQ(x) , . . . ,

    xn

    Q(x) ,

    Q [a, b] F [a, b] Q(x) = x + 1

    L 1

    Q(x),

    xQ(x)

    f (x) := ( x − 1)2 [0, 2]

    {f 0, f 1, . . . , f n} X

    ni=0 a i f i n X

  • 8/19/2019 Numericna analiza

    54/412

    {eα 1 x , eα 2 x , . . . , e α n x}, 0 < α 1 < α 2 < · · ·< α n , [a, b]

    f (x) = a0 +n

    k=1

    (ak cos kx + bk sin kx) ,

    g(x) = c0 +n

    k=1

    (ck cos kx + dk sin kx) ,

    ak , bk , ck , dk ∈ R f (x i) = g(x i ) 2n + 1 [0, 2π) f ≡g

    p ≤n max

    −1≤x≤1| p(x)| ≤1, T n 2n−1

    {H 0, H 1, . . . , H n} x0 < x 1 < · · · < x n

    i xi H i

  • 8/19/2019 Numericna analiza

    55/412

    X

    , S ⊂X

    X f ∗ f ∈X

    S ⊂X f ∗ ∈S f

    ∈X f

    −f ∗

    S

    f ∗ ∈ S f − f ∗⊥ S s ∈ S f ∗ − s ∈ S f −f ∗

    f −s 2 = f −f ∗ + f ∗−s 2 = f −f ∗2 + f ∗−s 2 ≥ f −f ∗2. f ∗

    f ∗ ∈S f ∈X s∈S λ > 0 f ∗−λs f

    0 ≤ f −f ∗ + λs2

    − f −f ∗2

    == f −f ∗2 + 2 λ f −f ∗, s + λ2 s 2 − f −f ∗2 == λ(2 f −f ∗, s + λ s 2).

    λ f −f ∗, s λ s 2 f −f ∗, s ≥ 0 s

    −s f −f ∗, s ≤0 s f −f ∗⊥ S

    f ∗ (s i ) S

    f ∗ f ∗ = j α j s j f − j α j s j⊥ S (s i) S

    f − j

    α j s j , s i = 0 , i.

    ααα := ( α j )

    Gααα = bbb, G := ( s j , s i ) , bbb := ( f, s i ) . G

    G

  • 8/19/2019 Numericna analiza

    56/412

    X = C ([0, 1]) , f, g := 10 f (x)g(x)dx, S = P n , si = xi ,

    G = 1

    i + j −1n

    i,j =0

    n S (s i) s j , s i = δ i,j G = I f ∗

    f ∗ = j

    f, s j s j .

    f, s j

    f −f ∗, f ∗= 0 ,

    f −f ∗2 = f −f ∗, f −f ∗= f −f ∗, f == f, f −f ∗, f = f 2 −

    jf, s j s j , f =

    = f 2 − j

    f, s j s j , f = f 2 − j

    f, s j 2 ≥0,

    [0, 2π] X = L 2 ([0, 2π]) 1 S T n

    1√ 2π ,

    1√ π cos x , . . . ,

    1√ π cos nx,

    1√ π sin x , . . . ,

    1√ π sin nx

    [0, 2π]

    2π0 dx = 2π

  • 8/19/2019 Numericna analiza

    57/412

    2π0 cos kx cos jx dx = π δ k,j , j > 0 ali k > 0,

    0 sin kx sin jx dx = π δ k,j ,

    2π0 cos kx sin jx dx = 0 . T n (x) = cos ( n arccos x) [−1, 1]

    [0, π ] [−1, 1] x = x(θ) := cos θ

    π

    0 cos kθ cos jθ dθ = π2 δ k,j , k > 0 ali j > 0

    π0 dθ = π x = cos θ, dx = −sin θ dθ = − 1 −x2dθ k = 0 j = 0

    T k , T j = 2π 1−1 T k (x)T j (x) 1√ 1 −x2 dx

    = 2π

    π

    0 cos kθ cos jθ dθ = δ k,j .

    X = L 2ρ([−1, 1]) ρ(x) :=

    1√ 1 −x2

    1√ 2 T 0, T 1, T 2, . . . ,

    [−1, 1] ρ(x) = (1 −x) p (1 + x)q , p > −1, q > −1.

    p = q p = 0 q = 0 P n

    A∈R m,n , m > n ,

  • 8/19/2019 Numericna analiza

    58/412

    bbb∈R m

    xxx∗ ∈R n Axxx∗−bbb 2 ≤ Axxx −bbb 2 , xxx∈R n .

    2

    xxx,yyy =m

    k=1

    xkyk , xxx = ( xk )mk=1 , yyy = ( yk )mk=1 .

    n m > n

    S = R(A) := L{AAA j }n j =1⊂

    Rm

    , AAA j := ( a ij )mi=1 .

    AAA j dim S = n

    AAAi ,AAA j = AAAT i AAA j =m

    k=1

    aki akj , i, j = 1 , 2, . . . , n ,

    G = AT A.

    AAAi , bbb = AAAT i bbb =m

    k=1

    aki bk , i = 1 , 2, . . . , n .

    AT Axxx∗ = AT bbb.

    AT A AT A

    AT A G = AT A A

    A = Q R,

    Q ∈ R m,n R QT Q = I

    ∈ R n,n

    rang A = n

    Rxxx = QT bbb.

  • 8/19/2019 Numericna analiza

    59/412

    cos(n + 1) θ = 2 cos θ cosnθ −cos(n −1)θ, x := cos θ

    T n +1 (x) = 2 xT n (x) −T n−1(x), T n (x) = cos( n arccos x)

    (Q0, Q1, . . . , Q n ) , Q i = 1 , Q i , Q j = δ i,j , Qi i Qn +1

    n + 1 Qn +1 n + 1 L({Q i}ni=0 )

    Qn Qn +1 −xQ n ≤n

    (Q i)ni=0

    Qn +1 (x) −x Q n (x) = −αn Qn (x) −β n Qn−1(x) +n−2

    i=0γ n,i Q i (x).

    , Q j

    0 = γ n,j , j = 0 , 1, . . . , n −2, j

    Qn +1 , Q j = 0 , −xQ n , Q j = Qn , −xQ j = 0 , Qi , Q j = δ i,j . −xQ n , Q j = Qn , −xQ j

    Q i

    Q j ∈P j ⇒x Q j ∈P j +1 . γ n,i

    Qn +1 (x) = ( x −αn ) Qn (x) −β n Qn−1(x), n = 0 , 1, . . . ,

    Q−1(x) := 0 ,

    Q0 = Q0, Q0 = 1 .

    , Qn ,

    , Qn−1

    αn , β n

    αn = xQ n , Qn , β n = xQ n , Qn−1 .

  • 8/19/2019 Numericna analiza

    60/412

    Qn +1

    Qn +1 = 1Qn +1

    Qn +1 .

    β n

    β n = xQ n , Qn−1 = 1Qn

    Qn , xQ n−1

    = 1Qn

    Qn , Qn − Qn −xQ n−1 = Qn , Qn −xQ n−1 < n αn

    n 2n

    On2

    Qn +1 (x) = x −αn

    β n +1Qn (x) −

    β nβ n +1

    Qn−1(x), n = 0 , 1, . . . ,

    2n + 2 α i , β i Q0

    f, g = 1−1 f (x)g(x)dx

    f, g = 2m + 1

    m

    i=0f (x i )g(x i ), xi = 2

    im −1.

