tutorial: fundamentals of supercritical co2sco2symposium.com/papers2016/tutorials/industrial.pdf ·...

110
Tutorial: Fundamentals of Supercritical CO 2 Grant Musgrove Aaron M. Rimpel Jason C. Wilkes, Ph.D. Southwest Research Institute March 28, 2016 © Southwest Research Institute 2015

Upload: others

Post on 17-Mar-2020

13 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Tutorial: Fundamentals of Supercritical CO2sco2symposium.com/papers2016/Tutorials/Industrial.pdf · turbomachinery, materials, and fluid properties of CO. 2. and CO. 2. mixtures,

Tutorial: Fundamentals of Supercritical CO2

Grant Musgrove Aaron M. Rimpel

Jason C. Wilkes, Ph.D.

Southwest Research Institute

March 28, 2016

© Southwest Research Institute 2015

Page 2: Tutorial: Fundamentals of Supercritical CO2sco2symposium.com/papers2016/Tutorials/Industrial.pdf · turbomachinery, materials, and fluid properties of CO. 2. and CO. 2. mixtures,

Abstract The recent interest to use supercritical CO2 (sCO2) in power cycle

applications over the past decade has resulted in a large amount of literature that focuses on specific areas related to sCO2 power cycles in great detail. Such focus areas are demonstration test facilities, heat exchangers, turbomachinery, materials, and fluid properties of CO2 and CO2 mixtures, to name a few. As work related to sCO2 power cycles continues, more technical depth will be emphasized in each focus area, whereas those unfamiliar with the topic are left to undertake the large task of understanding fundamentals on their own.

The following content provides an introductory tutorial on sCO2 used in power cycle applications, aimed at those who are unfamiliar or only somewhat familiar to the topic. The tutorial includes a brief review of CO2 and its current industrial uses, a primer on thermodynamic power cycles, an overview of supercritical CO2 power cycle applications and machinery design considerations, and a summary of some of the current research and future trends.

2

Page 3: Tutorial: Fundamentals of Supercritical CO2sco2symposium.com/papers2016/Tutorials/Industrial.pdf · turbomachinery, materials, and fluid properties of CO. 2. and CO. 2. mixtures,

This tutorial provides an introduction to sCO2 in power cycle applications

4

sCO2 loop hardware

Supercritical CO2 (sCO2)

Power cycle applications

Research and future trends

Fossil Fuel

Ship-board Propulsion

Geothermal[6-1] [6-2]

[6-3]

[6-4]

[6-5]

Concentrated Solar Power

Pcrit = 7.37 MPa (1070 psi)Tcrit = 31

C (88

F)

Supercritical region

Two-phase region

CO2

7.37 MPa

31

C

Increasing isobars

Page 4: Tutorial: Fundamentals of Supercritical CO2sco2symposium.com/papers2016/Tutorials/Industrial.pdf · turbomachinery, materials, and fluid properties of CO. 2. and CO. 2. mixtures,

CO2 General Information

Page 5: Tutorial: Fundamentals of Supercritical CO2sco2symposium.com/papers2016/Tutorials/Industrial.pdf · turbomachinery, materials, and fluid properties of CO. 2. and CO. 2. mixtures,

7

Spring

Autumn

Image source [1-1]

CO2 is a gas at atmospheric conditions with a concentration of ≈ 400 ppm

Page 6: Tutorial: Fundamentals of Supercritical CO2sco2symposium.com/papers2016/Tutorials/Industrial.pdf · turbomachinery, materials, and fluid properties of CO. 2. and CO. 2. mixtures,

8

combustion

fossilization

volcanic activity

respiration respiration

phot

osyn

thes

is

respiration in decomposers

non-energy uses, oil+gas production

byproducts, etc.

