si-ge nano-structured with tungsten silicide inclusions · 2019. 8. 31. · si-ge with tungsten...

14
Si-Ge Nano-structured with Tungsten Silicide Inclusions Jon Mackey Mechanical Engineering, University of Akron Alp Sehirlioglu Materials Science and Engineering, Case Western Reserve University Fred Dynys RXC, NASA Glenn Research Center NASA Cooperative Agreement: NNX08AB43A https://ntrs.nasa.gov/search.jsp?R=20140012560 2019-08-31T18:10:03+00:00Z

Upload: others

Post on 24-Jan-2021

12 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Si-Ge Nano-structured with Tungsten Silicide Inclusions · 2019. 8. 31. · Si-Ge with Tungsten Silicide Inclusions 1 of 9 Objectives Test Matrix •Investigate composite strategies

Si-Ge Nano-structured with Tungsten Silicide Inclusions

Jon Mackey Mechanical Engineering, University of Akron

Alp Sehirlioglu

Materials Science and Engineering, Case Western Reserve University

Fred Dynys

RXC, NASA Glenn Research Center NASA Cooperative Agreement: NNX08AB43A

https://ntrs.nasa.gov/search.jsp?R=20140012560 2019-08-31T18:10:03+00:00Z

Page 2: Si-Ge Nano-structured with Tungsten Silicide Inclusions · 2019. 8. 31. · Si-Ge with Tungsten Silicide Inclusions 1 of 9 Objectives Test Matrix •Investigate composite strategies

1 of 9 Si-Ge with Tungsten Silicide Inclusions

Objectives Test Matrix

• Investigate composite strategies with proven Si/Ge thermoelectrics.

• Validate theoretical modeling for silicide inclusion in Si/Ge, requires 10nm inclusions.

•Develop reliable uncertainty analysis for thermoelectric transport properties.

•Study thermal stability of composites.

Si/Ge at% Ratio

70/30 80/20 90/10

Tu

ngs

ten

Sili

cid

e

Vo

lum

e F

ract

ion

0%

1%

2%

5%

2% Dopant P-Type, B N-Type, P

Page 3: Si-Ge Nano-structured with Tungsten Silicide Inclusions · 2019. 8. 31. · Si-Ge with Tungsten Silicide Inclusions 1 of 9 Objectives Test Matrix •Investigate composite strategies

1 of 9 Si-Ge with Tungsten Silicide Inclusions

Objectives Test Matrix

• Investigate composite strategies with proven Si/Ge thermoelectrics.

• Validate theoretical modeling for silicide inclusion in Si/Ge, requires 10nm inclusions.

•Develop reliable uncertainty analysis for thermoelectric transport properties.

•Study thermal stability of composites.

Si/Ge at% Ratio

70/30 80/20 90/10

Tu

ngs

ten

Sili

cid

e

Vo

lum

e F

ract

ion

0%

1%

2%

5%

2% Dopant P-Type, B N-Type, P

Page 4: Si-Ge Nano-structured with Tungsten Silicide Inclusions · 2019. 8. 31. · Si-Ge with Tungsten Silicide Inclusions 1 of 9 Objectives Test Matrix •Investigate composite strategies

2 of 9 Si-Ge with Tungsten Silicide Inclusions

1” Diameter

SEM Powder Processing •Planetary Milling

• 8 Hours @ 300-580 rpm • Ball to powder ratio 3-5

•Spark Plasma Sintering (AFRL) • 800-1100°C @ 70-90 MPa • 5-10 min Hold

Milled Powder

Mixed Powder

Sintered Pellet, Crushed

XRD WSi2

Si Ge W

WSi2

Si/Ge

Page 5: Si-Ge Nano-structured with Tungsten Silicide Inclusions · 2019. 8. 31. · Si-Ge with Tungsten Silicide Inclusions 1 of 9 Objectives Test Matrix •Investigate composite strategies