    Q0 = 1

    √ 2

    (α i , β i )

    P n

    (α i , β i )

    p(x) = ni=0

    a iQ i(x) x (Q i )ni=0

    (α i , β i ) Q0 Q0 = 1

  • 8/19/2019 Numericna analiza

    61/412

    n α n β n αn β n

    1.00929 ×10

    1

    √ 30

    2√ 15 −1.21115 ×10

    3√ 35 8.07435 ×10

    43√ 7 −1.81673 ×10

    53√ 11 8.07435 ×10

    6√ 143 −6.35855 ×10

    m = 10

    δ n (x) := an

    δ n−1 (x) := x −αn−1

    β nδ n (x) + an−1

    k = 2 , 3, . . . , n

    δ n−k (x) := x −α n−k

    β n−k+1δ n−k+1 (x) −

    β n−k+1β n−k+2

    δ n−k+2 (x) + an−k

    p(x) := δ 0 (x) Q0(x)

    (α i , β i )

    f (x) = ex sin4x [−1, 1] n = 2 , 3, . . . , 6

  • 8/19/2019 Numericna analiza

    62/412

    1.0 0.5 0.5 1.0 x

    0.5

    0.5

    1.0 0.5 0.5 1.0 x

    0.5

    0.5

    n = 2 n = 6

    (Qn )n≥0 Qn

    n

    Qn (x) = cn xn + . . . , cn = 0 .

    n

    i=0Qi (x)Qi (t) =

    cncn +1

    Qn +1 (x)Qn (t) −Qn +1 (t)Qn (x)x −t

    .

    n i

    ci

    Qi

    ci+1 x i+1 + · · ·= x −α i

    β i+1cix i + . . . −

    β iβ i+1

    ci−1xi−1 + . . . .

    x i+1

    β i+1 = cici+1

    , i = 0 , 1, . . . , c−1 = β 0 c0 = 0 .

    x Q i (x)

    x Q i(x) = cici+1

    Qi+1 (x) + α i Qi (x) + ci−1

    ciQ i−1(x).

    Qi (t)

    xQ i(x)Q i(t) = cici+1

    Q i+1 (x)Q i (t) + α i Qi (x)Qi (t) + ci−1

    ciQ i−1(x)Qi (t) ,

    x

    t

    t Q i (t)Q i (x) = cici+1

    Qi+1 (t)Qi (x) + α iQ i (t)Q i(x) + ci−1

    ciQ i−1(t)Q i(x) .

  • 8/19/2019 Numericna analiza

    63/412

  • 8/19/2019 Numericna analiza

    64/412

    (s i )ni=1 (u i )ni=1 S

    k = 1 , 2, . . . , n sk := 1u k uk

    j = k + 1 , k + 2 , . . . , n

    u j := u j − u j , sk sk

    S ⊂X n X (s i )ni=1

    S si , i < n sn s̄n , s̄n = 1 sn −s̄n ∈S,

    sn −s̄n =n

    i=1sn −s̄n , s i s i ,

    sn = s̄n −n−1

    i=1s̄n , s i s i + sn −s̄n , s n sn ,

    s i ⊥sn , i < n s̄n 1 = s̄n 2 = s̄n , s̄n = sn −sn + s̄n , s n −sn + s̄n

    = sn 2 −2 sn −s̄n , s n + sn −s̄n 2= 1 −2 sn −s̄n , s n + sn −s̄n 2

    sn −s̄n , s n = O sn −s̄n 2

  • 8/19/2019 Numericna analiza

    65/412

    sn −s̄n O sn −s̄n 2 sn

    s̄n −n−1

    i=1

    s̄n , s i s i ,

    s̄n , s i = s̄n −sn , s i = O( sn −s̄n ) . s i

    s i O(i) On2 S

    m = 1000

    ( Q i , Q j )6i,j =0

    π2

    i Q i , Q6 Q i , Q6 2.62 ×10 −5.33 ×10 −2.38 ×10 2.75 ×10 2.21

    ×10

    −6.91

    ×10

    −1.41 ×10 −6.74 ×10 6.80 ×10 −3.00 ×10 −3.46 ×10 −2.31 ×10

    x i ∈[a, b] f, g = ba f (x)g(x)ρ(x)dx, 2 = , , ρ > 0 ,

    x i = a + ih, i = 0 , 1, . . . , N, h = b−a

    N ,

    f, g h = hN

    i=0f (x i )g(x i)ρ(x i),

    2,h =

    ,

    h .

  • 8/19/2019 Numericna analiza

    66/412

    (Q i)i≥0 (Q i,h )i≥0 Qi , Q i,h ∈P i

    , , h Qi,h

    −Q i ∞

    →0, h

    →0.

    f, g h f, g i = N O(h)

    | f, g h − f, g | →0, f 2,h →f 2, h →0, f ,g ∈C ([a, b]) .

    Q0,h = 11 2,h →

    11 2

    = Q0, h →0. Q−1,h = 0 = Q−1

    Q i,h →Q i , i = −1, 0. j ≤i

    Q i+1 ,h α i,h := xQ i,h , Q i,h h

    α i,h →xQ i , Q i = α i , h →0.

    | xQ i,h , Q i,h h − xQ i , Q i | ≤≤ |

    xQi,h

    , Qi,h h −

    xQi, Q

    i h |+

    |xQ

    i, Q

    i h −xQ

    i, Q

    i |.

    | xQ i,h , Q i,h h − xQ i , Q i h | ≤ | xQ i,h , Q i,h −Q i h |+ | Qi,h −Q i , xQ i h | ≤≤ Qi,h −Q i 2,h ( xQ i,h 2,h + xQ i 2,h ) ≤≤ Qi,h −Q i ∞ 1 2,h ( xQ i,h 2,h + xQ i 2,h ) .

    1 2,h

    →1 2 <

    xQ i,h 2,h ≤ xQ i,h −xQ i 2,h + xQ i 2,h ≤≤ Qi,h −Qi ∞ x 2,h + xQ i 2,h .

    β i,h = Q i,h 2,h →β i = Q i 2, h →0.

    Q i+1 ,h (x)

    → Q i+1 (x) = ( x

    −α i) Q i(x)

    −β i Q i

    −1(x), h

    →0.

    Q i+1 ,h (x) i + 1

  • 8/19/2019 Numericna analiza

    67/412

    f ∈ C ([a, b]) p∗h p∗ ∈ P n

    p∗h =n

    i=0f, Q i,h h Qi,h , p∗ =

    n

    i=0f, Q i Qi .

    p∗h − p∗∞ →0, h →0.

    | f, Q i,h h − f, Q i | ≤ |f, Q i,h h − f, Q i h |+ | f, Q i h − f, Q i |

    | f, Q i,h −Qi h | ≤ f ∞ Qi,h −Q i ∞ 1 22,h , f, Q i,h h

    f, Q i

    f, Q i,h h Q i,h − f, Q i Q i ∞ ≤≤ f, Q i,h h Q i,h − f, Q i,h h Q i ∞ + f, Q i,h h Qi − f, Q i Q i ∞ ≤≤ | f, Q i,h h | Qi,h −Q i ∞ + | f, Q i,h h − f, Q i |Qi ∞ →0, h →0,

    P n n

    (s i ) 2 (s i )

    (Q i)i≥0 Qi ∈P i

    L 2ρ([a, b]) f 2 = ba f (x)2ρ(x)dx f ∈C ([a, b]) f −

    n

    i=0α i Qi

    2→0, n → ∞, α i := f, Q i .

    p∗n ∈ P n f [a, b] f −

    n

    i=0α iQ i

    2≤ f − p∗n 2 .

    f − p∗n 22 = b

    a(f (x) − p∗n (x))2 ρ(x)dx ≤ f − p∗n 2∞

    b

    aρ(x)dx →0,

    n

  • 8/19/2019 Numericna analiza

    68/412

    (Q i)i≥0 C ([a, b])⊂L2ρ([a, b]) L 2ρ([a, b])

    (Qi )i≥0 Qi ∈P i

    L 2ρ([a, b]) (Q i )i≥

    0

    f ∈L 2ρ([a, b])

    f, Q i = ba f (x)Qi (x)ρ(x)dx = 0 , i = 0 , 1, . . . f = 0

    F (x) := xa f (t)ρ(t)dt. F ∈C ([a, b]) F (a) = 0

    F (b) = ba f (t)ρ(t)dt = 1Q0(a) f, Q 0 = 0 .