Carbon compounds in dead matter

(biomass)

Organic compounds in animals

Organic compounds in plants

Carbon in fossil fuels

Carbon compounds in geological formations

feeding

CO2 in atmosphere

Image source [1-3]

There are both industrial and natural contributors and consumers of CO2 in our atmosphere

Page 7: Tutorial: Fundamentals of Supercritical CO2sco2symposium.com/papers2016/Tutorials/Industrial.pdf · turbomachinery, materials, and fluid properties of CO. 2. and CO. 2. mixtures,

9 Source: “U.S. Climate Action Report 2014”

Fossil fuel combustion is the largest industrial contributor to CO2 production

Page 8: Tutorial: Fundamentals of Supercritical CO2sco2symposium.com/papers2016/Tutorials/Industrial.pdf · turbomachinery, materials, and fluid properties of CO. 2. and CO. 2. mixtures,

10

Transportation (petroleum) and electricity generation (coal) majority contributors of CO2

Source: “U.S. Climate Action Report 2014”

Page 9: Tutorial: Fundamentals of Supercritical CO2sco2symposium.com/papers2016/Tutorials/Industrial.pdf · turbomachinery, materials, and fluid properties of CO. 2. and CO. 2. mixtures,

International regulations are continually reducing CO2 emissions in vehicles

11 Source: International Council on Clean Transportation, Policy Update 2014

Page 10: Tutorial: Fundamentals of Supercritical CO2sco2symposium.com/papers2016/Tutorials/Industrial.pdf · turbomachinery, materials, and fluid properties of CO. 2. and CO. 2. mixtures,

13

Food & beverage

Fire extin-guishers

Welding (shield gas)

Agriculture

Oil & gas production (more info with sCO2)

Various image sources [1-4]

CO2 Industrial Applications

Page 11: Tutorial: Fundamentals of Supercritical CO2sco2symposium.com/papers2016/Tutorials/Industrial.pdf · turbomachinery, materials, and fluid properties of CO. 2. and CO. 2. mixtures,

What is Supercritical CO2?

Page 12: Tutorial: Fundamentals of Supercritical CO2sco2symposium.com/papers2016/Tutorials/Industrial.pdf · turbomachinery, materials, and fluid properties of CO. 2. and CO. 2. mixtures,

CO2 is supercritical if the pressure and temperature are greater than the critical values

REFPROP (2007), EOS CO2: Span & Wagner (1996)

Supercritical region

Two-phase region

7.37 MPa (1,070 psi)

31°C (88°F)

Page 13: Tutorial: Fundamentals of Supercritical CO2sco2symposium.com/papers2016/Tutorials/Industrial.pdf · turbomachinery, materials, and fluid properties of CO. 2. and CO. 2. mixtures,

Video of Supercritical CO2

18

Image source: [2-2]

Page 14: Tutorial: Fundamentals of Supercritical CO2sco2symposium.com/papers2016/Tutorials/Industrial.pdf · turbomachinery, materials, and fluid properties of CO. 2. and CO. 2. mixtures,

Air

Air

GT TIT

pp T

hC

∂∂

= CO2

Supercritical region

CO2

Fluids operating near their critical point have dramatic changes in enthalpy

REFPROP (2007)

Page 15: Tutorial: Fundamentals of Supercritical CO2sco2symposium.com/papers2016/Tutorials/Industrial.pdf · turbomachinery, materials, and fluid properties of CO. 2. and CO. 2. mixtures,

CO2 density sharply decreases near the critical point

REFPROP (2007)

Supercritical region

10%

Page 16: Tutorial: Fundamentals of Supercritical CO2sco2symposium.com/papers2016/Tutorials/Industrial.pdf · turbomachinery, materials, and fluid properties of CO. 2. and CO. 2. mixtures,

CO2 density sharply decreases near the critical point

REFPROP (2007)

Supercritical region

30% ∆ρ = 10%

Page 17: Tutorial: Fundamentals of Supercritical CO2sco2symposium.com/papers2016/Tutorials/Industrial.pdf · turbomachinery, materials, and fluid properties of CO. 2. and CO. 2. mixtures,

CO2 density decreases near the critical point

REFPROP (2007)