Source Magnitude

Thermocouple radius 0.25 mm

Sample uniformity ±0.1 mm

Thermocouple separation ±0.1 mm

Caliper resolution 0.01 mm

Statistical variation Calculated

DAQ voltage uncertainty 50ppm+1.2µV

DAQ current uncertainty 0.2%+0.3mA

Cold-finger effect Calculated

Wire Seebeck variation ±3 %

Statistical variation Calculated

Absolute temperature ±2 K

DAQ voltage uncertainty 50ppm+1.2µV

DAQ temp. uncertainty 50ppm+1.2µV

3 of 9 Si-Ge with Tungsten Silicide Inclusions

Resistivity

Seebeck

Sources of Error

Total (+2,-6)% Total (+2,-2)% Total (+3,-3)%

Total ±7% Total ±7% Total ±7%

Page 6: Si-Ge Nano-structured with Tungsten Silicide Inclusions · 2019. 8. 31. · Si-Ge with Tungsten Silicide Inclusions 1 of 9 Objectives Test Matrix •Investigate composite strategies

4 of 9 Si-Ge with Tungsten Silicide Inclusions

Si/Ge at% Ratio

70/30 80/20 90/10

Tun

gste

n S

ilici

de

V

olu

me

Fra

ctio

n

0% X X X

1% X X X

2% X X

5% X X X

P-type, B N-type, P

2% Doped Error Bars Typical

Error Bars Typical

Page 7: Si-Ge Nano-structured with Tungsten Silicide Inclusions · 2019. 8. 31. · Si-Ge with Tungsten Silicide Inclusions 1 of 9 Objectives Test Matrix •Investigate composite strategies

5 of 9 Si-Ge with Tungsten Silicide Inclusions

Si/Ge at% Ratio

70/30 80/20 90/10

Tun

gste

n S

ilici

de

V

olu

me

Fra

ctio

n

0% X X

1% X X

2% X X

5% X X

P-type, B N-type, P

2% Doped

Page 8: Si-Ge Nano-structured with Tungsten Silicide Inclusions · 2019. 8. 31. · Si-Ge with Tungsten Silicide Inclusions 1 of 9 Objectives Test Matrix •Investigate composite strategies

6 of 9 Si-Ge with Tungsten Silicide Inclusions

L-2.44E-8 WΩK-2 L-2.44E-8 WΩK-2

Si/Ge

Increasing Ge

Si/Ge at%

Ratio

70 30

80 20

90 10

V.F

.

0% X X

1% X X

2% X X

5% X X

Si/Ge at%

Ratio

70 30

80 20

90 10

V.F

.

0% X X X

1% X X X

2%

5% X X X

Silicide Composites

Si/Ge

Increasing Ge

Silicide Composites

Page 9: Si-Ge Nano-structured with Tungsten Silicide Inclusions · 2019. 8. 31. · Si-Ge with Tungsten Silicide Inclusions 1 of 9 Objectives Test Matrix •Investigate composite strategies

7 of 9 Si-Ge with Tungsten Silicide Inclusions

RTG P-Type RTG N-Type

Si/Ge at% Ratio

70/30 80/20 90/10

Tun

gste

n S

ilici

de

V

olu

me

Fra

ctio

n

0% X X

1% X X

2% X X

5% X X

Si/Ge at% Ratio

70/30 80/20 90/10

Tun

gste

n S

ilici

de

V

olu

me

Fra

ctio

n

0% X X X

1% X X X

2% X X

5% X X X

P-type, B N-type, P

2% Doped

RTG P-Type RTG N-Type

P-type, B N-type, P

2% Doped

Page 10: Si-Ge Nano-structured with Tungsten Silicide Inclusions · 2019. 8. 31. · Si-Ge with Tungsten Silicide Inclusions 1 of 9 Objectives Test Matrix •Investigate composite strategies