    0 = f, x n = ba tn f (t)ρ(t)dt

    dF (t )

    = tn F (t)b

    a −n ba tn−1F (t)dt, F ⊥x

    n n F F = 0 f ρ 0

    ρ f = 0

    f ∈L 2ρ([a, b])

    [

    −1, 1]

    f 1(x) := x + 1 , x ≤0x −1, x > 0

    f 2(x) := 1 − |x|. f 1 1 0

    1 −1 2 O 1√ n

    f 2 O 1n α

    f [−1, 1] ρ = 1

  • 8/19/2019 Numericna analiza

    69/412

    2 ∞n α α

    2 ∞ f 1

    2 ∞n α α

    2

    ∞ f 2Q i P i

    Q i (x) = i + 12 P i(x) = i + 12i! 2i didx i x2 −1 i , i = 0 , 1, . . . f ∈ C 2([−1, 1]) p∗n ∈ P n

    f

    2

    p∗n =n

    i=0α i Qi , α i = 1−1 f (x)Q i (x)dx.

  • 8/19/2019 Numericna analiza

    70/412

    > 0 n

    f − p∗n ∞ ≤ √ n .

    P i (x) = 1i! 2i

    didx i

    x2 −1i ,

    2i+1 (i + 1)! P i+1 (x) = di+2

    dx i+2x2 −1

    i+1 =

    = di

    dx i d2

    dx2x2 −1

    i+1 =

    = 2( i + 1) di

    dx i ddx x

    2

    −1i

    x =

    = 2( i + 1) di

    dx ii x2 −1

    i−1 2 x2 −1 + 1 + x2 −1i =

    = 2( i + 1) di

    dx i(2i + 1) x2 −1

    i + 2 i x2 −1i−1 =

    = 2 i+1 (i + 1)! (2i + 1) P i(x) + P i−1(x) Q i

    1 i + 32 Q i+1 (x) − 1 i − 12 Q i−1(x) = 2i + 1 i + 12 Q i (x). f ∈C 2([−1, 1]) f f

    α i := 1−1 f (x)Q i (x)dx, α i := 1

    −1f (x)Q i(x)dx

    i α i±1

    α i±1 = 1

    −1f (x)Q i±1(x)dx = f (x)Q i±1(x)

    1

    −1 − 1

    −1f (x)Q i±1(x)dx.

    f (±1) = f (±1) = 0 p3 ∈ P 3 f −1 1

    f f := f − p3 α i±1 = − 1−1 f (x)Q i±1(x)dx, α i±1 = −

    1

    −1f (x)Q i±1(x)dx.

    f (x) [

    −1, 1]

    − 1

    i + 32 α i+1 + 1

    i − 12 α i−1 = 2i + 1

    i + 12 α i

  • 8/19/2019 Numericna analiza

    71/412

    P 0

    P 1

    P 2

    P 3

    P 4P 5

    1.0 0.5 0.5 1.0 x

    1.0

    0.5

    0.5

    1.0

    P i

    P n

    α i = −α i+1

    i12

    + O1i

    + α i−1

    i12

    + O1i

    .

    α i α i f

    f

    α i = Oα ii

    = Oα ii2

    = O1i2

    .

    |P i(x)| ≤1, x∈[−1, 1],

    |Q i (x)

    | ≤ i +

    1

    2, x

    [

    −1, 1].

    > 0 n i ≥n i2|α i | < 2√ 2 m ≥n x∈[−1, 1] | p∗m (x) − p∗n (x)|

  • 8/19/2019 Numericna analiza

    72/412

    | p∗m (x) − p∗n (x)| =m

    i=0α iQ i (x) −

    n

    i=0α iQ i (x) =

    =m

    i= n +1α i Q i(x) ≤

    m

    i= n +11i2 i

    2|α i| |Q i(x)| ≤

    ≤ 2√ 2

    m

    i= n +1

    1i2 i + 12 ≤ 2 mi= n +1 1i 32 ≤

    ≤ 2 ∞n x−32 dx = √ n .

    p∗i

    p∗ := limi→∞ p∗i . ( p∗i ) f

    0 = limi→∞

    f − p∗i 2 = f − limi→∞ p∗i 2 = f − p∗2. f p∗ f = p∗

    m → ∞

    (x1, y1), (x2, y2), . . . , (xm , ym ) p∗(x) = αx + β,

    (1, 2), (2, 3), (3, 5), (4, 8)

    [

    −1, 1] f (x) = ex p∗

    ∈ P 1

    f g, h = 1−1 g(x)h(x)dx

    (x i , yi ), i = 1 , 2, . . . , n L({1, ex})

    f 1, f 2, . . . , f n det G = 0 , G = ( f i , f j )ni,j =1

    [a, b]

    f, g = ba f (t)g(t)dt.

  • 8/19/2019 Numericna analiza

    73/412

    f ∗ ∈ P n f ∈C ([a, b]) f = 0 . f −f ∗ n + 1

    [a, b].

    f, g = f (1)g(1) + 2 f (2)g(2) + 2 f (3)g(3) + 2 f (4)g(4) + f (5)g(5) .

    f (x) = 2 cos 2(πx4

    )

    (−1, 12), (0, 7), (1, 6), (2, 9)

    f, g = 1−1 f (t)g(t)dt. x i [−1, 1]

    (s i)ni=1 si ∈ C ([a, b]) ( s j , s i )ni,j =1

  • 8/19/2019 Numericna analiza

    74/412

  • 8/19/2019 Numericna analiza

    75/412

  • 8/19/2019 Numericna analiza

    76/412

    f

    f (x i) xi s1, s2, . . . , s n n

    s = ni=1 α is i α i λ1, λ 2, . . . , λ n L({s1, s 2, . . . , s n})

    rrr = ( r i)ni=1 α i s λis = r i i

    α i rrr

    s1, s 2, . . . , s n λ1, λ 2, . . . , λ n

    (λ i s j )ni,j =1

    a = x0 < x 1 < x 2 < . . . < x n = b, [a, b]⊂R .

    s i

    s i(x) = i(x) =n

    j =0 j = i

    x −x jx i −x j

    , i = 0 , 1, . . . , n .

    λ i xi λi f := f (x i ) λ i j = δ i,j

    rrr i ααα i si = i

    ni=0 ααα i i (x)

    ≤n x xi rrr i

    ααα i = rrr i xi x i

    x0 = 0 , xi = xi−1 + 1 , i = 0 , 1, . . . , n x0 := 0 , xi = xi−1 + rrr i −rrr i−1 2, i = 1 , 2, . . . , n

    x0 := 0 , xi = xi−

    1 +

    rrr i

    −rrr i

    −1 2, i = 1 , 2, . . . , n

    s i S = L({s1, s2, . . . , s n})

  • 8/19/2019 Numericna analiza

    77/412

    r 0

    r 1

    r 2

    r 3

    r 4

    r 5

    r 6

    r 7

    r 8

    r 9

    x i

    S = P 2n +1 a = x0 < x 1 < x 2 < .. . < x n = b x i

    λ2if = f (x i ) = r i , i = 0 , 1, . . . , n ,λ2i+1 f = f (x i) = r i , i = 0 , 1, . . . , n .

  • 8/19/2019 Numericna analiza

    78/412

    P 2n +1

    p∈P 2n +1 λi p = 0

    i λ2i p = p(x i ) = 0 q

    p(x) = q (x)

    n

    j =0(x −x j ) ,

    λ2i+1 p = p (x i) = 0

    p (x i ) = q (x i) ·0 + q (x i )n

    j =0 j = i

    (x i −x j ) = 0 .

    q (x i) = 0 , i = 0 , 1, . . . , n q n

    S = P n a = x0 < x 1 < x 2 < . . . < x m = b [a, b] xi µi

    λ i,j f = f ( j ) (x i ) = r i,j , i = 0 , 1, . . . , m ; j = 0 , 1, . . . , µ i −1, µi ∈ N mi=0 µi = n + 1

    p∈P n , p ≡0

    p(x) = q (x)m

    i=0(x

    −x i)µ i .

    mi=0 µi = n + 1 p ∈ P n q ≡ 0

    p ≡ 0

    S

    λ i f = f (x i) xi

    xxx = ( x i )ni=0 [a, b]

    a = x0 < x 1 < x 2 < · · ·< x n = b.