Supercritical region

70% ∆ρ = 30%

∆ρ = 10%

Page 18: Tutorial: Fundamentals of Supercritical CO2sco2symposium.com/papers2016/Tutorials/Industrial.pdf · turbomachinery, materials, and fluid properties of CO. 2. and CO. 2. mixtures,

CO2 speed of sound decreases through the critical point

CO2

REFPROP (2007)

Supercritical region

Page 19: Tutorial: Fundamentals of Supercritical CO2sco2symposium.com/papers2016/Tutorials/Industrial.pdf · turbomachinery, materials, and fluid properties of CO. 2. and CO. 2. mixtures,

Supercritical region

Air

Water

CO2 viscosity decreases through the critical point

1 µPa-s = 10-6 kg/m/s REFPROP (2007)

Page 20: Tutorial: Fundamentals of Supercritical CO2sco2symposium.com/papers2016/Tutorials/Industrial.pdf · turbomachinery, materials, and fluid properties of CO. 2. and CO. 2. mixtures,

10

100

1000

100 200 300 400 500 600 700 800 900 1000

Thermal Conductivity

[mW/m/K]

Density [kg/m3]

CO2 thermal conductivity is enhanced near the critical region

305K 307K

309K

350K

Critical density

REFPROP (2007)

Water

Page 21: Tutorial: Fundamentals of Supercritical CO2sco2symposium.com/papers2016/Tutorials/Industrial.pdf · turbomachinery, materials, and fluid properties of CO. 2. and CO. 2. mixtures,

10

100

1000

100 200 300 400 500 600 700 800 900 1000

Thermal Conductivity

[mW/m/K]

Density [kg/m3]

CO2 thermal conductivity is enhanced near the critical region

305K 307K

309K

350K

Critical density

REFPROP (2007)

Water

Page 22: Tutorial: Fundamentals of Supercritical CO2sco2symposium.com/papers2016/Tutorials/Industrial.pdf · turbomachinery, materials, and fluid properties of CO. 2. and CO. 2. mixtures,

Power Cycle Basics

Page 23: Tutorial: Fundamentals of Supercritical CO2sco2symposium.com/papers2016/Tutorials/Industrial.pdf · turbomachinery, materials, and fluid properties of CO. 2. and CO. 2. mixtures,

Power Cycle Basics Overview

48

Carnot – “the standard”

Brayton – gas cycle

Rankine – vapor cycle

Differences between ideal and actual cycles Improvements to simple cycle

Also…

Page 24: Tutorial: Fundamentals of Supercritical CO2sco2symposium.com/papers2016/Tutorials/Industrial.pdf · turbomachinery, materials, and fluid properties of CO. 2. and CO. 2. mixtures,

Carnot Cycle Processes

(1-2) Isothermal heat addition (2-3) Isentropic expansion (3-4) Isothermal heat rejection (4-1) Isentropic compression

Not practical to build Most efficient heat

engine

49

Qout Qin

Wturb

Tem

pera

ture

Entropy

Qout

Qin

TH

TL

1

2

3

4

1 2

3 4

S1 = S4 S2 = S3

ηth,Carnot = 1 – TL/TH

TL : Limited by available sink

TH : Limited by materials

Comp. Comp. Turb. Turb.

Wnet = Wturb - Wcomp

Wcomp

Page 25: Tutorial: Fundamentals of Supercritical CO2sco2symposium.com/papers2016/Tutorials/Industrial.pdf · turbomachinery, materials, and fluid properties of CO. 2. and CO. 2. mixtures,

∫ ⋅

dST

QQ outin

∫ ⋅

dVP

WW outin

Thermodynamics Aside… 1st Law

50

∫ ⋅dVP

Pres

sure

, P

Volume, V

1

2 3

4

∫ ⋅dST

Tem

pera

ture

, T

Entropy, S

1

2

3

4

Net Mechanical Work Produced

Net Heat Utilized =

=

= C

T

P

Page 26: Tutorial: Fundamentals of Supercritical CO2sco2symposium.com/papers2016/Tutorials/Industrial.pdf · turbomachinery, materials, and fluid properties of CO. 2. and CO. 2. mixtures,

Brayton Cycle (Ideal) Processes

(1-2) Isentropic compression (2-3) Const. pres. heat addition (3-4) Isentropic expansion (4-1) Const. pres. heat reject.