7 of 9 Si-Ge with Tungsten Silicide Inclusions

RTG P-Type RTG N-Type

Si/Ge at% Ratio

70/30 80/20 90/10

Tun

gste

n S

ilici

de

V

olu

me

Fra

ctio

n

0% X X

1% X X

2% X X

5% X X

Si/Ge at% Ratio

70/30 80/20 90/10

Tun

gste

n S

ilici

de

V

olu

me

Fra

ctio

n

0% X X X

1% X X X

2% X X

5% X X X

P-type, B N-type, P

2% Doped

RTG P-Type RTG N-Type

P-type, B N-type, P

2% Doped

Page 11: Si-Ge Nano-structured with Tungsten Silicide Inclusions · 2019. 8. 31. · Si-Ge with Tungsten Silicide Inclusions 1 of 9 Objectives Test Matrix •Investigate composite strategies

7 of 9 Si-Ge with Tungsten Silicide Inclusions

RTG P-Type RTG N-Type

Si/Ge at% Ratio

70/30 80/20 90/10

Tun

gste

n S

ilici

de

V

olu

me

Fra

ctio

n

0% X X

1% X X

2% X X

5% X X

Si/Ge at% Ratio

70/30 80/20 90/10

Tun

gste

n S

ilici

de

V

olu

me

Fra

ctio

n

0% X X X

1% X X X

2% X X

5% X X X

P-type, B N-type, P

2% Doped

RTG P-Type RTG N-Type

P-type, B N-type, P

2% Doped

Page 12: Si-Ge Nano-structured with Tungsten Silicide Inclusions · 2019. 8. 31. · Si-Ge with Tungsten Silicide Inclusions 1 of 9 Objectives Test Matrix •Investigate composite strategies

8 of 9 Si-Ge with Tungsten Silicide Inclusions

Si/Ge at% Ratio

70/30 80/20 90/10

Tun

gste

n S

ilici

de

V

olu

me

Fra

ctio

n

0% X X

1% X X X

2% X X

5% X X X

P-type, B N-type, P

2% Doped N-Type

P-Type

Never fully recovers

Dopant Segregated

Dopant Re-distributed

Start

End

Start End Reset

Start End Reset

Page 13: Si-Ge Nano-structured with Tungsten Silicide Inclusions · 2019. 8. 31. · Si-Ge with Tungsten Silicide Inclusions 1 of 9 Objectives Test Matrix •Investigate composite strategies

8 of 9 Si-Ge with Tungsten Silicide Inclusions

Si/Ge at% Ratio

70/30 80/20 90/10

Tun

gste

n S

ilici

de

V

olu

me

Fra

ctio

n

0% X X

1% X X X

2% X X

5% X X X

P-type, B N-type, P

2% Doped N-Type

P-Type

Never fully recovers

Dopant Segregated

Dopant Re-distributed

Start

End

Start End Reset

Start End Reset

N. Savvides & D.M. Rowe, J. Phys. D: Appl. Phys. 14 (1981) D.M. Rowe & N. Savvides, J. Phys. D: Appl. Phys. 12 (1979)

Rowe Data P-Type

Savvides Data N-Type

Page 14: Si-Ge Nano-structured with Tungsten Silicide Inclusions · 2019. 8. 31. · Si-Ge with Tungsten Silicide Inclusions 1 of 9 Objectives Test Matrix •Investigate composite strategies

9 of 9 Si-Ge with Tungsten Silicide Inclusions

Acknowledgements Conclusion

Tom Sabo, Ray Babuder, Ben Kowalski, Clayton Cross

NASA Glenn Research Center

Dr. Michael Cinibulk

AFRL Wright Patterson Air Force Base

Dr. Sabah Bux, Dr. Jean-Pierre Fleurial

JPL

NASA Cooperative Agreement: NNX08AB43A

•Silicide phase successfully reduces lattice thermal conductivity.

• Increased ZT for silicide composites as compared to baseline Si/Ge.

•Need to control oxygen contamination to match baseline Si/Ge to RTG.

•Tungsten silicide phase offers tuning of carrier concentration.

•Silicide phase does not hinder thermal stability.