    τ 0 < τ 1 < · · ·< τ n ,

    x0 ≤τ 0 < x 1, xi−1 < τ i < x i+1 , i = 1 , 2, . . . , n −1, xn−1 < τ n ≤xn ,

  • 8/19/2019 Numericna analiza

    79/412

    λ i f = f (τ i ) S 1,xxx n = 1

    det H 0(τ 0) H 1(τ 0)H 0(τ 1) H 1(τ 1)= det

    x1 −τ 0∆ x0

    τ 0 −x0∆ x0x1 −τ 1

    ∆ x0

    τ 1 −x0∆ x0

    = ∆ τ 0∆ x0

    (H j (τ i ))1i,j =0 n > 1 0 < < n τ

    x −1 < τ ≤x x < τ < x +1 H j (τ i) = 0 , i = 0 , 1, . . . , , j = + 1 , + 2 , . . . , n .

    (H j (τ i )) i,j =0 , (H j (τ i ))ni,j = +1

    u

    x 2

    x 1

    x 1

    x 2

    x 2

    x 1

    x1 x2

    E ⊂ R m m ≥ 2 E u s1, s 2, . . . , s n , n ≥ 2 E

  • 8/19/2019 Numericna analiza

    80/412

    u n xi ∈ R m s i

    det( s j (x i ))ni,j =1 = 0 .

    u x1 x2

    x2 x1 x2 x2

    x1 si det( s j (x i))

  • 8/19/2019 Numericna analiza

    81/412

    P n a = x0 < x 1 < x 2 < . . . < x n = b r i

    f ∈C

    ([a, b])

    x i

    p =n

    i=0f (x i ) i , i (x) =

    n

    j =0 j = i

    x −x jx i −x j

    ,

    i

    I n : C

    ([a, b]) →P

    n : f →I n f :=n

    i=0 f (x i ) i

    q ≤n I n q = q I n

    • p(x) x On2

    O(n)

    n

    j =0 j = i

    1x i −x j

    x i

    • x i

  • 8/19/2019 Numericna analiza

    82/412

    i x −x j j = i

    ω ω(x) := ( x

    −x

    0)(x

    −x

    1)

    · · ·(x

    −x

    n)

    i ω x −x i ω x = xi

    ω (x i ) =n

    j =0 j = i

    (x i −x j ) .

    i(x) = ω(x)

    (x −x i )ω (x i ) .

    p(x) =n

    i=0f (x i)

    ω(x)(x −x i )ω (x i )

    = ω(x)n

    i=0f (x i )

    1(x −x i)ω (x i )

    .

    1 ≤n

    1 = I n 1 = ω(x)n

    i=0

    1 · 1

    (x

    −x i )ω (x i)

    .

    p 1 = I n 1

    p(x) =n

    i=0f (x i )wi(x) ,

    wi (x) :=

    1(x −x i )ω (x i)n

    j =0

    1(x −x j )ω (x j )

    .

    wi 1 n

    i=0wi (x) ≡1

    f

    x i pk ∈ P k f x0, x1, . . . , x k pk−1

  • 8/19/2019 Numericna analiza

    83/412

    k (x −x0)(x −x1) · · ·(x −xk−1)

    pk (x j ) = pk−1(x j ) = f (x j ), j = 0 , 1, . . . , k −1,

    pk (xk ) = f (xk )

    x0, x1, . . . , x k f [x0, . . . , x k ]f [x0, . . . , x k ]f

    x 1 x 2 x 3 x 4 x 5

    x

    12

    x 1 x 2 x 3 x 4 x 5

    x

    12

    (x − x0)(x − x1) · · ·(x −x i−

    1) [x0, . . . , x i]f p0, p1, . . . , p 5 f (x) =sin5x sin x + 12 [0, 3]

    p ∈ P k ≤k f xi , x i+1 , . . . , x i+ k p

    [x i , . . . , x i+ k ]f k f x i , x i+1 , . . . , x i+ k

    p

    ≤k

    k p < k x j

    f ∈ C ([a, b]) p ∈ P 1 f x i , x i+1 ∈[a, b]

    p(x) = f (x i) + f (x i+1 ) −f (x i )

    x i+1 −x i(x −x i ).

    [x i , x i+1 ]f = f (x i+1 ) −f (x i )

    x i+1 −x i.

  • 8/19/2019 Numericna analiza

    84/412

    f (x) = xr , r

    ≤k, r

    ∈N 0

    [x i , . . . , x i+ k ]f = 0, 0 ≤ r < k,1, r = k.

    I k r ≤ k

    x i , x i+1 , . . . , x i+ k

    [x i , . . . , x i+ k ]f =i+ k

    j = if (x j ) [x i , . . . , x i+ k ] j =

    i+ k

    j = if (x j )i+ k

    r = ir = j

    (x j −x r ).

    x j j k

    j 1

    i+ k

    r = ir = j

    (x j −

    xr)

    x j p f

    xxx := ( x j )i+ k j = i , a ≤x i ≤x i+1 ≤ · · · ≤x i+ k ≤b, f

    f f |xxx := ( f j )

    i+ k j = i

    f j := f (r ) (x j ) , r := max {m | j −m ≥ i, x j−m = x j }.

    f

    g

    xxx

    f |xxx = g|xxx .

  • 8/19/2019 Numericna analiza

    85/412

    f ∈ C k ([a, b]) xi+ j = xi ∈ [a, b], j = 1 , 2, . . . , k f xi (k + 1)

    p(x) =k

    j =0

    f ( j ) (x i) j !

    (x −x i ) j ,

    [x i , x i , . . . , x i

    j +1]f :=

    1 j !

    f ( j )(x i ), j = 0 , 1, . . . , k .

    p(x) =

    n

    i=0 (x −x0)(x −x1) · · ·(x −x i−1)[x0, . . . , x i ]f.

    x i

    [x i , . . . , x i+ k ] : f →[x i , . . . , x i+ k ]f , x j

    [x i , . . . , x i+ k ] x j , j = i, i + 1 , . . . , i + k [. . . ]

    ≤ k f

    [x i , . . . , x i+ k ]

    [x i , . . . , x i+ k ](αf + βg) = α[x i , . . . , x i+ k ]f + β [x i , . . . , x i+ k ]g .

    p ∈ P k xi , x i+1 , . . . , x i+ k f q ∈ P k g αp + βq αf + βg

    f f = g·h

    [x i , . . . , x i+ k ]f =i+ k

    = i

    [x i , . . . , x ]g [x , . . . , x i+ k ]h .

    p1(x) :=i+ k

    r = i(x −x i )(x −x i+1 ) · · ·(x −x r −1)[x i , . . . , x r ]g

  • 8/19/2019 Numericna analiza

    86/412

    x i , x i+1 , . . . , x i+ k g

    p2(x) :=i+ k

    = i

    (x −x i+ k )(x −x i+ k−1) · · ·(x −x +1 )[x , . . . , x i+ k]h x i+ k , x i+ k−1, . . . , x i h p := p1 · p2

    x i , x i+1 , . . . , x i+ k f

    p(x) = p1(x) p2(x) =i+ k

    r = i

    i+ k

    = i

    ωr, (x) [x i , . . . , x r ]g [x , . . . , x i+ k ]h.

    ωr,

    ωr, (x) := ( x −x i)(x −x i+1 ) · · ·(x −xr −1)(x −x +1 )(x −x +2 ) · · ·(x −x i+ k ) , k + r

    − x < r

    ωr, (x j ) = 0 j = i, i + 1 , . . . , i + k < r x i , x i+1 , . . . , x i+ k p f

    q

    q (x) :=i+ k

    r = i

    i+ k

    = r

    ωr, (x) [x i , . . . , x r ]g [x , . . . , x i+ k ]h,

    x i , x i+1 , . . . , x i+ k f q ≤ k

    [x i , . . . , x i+ k ]f.

    = r k ωr,r q

    i+ k

    = i

    [x i , . . . , x ]g [x , . . . , x i+ k ]h .

    f

    f (x) = ( x −t)k−1+ k ≥ 2 (x − t)k−1+ = ( x − t)(x − t)k−2+ [x i , . . . , x i+ k ]f

    [x i ]( −t) = xi −t, [x i , x i+1 ]( −t) = 1 ( −t)

    [xi, . . . , x

    i+ k](

    −t)k−1

    + =( x

    i −t)[x

    i, . . . , x

    i+ k](

    −t)k−2

    + +

    + [x i+1 , . . . , x i+ k ]( −t)k−2+ .

  • 8/19/2019 Numericna analiza

    87/412

    f k k+1

    f ∈ C k f (x) := √ x {0, δ }, δ > 0 [0, δ ]f = √ 0 −√ δ 0 −δ

    = 1√ δ . δ → 0 f 0 0 δ

    f

    f ∈C k ([a, b]) x j

    ∈[a, b], j = i, i + 1 , . . . , i + k .

    [x i , . . . , x i+ k ]f = 1k!

    f (k)(x i ) , xi = xi+1 = . . . = xi+ k ,

    [x i , . . . , x i+ k ]

    [x i , . . . , x i+ k ]f =

    = [x i , . . . , x s−1, x s+1 , . . . , x i+ k ]f −[x i , . . . , x r −1, x r +1 , . . . , x i+ k ]f

    xr −xs, xr

    = xs ,

    (k + 1)

    x i = x i+ k

    [x i , . . . , x i+ k ](

    −t)k

    −2

    + ==

    [x i , . . . , x i+ k−1]( −t)k−2+ −[x i+1 , . . . , x i+ k ]( −t)k−2+

    x i −x i+ k

    (x i+ k −x i)[x i , . . . , x i+ k ]( −t)k−1+ == ( t −x i )[x i , . . . , x i+ k−1]( −t)k−2+ +

    + ( x i+ k −t)[x i+1 , . . . , x i+ k ](

    −t)k

    −2

    + .

  • 8/19/2019 Numericna analiza

    88/412

    xxx := ( x j )i+ k j = i , xi ≤x i+1 ≤ · · · ≤x i+ k , f f

    |xxx

    = ( f j )i+ k j = i [x i , . . . , x i+ k ]f f |xxx

    d j , j = i, i + 1 , . . . , i + k xxx f

    [x i , . . . , x i+ k ]f =i+ k

    j = id j f j .

    xxx k = 0 k xi = xi+1 = · · · = xi+ k

    k − 1

    xi < x i+ k

    d j d j f

    [x i , . . . , x i+ k−1]f =i+ k−1

    j = id j f j =

    i+ k

    j = id j f j , di+ k := 0 ,

    [x i+1 , . . . , x i+ k ]f =i+ k

    j = i+1

    d j f j =i+ k

    j = i

    d j f j , di := 0 .

    [x i , . . . , x i+ k ]f =i+ k

    j = i

    d j −d jx i −x i+ k

    f j ,

    f ∈C k ([a, b]) x j ∈[a, b], j = i, i + 1 , . . . , i + k .

    [x i , . . . , x i+ k ]f

    [x i , . . . , x i+ k ]f =

    =1

    0

    dt1

    t1

    0

    dt2 · · ·tk − 1

    0

    f (k)(tk∆ x i+ k−1 + tk−1∆ x i+ k−2 + · · ·+ t1∆ x i + x i )dtk .

    x j = xi , j = i + 1 , i + 2 , . . . , i + k

    ∆ x i = ∆ x i+1 = · · ·= ∆ x i+ k−1 = 0

  • 8/19/2019 Numericna analiza

    89/412

    f (k)(x i )1

    0

    dt1

    t1

    0

    dt2 · · ·t k − 1

    0

    dtk = f (k) (x i)

    k! .

    k = 1 xi = xi+1 x i = xi+1

    [x i , x i+1 ]f =1

    0

    f (t1∆ x i + x i )dt1 = 1∆ x i

    x i +1

    x i

    f (u)du = f (x i+1 ) −f (x i )

    x i+1 −x i.

    u u := t1∆ x i + x i k = 1

    k k + 1 k + 1

    x i+ k−1 xi+ k tk ξ

    ξ = tk∆ x i+ k−1 + tk−1∆ x i+ k−2 + · · ·+ t1∆ x i + x i , dξ = ∆ x i+ k−1dtk .

    ξ 0 = tk−1∆ x i+ k−2 + · · ·+ t1∆ x i + x i ,

    ξ 1 = tk−1(∆ x i+ k−1 + ∆ x i+ k−2) + tk−2∆ x i+ k−3 + · · ·+ t1∆ x i + x i .

    1

    0

    dt1

    t1

    0

    dt2 · · ·ξ1

    ξ0

    f (k) (ξ ) dξ

    ∆ x i+ k−1=

    = 1

    ∆ x i+ k−

    1

    1

    0

    dt1 · · ·t k − 2

    0

    f (k−1) (ξ 1) −f (k−1) (ξ 0) dtk−1 =

    = 1

    ∆ x i+ k−1

    1

    0

    dt1 · · ·t k − 2

    0

    f (k−1) (tk−1(x i+ k −x i+ k−2) + · · ·+ x i )dtk−1−

    − 1

    ∆ x i+ k−1

    1

    0

    dt1 · · ·t k − 2

    0

    f (k−1) (tk−1∆ x i+ k−2 + · · ·+ t1∆ x i + x i)dtk−1 =

    =

    [x i , . . . , x i+ k−2, x i+ k ]f

    −[x i , . . . , x i+ k−2, x i+ k−1]f

    x i+ k −x i+ k−1 ,

    [x i , . . . , x i+ k ]f

  • 8/19/2019 Numericna analiza

    90/412

    f ∈ C k ([a, b]) x j ∈ [a, b], j = i, i + 1 , . . . , i + k

    • [x i , . . . , x i+ k ]f x j

    • 1k!

    minx∈[a,b ]

    f (k) (x) ≤[x i , . . . , x i+ k ]f ≤ 1k!

    maxx∈[a,b ]

    f (k)(x) .

    • ξ ∈ mini x i , maxi x i

    [x i , . . . , x i+ k ]f = 1k!

    f (k)(ξ ) .

    f ∈ C n +1 ([a, b]) xxx = ( x i)ni=0 , xi ∈ [a, b],

    f (x) = pn (x) + ( x −x0)(x −x1) · · ·(x −xn )[x0, . . . , x n , x]f , x ∈[a, b],

    pn (x) =

    n

    i=0(x −x0)(x −x1) · · ·(x −x i−1)[x0, . . . , x i ]f

    f xxx

    n = 0 x = x0

    f (x) = f (x0) + ( x −x0)f (x) −f (x0)

    x −x0,

    x = x0 f ∈C 1 ([a, b]) f (x) = f (x0) + ( x −x0) [x0, x]f x→x0−→ f (x0) + ( x0 −x0) f (x0)1! = f (x0).

    k < n

    f (x) = pk (x) + ( x −x0)(x −x1) · · ·(x −xk )[x0, . . . , x k , x]f . g g(x) := [ x0, . . . , x k , x]f n − k ≥ 1

    g g n = 0

    x0 →xk+1 g(x) = g(xk+1 ) + ( x −xk+1 )[xk+1 , x]g =

    = [x0, . . . , x k+1 ]f + ( x −xk+1 )[xk+1 , x] [x0, . . . , x k , ]f .

  • 8/19/2019 Numericna analiza

    91/412

    [xk+1 , x] g f

    f (x) = pk (x) + ( x

    −x0)(x

    −x1)

    · · ·(x

    −xk ) [x0, . . . , x k+1 ]f +

    + ( x −xk+1 )[xk+1 , x] [x0, . . . , x k , ]f == pk+1 (x) + ( x −x0)(x −x1) · · ·(x −xk+1 )[xk+1 , x] [x0, . . . , x k , ]f .

    q y

    q (y) := pk+1 (y) + ( y −x0)(y −x1) · · ·(y −xk+1 )[xk+1 , x] [x0, . . . , x k , ]f ≤ k + 2 y q k + 2 x j f

    q (x j ) = pk+1 (x j ) + 0 = f (x j ), j = 0 , 1, . . . , k + 1 , f y = x

    q [x0, . . . , x k+1 , x]f

    q (y) = pk+1 (y) + ( y −x0)(y −x1) · · ·(y −xk+1 )[x0, . . . , x k+1 , x]f. f (x) = q (x) k + 1

    f

    [xk+1 , x] [x0, . . . , x k , ]f = [x0, . . . , x k+1 , x]f, x = xk+1

    f ∈C n +1 ([a, b]) pn n + 1 xi ∈[a, b] f x∈[a, b] ξ x ∈[a, b] f (x) − pn (x)

    f (x) − pn (x) = ( x −x0)(x −x1) · · ·(x −xn ) 1

    (n + 1)!f (n +1) (ξ x ).

    f

    [x i , . . . , x i+ k ] [y j , . . . , y j + r , ]f = [y j , . . . , y j + r , x i , . . . , x i+ k ]f.

    k = 0 k

    O n2 O(n)

    O(n)

  • 8/19/2019 Numericna analiza

    92/412

    [x0, x1]f f (x0) f (x1) x0 x1 x0

    [ ]f [ , ]f [ , , ]f [ , , , ]f

    x0 f (x0) [x0, x1]f x1 f (x1) [x0, x1, x2]f

    [x1, x2]f [x0, x1, x2, x3]f x2 f (x2) [x1, x2, x3]f

    [x2, x3]f x3 f (x3)

    xn−1 f (xn−1) [xn−1, xn ]f xn f (xn )

    f (x) = ln( x) [1, 2] f

    x = ( x0, x1, x2, x3) = (1 , 1, 2, 2)

    [ ]f [ , ]f [ , , ]f [ , , , ]f

    −0.306853

    −0.193147

    ln(x)

    1, x −1, (x −1)2, (x −1)2(x −2).

    p(x) = 1 ·0 + ( x −1) ·(1 + ( x −1) ·(−0.306853 + ( x −2) ·0.113706)) . (2, 2, 1, 1)

    p(x) = 1

    ·0.693147+( x

    −2)

    ·(0.5 + ( x

    −2)

    ·(

    −0.193147+( x

    −1)

    ·0.113706)) .

    x = 32 p( 32 ) = 0 .409074 ≈ ln 32 = 0 .405465

  • 8/19/2019 Numericna analiza

    93/412

    x0, x1, . . . , x n

    a i = [x0, . . . , x i ]f, i = 0 , 1, . . . , n .

    x p(x) =n

    i=0(x −x0)(x −x1) · · ·(x −x i−1) a i

    p(x) = b0(x)

    bn (x) := an i := n −1, n −2, . . . , 0 bi(x) := a i + ( x −x i )bi+1 (x)

    p(x) := b0(x)

    bi (x) b0(x) = [x] p = p(x) ai = [x0, . . . , x i ]f = [x0, . . . , x i ] p

    bi+1 (x) = bi (x) −a i

    x −x i=

    [x, x 0, . . . , x i−1] p −[x0, . . . , x i] px −x i

    = [x, x 0, . . . , x i ] p

    bi(x) = [x, x 0, . . . , x i−1] p i

    bi (x)

    p

    p

    p

    32 = 1 .5

    [ ]f p (1.5) [1.5, 1.5] p = 11! p (1.5) 1.5

    p

    [ ]f [ , ]f [ , , ]f [ , , , ]f

    −0.25

    −0.306853

    −0.363706

    −0.306853 −0.193147

    p

  • 8/19/2019 Numericna analiza

    94/412

    p(x) = 0 .409074 + ( x −1.5) ·(0.664721++ ( x −1.5) ·(−0.25 + ( x −1.5) ·0.113706)) .

    n + 1

    x ≤ k k + 1

    x0 ≤ x1 ≤ ·· · ≤ xn x O(log n) k + 1 x

    i

    x j , j = i, i +1 , . . . , i + k

    f ∈ C ([a, b]) xi j ∈[a, b], j = 0 , 1, . . . , pi0 ,i 1 ,...,i k − 1 ,i k f

    x i0 , x i1 , . . . , x ik − 1 , x ik

    pi0 ,i 1 ,...,i k − 1 ,i k (x) = 1x ik − 1 −x ik pi0 ,i 1 ,...,i k − 2 ,i k − 1 (x) x −x ik − 1 pi0 ,i 1 ,...,i k − 2 ,i k (x) x −x ik ,

    pi0 ,i 1 ,...,i k − 2 ,i k − 1 (x) pi0 ,i 1 ,...,i k − 2 ,i k (x) , f

    k

    pi0 (x), pi0 ,i 1 (x), . . . , p i0 ,i 1 ,...,i k − 1 ,i k (x),

    x ik +1 , f x ik +1

    x i0 , x i1 , . . . , x i r − 1 , x i r +1 , . . . , x ik , x ik +1 , 0 ≤ r ≤k + 1 . O(k)

    O k2 k + 1

    k + 1

    k (k + 1)

  • 8/19/2019 Numericna analiza

    95/412

    x0 f (x0) p01(x)

    x1 f (x1) p012 (x) p12(x) p0123 (x)x2 f (x2) p123 (x) p23(x) p1234 (x)

    x3 f (x3) p234 (x) p34(x)

    x4 f (x4)

    k = 3

    x0 f (x0) p

    01(x)

    x1 f (x1) p012 (x) p02(x) p0123 (x)x2 f (x2) p013 (x) p03(x) p0124 (x)

    x3 f (x3) p014 (x) p04(x)

    x4 f (x4)

    k = 3

    x i = x0 + i h, i = 0 , 1, . . . , n x t x = x0 + h t t =

    x −x0h

    x −x j = ( x0 + h t ) −(x0 + j h ) = h(t − j ),

    (x −x0)(x −x1) · · ·(x −x i−1) = h i (t −0)(t −1) · · ·(t −(i −1)) == h i i!

    ti

    .

    x j [x0, . . . , x i ]f j

    i

    r =0r = j

    (x j −xr ) =i

    r =0r = j

    ( j h −r h ) = hi (−1)i− j j ! (i − j )!.

  • 8/19/2019 Numericna analiza

    96/412

  • 8/19/2019 Numericna analiza

    97/412

    x i f i ∆ 1f i ∆ 2f i ∆ 3f ix0 f 0 f 1 −f 0x1 f 1 ∆ f 1 −∆ f 0f 2 −f 1 ∆ 2f 1 −∆ 2f 0x2 f 2 ∆ f 2 −∆ f 1f 3

    −f 2

    x3 f 3

    (x −x0)(x −x−1) · · ·(x −x−(i−1) ) == hi (t + 0)( t + 1) · · ·(t + ( i −1)) == ( −1)ih i (−t −0)(−t −1) · · ·(−t −(i −1)) == ( −1)ih i i! −ti .

    i

    r =0r = j

    (x− j −x−r ) =i

    r =0r = j

    ((− j )h −(−r )h) = hi (−1) j j ! (i − j )!

    [x0, . . . , x −i]f = 1h ii

    j =0(−1) j 1 j !(i − j )!

    f (x− j ) = 1h i i!i

    j =0(−1) j i j f − j .

    p(x) = p(x0 + h t ) =n

    i=0(−1)i −

    ti

    i

    j =0(−1) j

    i j

    f − j =

    =n

    i=0

    (−1)i −t

    i ∇if 0 .

    ∇ r

    ∇if r :=

    i

    j =0(−1) j

    i j

    f r − j .

    0f r = f r ,

    ∇if r = ∇i−1f r −∇i−1f r−1.

  • 8/19/2019 Numericna analiza

    98/412

    x i f i ∇1f i ∇2f i ∇3f ix0 f 0 f 0 −f −1x−1 f −1 ∇f 0 −∇f −1f −1 −f −2 ∇2f 0 −∇2f −1x−2 f −2 ∇f −1 −∇f −2f

    −2

    −f −

    3x−3 f −3

    f ∈ C ([a, b]) n + 1

    f − pn ∞ → 0 n → ∞

    f

    f (x) = ex [−1, 1] x i = −1 + 2n i, i = 0 , 1, . . . , n

    α O(eα n )

    n α ×10

    ×10 ×10 ×10 ×10

    ×10 ×10

    n α

    ex

    f (x) = (1 + 25 x2)−1 [−1, 1]

    f − pn ∞ n → ∞ f [−1, 1] ⊂ C

    X

    S ⊂X P : X →S

  • 8/19/2019 Numericna analiza

    99/412

    f ∈X f −P f ≤(1 + P ) inf s∈S f −s = (1 + P ) dist( f, S ) .

    P P s = s s∈S

    f −P f = (f −s) −P (f −s) = (I −P )( f −s) ≤(1 + P ) f −s . s

    s∈S

    I n : C ([a, b]) →P n : f →I n f := I n f (x i ) = f (x i)n

    i=0,

    f −I n f ∞ ≤(1 + I n ∞) dist ∞(f, P n ) .

    dist ∞(f, P n ) 0 n I n ∞ n

    I n ∞ = supf =0I n f ∞f ∞

    = supf ∞ =1

    I n f ∞ ,

    n

    I n : C ([a, b]) → P n a ≤ x0 < x 1 < · · · < x n ≤ b I n ∞ = λn ∞ λn (x) :=

    n

    i=0| i (x)|

    f ∈ C ([a, b])

    I n f =n

    i=0f (x i ) i , i (x) =

    n

    j =0 j = i

    x −x jx i −x j

    .

    x∈[a, b]

    |I n f (x)| =n

    i=0

    f (x i) i(x) ≤n

    i=0|f (x i )|| i (x)| ≤

    ≤ f ∞n

    i=0| i(x)| ≤ f ∞ λn ∞ .

  • 8/19/2019 Numericna analiza

    100/412

    x x∈[a, b]

    I n f ∞ ≤ f ∞ λn ∞ f = 0 I n f ∞f

    ∞≤ λn ∞ =⇒supf =0

    I n f ∞f

    = I n ∞ ≤ λn ∞ . λn ∈C ([a, b])

    x̃∈[a, b] λn

    λn ∞ = |λn (x̃)| = λn (x̃) =n

    i=0| i(x̃)|.

    C ([a, b]) g, g ∞ = 1 g(x i ) = sgn( i(x̃)) , i = 0 , 1, . . . , n | i (x̃)| = g(x i ) i (x̃)

    λn ∞ = λn (x̃) =n

    i=0 | i (x̃)| =n

    i=0g(x i ) i (x̃) =

    = I n g(x̃) ≤ I n g ∞ ≤ I n ∞ g ∞ = I n ∞ .

    λn ∞

    • λn ∞ λn ∞ ≈

    2n +1

    e n log n, n → ∞.

    • T n [a, b] λn ∞

    log(n + 1) + 0 .9625 · · ·< λn ∞ < 2π

    log(n + 1) + 1 .

    • ( λn ∞)n≥0

    • f ∈ C ([a, b]) f

    x i i = 0 , 1, . . . , n xi = x j , i = j

    n

    i=0i(x) ≡1,

  • 8/19/2019 Numericna analiza

    101/412

    i (x) := n,i (x) :=n

    j =0 j = i

    x −x jx i −x j

    A = {x0, x1, . . . , x n} B = {w0, w1, w2} ⊆ A. f pi ∈ P n−2

    f (A \ B )∪{wi}. pi p∈P n f A

    Φ(a ,x ,y ) = a0 + a1x + a2y + a3x2 + a4xy + a5y2, a = ( a i)5i=0 .

    (x i , yi ) ∈ R 2 Φ(a , x i , yi) = zi , i = 1 , 2, . . . , 6 zi ∈ R

    f ∈ C 1([x0, xn ]) x0 < x 1 < · · · < x n Ai , B i ∈P 2n +1

    p2n +1 =n

    i=0f (x i )Ai +

    n

    i=0f (x i )B i

    p2n +1 (x i) = f (x i ), p2n +1 (x i ) = f (x i ), i = 0 , 1, . . . , n .

    f (x) = 41 + x

    p∈P 5

    p(0) = f (0) , p (0) = f (0) , p (0) = f (0) , p(1) = f (1) , p (1) = f (1) , p (1) = f (1) .

    x = 12

    maxx∈[0,1]

    |f (x) − p(x)|.

    p(0) = 1 , p (0) = 2 , p (0) = 3 , p(1) = −1, p (1) = 3 , p(2) = 4 .

    [x0, x1, . . . , x n ]f

    f (x) = x1 + x

    xi = x j i = j

  • 8/19/2019 Numericna analiza

    102/412

    x i i = 0 , 1, . . . , n

    [x0, x1, . . . , x n ]f =n

    i=0

    f (x i)ω (x i)

    ,

    ω(x) :=n

    i=0(x −x i) ω = ddx ω

    x i i = 0 , 1, . . . , n

    [x0, x1, . . . , x n ]f = 12π i γ f (z)ω(z) dz ,

    γ xi f

    f ∈C 1([a, b]) x1 ∈[a, b]

    ddx

    ([x1, x]f )∈C ([a, b]) .

    f (x) = sin( x) 0, π12

    , π6

    f p x0, x1, . . . , x n

    h := maxi |x i+1 −x i|

    I

    f − p ∞,I ≤ f (n +1) ∞4(n + 1)

    hn +1 .

    f

    x : 0 0.2 0.4 0.6 0.8 1f (x) : −1 3 2 4 6 1

    f (0.5)

    x i = x0 + i h i = 0 , 1, . . . , n

    ∇n f (x0) = ∆ n f (x−n )

    ∇n f (x ) =

    n

    j =0

    n j

    (−1) j f (x − j )

    x i = x0 + i h i = 0 , 1, . . . , n i

  • 8/19/2019 Numericna analiza

    103/412

    p∈P 2m 2m +1

    x i = x0 + i h i = −m, −m + 1 , . . . , −1, 0, 1, . . . , m

    p(x0 + t h ) = f 0 +m

    i=1

    t + i −12i −1

    δ 2i−1f 12

    +t + i −1

    2iδ 2if 0 .

    δ δf k := f k+ 12 −f k−12 f k := f (xk )

    T = {(x i , y j ) | 0 ≤ i ≤n, 0 ≤ j ≤m}, x0 < x 1 < · · · < x n y0 < y1 < · · · < ym

    p(x, y ) f T

  • 8/19/2019 Numericna analiza

    104/412

    3, 4, . . . [a, b]⊂R

    xxx := ( x i )ni=0

    a =: x0 < x 1 < . . . < x n := b.

    x i f

    |(x i ,x i +1 ) ∈

    P k

    ∆ x i = xi+1 −x i

    ∆ x := max0≤i≤n−1

    ∆ x i .

    x i ν i −1 ν i ∈N 0 0 ≤ν i ≤k +1

    ν i = 0 xi ν i = 1 xi ν i = k + 1

    x i

    xxx ∆ x i → 0

    r k −r

    (k + 1) 0

    ν ν ν = ( ν i )n

    −1

    i=1

    ≤k P k,xxx,ν ν ν

    P k,xxx,ν ν ν = f | f |(x i ,x i +1 ) ∈P k , i = 0 , 1, . . . , n −1;

    f ( )(x i −0) = f ( )(x i + 0) , = 0 , 1, . . . , ν i −1, 1 ≤ i ≤n −1 .

    dim P k,xxx,ν ν ν = n dim P k −n−1

    i=1

    ν i = n(k + 1) −n−1

    i=1

    ν i .

  • 8/19/2019 Numericna analiza

    105/412

    f (x) :=

    9 −x3, 0 ≤x < 32 ,x3 + 12 ,

    32 ≤x < 2,

    −12 x3 + x2 + 172 , 2 ≤x < 3,2x3 −18x2 + 932 x − 552 , 3 ≤x ≤5.

    f k = 3

    xxx = 0, 32

    , 2, 3, 5 .

    f (32 −0) = f (

    32 + 0) ,

    f (2 −0) = f (2 + 0) , f (2 −0) = f (2 + 0) ,f (3 −0) = f (3 + 0) , f (3 −0) = f (3 + 0) , f (3 −0) = f (3 + 0) ,

    f ∈P 3,xxx,ν ν ν ν ν ν = (0 , 1, 2) .

    (0, 32

    , 32

    , 32

    , 32

    , 2, 2, 2, 3, 3, 5).

    1 2 3 4 5 x

    2

    4

    6

    8

    f

  • 8/19/2019 Numericna analiza

    106/412

    ν i = k, i = 1 , 2, . . . , n −1,

    k + 1 − ν i = 1

    S k := S k,xxx

    dim S k,xxx = n(k + 1) −(n −1)k = n + k.

    (x i , x i+1 ) pi ∈P k

    S 1,xxx n+1 (H i )ni=0

    S 1,xxx

    x i

    I 1 : C ([a, b]) →S 1,xxx , f →I 1f := I 1f (x i) = f (x i )n

    i=0.

    I 1f x i ≤x ≤x i+1

    I 1f (x) = f (x i ) xi+1 −xx i+1 −x i + f (xi+1 ) x −x ix i+1 −x i , x

    i ≤x ≤x i+1 .

    ∆ x i = xi+1 −x i ∆ x = max0≤i≤n−1 ∆ x i

    f ∈C 2([a, b])

    f −I 1f ∞ ≤ 18

    ∆ x2 f (2) ∞ .

    f

    f (x) = I 1f (x) + ( x −x i)(x −x i+1 )[x i , x i+1 , x]f .

  • 8/19/2019 Numericna analiza

    107/412

    x∈[x i , x i+1 ]

    |f (x) −I 1f (x)| ≤ |(x −x i )(x −x i+1 )| |f (2) (ξ i )|

    2! ≤ (x i < ξ i < x i+1 )

    ≤ (x −x i)(x i+1 −x)f (2)

    ∞2 ≤≤

    x i + x i+12 −x i x i+1 −

    xi + x i+12

    f (2) ∞2

    =

    = 18

    ∆ x2i f (2)

    ∞ ≤ 18

    ∆ x2 f (2) ∞ .

    (x −x i)(x i+1 −x) [x i , x i+1 ]

    12 (x i + x i+1 )

    I 1

    (x i , x i+1 ) I 1 ∞ x i ≤x ≤x i+1

    |I 1f (x)| = f (x i) xi+1 −xx i+1 −x i

    + f (x i+1 ) x −x ix i+1 −x i ≤

    ≤ |f (x i )| xi+1 −xx i+1 −x i

    + |f (x i+1 )| x −x ix i+1 −x i ≤

    f ∞ .

    f = 0 I 1f ∞ ≤ f ∞ ⇒ I 1f ∞f ∞ ≤

    1⇒ I 1 ∞ = supf =0I 1f ∞f ∞ ≤

    1.

    I 1 ∞ ≥ I 1 f ∞f ∞ f = 0

    f = 1 I 1f ∞ = f ∞ = 1 I 1 ∞ = 1

    f ∈C ([a, b]) f −I 1f ∞ ≤2 dist∞(f, S 1,xxx ) .

    I 1f f I 1

    S 1,xxx

    C ([a, b])

    f, g :=b

    a

    f (x)g(x)dx f 2 = f, f . L1

    L1 : C ([a, b]) →S 1,xxx , f →L1f := f −L1f ⊥S 1,xxx .

  • 8/19/2019 Numericna analiza

    108/412

    S 1,xxx (H i )ni=0

    L1f =n

    i=0α iH i ,

    ααα = ( α i )ni=0 Gααα = bbb G = ( H i , H j )ni,j =0

    H i (x i−1, x i+1 ) |i − j | > 1 H i , H j = 0 G

    H i , H i =

    x i +1

    x i − 1

    H 2i (x)dx =x i

    x i − 1

    H 2i (x)dx +

    x i +1

    x i

    H 2i (x)dx =

    =x i

    x i − 1 x −x i−1x i −x i−12

    dx +

    x i +1

    x i x i+1 −xx i+1 −x i2

    dx =

    = ∆ x i−11

    0

    t2dt + ∆ x i

    1

    0

    t2dt = 13

    (∆ x i−1 + ∆ x i ) ,

    ∆ x−1 := 0 ∆ xn := 0 x

    →t =

    xi+1 −xx i+1 −x i

    H i , H i+1 =

    x i +1

    x i

    H i (x)H i+1 (x) dx =

    x i +1

    x i

    x i+1 −xx i+1 −x i

    x −x ix i+1 −x i

    dx =

    = ∆ x i

    1

    0

    t(1 −t)dt = ∆ x i12 −

    13

    = 16

    ∆ x i .

    G =

    13 ∆ x0 16 ∆ x016 ∆ x0

    13 (∆ x0 + ∆ x1)

    16 ∆ x1

    16 ∆ x i−1

    13 (∆ x i−1 + ∆ x i)

    16 ∆ x i

    16 ∆ xn−1

    13 ∆ xn−1

    .

    G

  • 8/19/2019 Numericna analiza

    109/412

    bbb = ( H i , f )ni=0 L1

    L1 : C ([a, b]) → S 1,xxx L1

    ∞ ≤3 .

    L1f

    L1f ∞ =n

    i=0α i H i

    ∞≤

    n

    i=0|α i |H i

    ∞≤ max0≤i≤n |α i|

    n

    i=0H i

    = 1 ∞= max

    0≤i≤n |α i|.

    G |α | = max0

    ≤i

    ≤n |α i | α −1 α α +1

    ∆ x −16

    α −1 + ∆ x −1 + ∆ x

    3 α +

    ∆ x6

    α +1 =

    x +1

    x − 1

    f (x)H (x) dx .

    |α | = 3

    ∆ x

    −1 + ∆ x −

    ∆ x −16

    α −1 − ∆ x

    6 α +1 +

    x +1

    x − 1

    f (x)H (x) dx ≤

    ≤ 3

    ∆ x −1 + ∆ x∆ x −1

    6 |α −1|+ ∆ x

    6 |α +1 |+ f ∞x +1

    x − 1

    H (x) dx .

    x +1

    x − 1

    H (x) dx = ∆ x −1 + ∆ x

    2

    |α ±1| ≤ |α | |α |

    |α | ≤ 12 |α |+

    32

    f ∞ . |α | ≤3 f ∞ L1f ∞ ≤ max0≤i≤n |α i | ≤3 f ∞

    L1 ∞ ≤3

    f ∈C ([a, b]) f −L1f ∞ ≤4 dist∞(f, S 1,xxx ) .

  • 8/19/2019 Numericna analiza

    110/412

    [a, b] (x i)ni=0 a = x0 < x 1 < . . . < x n = b

    f ∈ S 3,xxx (x i , x i+1 )

    ≤3

    x i f [x i , x i+1 ] pi ∈ P 3

    pi f

    pi (x i ) = f (x i ) , pi (x i+1 ) = f (x i+1 ) .

    pi

    pi−1(x i ) = pi (x i )

    pi (x i) = si , pi (x i+1 ) = si+1 ,

    s i , i = 0 , 1, . . . , n pi pi

    pi (x) = f (x i ) + ( x −x i)s i + ( x −x i )2 [x i , x i+1 ]f

    −s i

    ∆ x i +

    + ( x −x i)2(x −x i+1 )s i+1 + s i −2[x i , x i+1 ]f

    ∆ x2i.

    s i f xi

    [ ]f [ , ]f [ , , ]f [ , , , ]f

    x i f (x i )s ix i f (x i ) [x

    i , x i+1 ]f −s i∆ x i[x i , x i+1 ]f

    si+1 + s i −2[x i , x i+1 ]f ∆ x2i

    x i+1 f (x i+1 ) si+1 −[x i , x i+1 ]f

    ∆ x is i+1x i+1 f (x i+1 )

    pi

    s i =