Open- or closed-loop

51

ηth,Brayton = 1 – PR(1-k)/k

Comp. Turb.

HP-HE

LP-HE

Qin

Qout

Wnet

1

2 3

4

Tem

pera

ture

, T

Entropy, S

1

2

3

4

Qout

Qin

Tem

pera

ture

, T

Entropy, S

Tmax

Tmin

PR, k : ηth

Optimal PR for net work

Closed-loop

Page 27: Tutorial: Fundamentals of Supercritical CO2sco2symposium.com/papers2016/Tutorials/Industrial.pdf · turbomachinery, materials, and fluid properties of CO. 2. and CO. 2. mixtures,

Rankine Cycle (Ideal) Processes

(1-2) Isentropic compression (2-3) Const. pres. heat addition (3-4) Isentropic expansion (4-1) Const. pres. heat reject.

Same processes as Brayton; different hardware

Phase changes E.g., steam cycle

52

Turb.

Boiler

Condenser

Qin

Qout

WT,out

1

2 3

4

Pump WP,in

Tem

pera

ture

, T

Entropy, S

Qin

Qout

Liquid

Gas

Liquid+ Vapor

1

2

3

4

ηth = 1 – Qin/Qout

Page 28: Tutorial: Fundamentals of Supercritical CO2sco2symposium.com/papers2016/Tutorials/Industrial.pdf · turbomachinery, materials, and fluid properties of CO. 2. and CO. 2. mixtures,

Ideal vs. Actual Processes

53

1-2, 3-4: Irreversibilities

2-3, 4-1: Pressure losses

Brayton Rankine

Page 29: Tutorial: Fundamentals of Supercritical CO2sco2symposium.com/papers2016/Tutorials/Industrial.pdf · turbomachinery, materials, and fluid properties of CO. 2. and CO. 2. mixtures,

Power Cycle Variations

Regeneration Intercooling Reheating Recompression

What is supercritical power cycle?

54

Page 30: Tutorial: Fundamentals of Supercritical CO2sco2symposium.com/papers2016/Tutorials/Industrial.pdf · turbomachinery, materials, and fluid properties of CO. 2. and CO. 2. mixtures,

Brayton Cycle + Regeneration

55

T4 < T2

Regenerator = counter-flow HE (a.k.a. recuperator)

Effectiveness: ε = (h5-h2)/(h4-h2)

Figure reference: Cengel and Boles (2002)

Page 31: Tutorial: Fundamentals of Supercritical CO2sco2symposium.com/papers2016/Tutorials/Industrial.pdf · turbomachinery, materials, and fluid properties of CO. 2. and CO. 2. mixtures,

Intercooling & Reheating… Two Sides of the Same Coin

56

Minimize compressor work input

Increase fluid density

Intercooling

Maximize turbine work output

Decrease fluid density

Reheating

Multi-stage intercooling

Multi-stage reheating

Approach isothermal conditions

Page 32: Tutorial: Fundamentals of Supercritical CO2sco2symposium.com/papers2016/Tutorials/Industrial.pdf · turbomachinery, materials, and fluid properties of CO. 2. and CO. 2. mixtures,

Multi-Stage Intercooling & Reheating

57

Multi-stage reheat

Multi-stage intercool

Approximates Ericsson cycle

≈ Isothermal expansion

≈ Isothermal compression

ηth,Ericsson = ηth,Carnot Figure reference: Cengel and Boles (2002)

Page 33: Tutorial: Fundamentals of Supercritical CO2sco2symposium.com/papers2016/Tutorials/Industrial.pdf · turbomachinery, materials, and fluid properties of CO. 2. and CO. 2. mixtures,

Brayton Cycle + Regeneration + Intercooling + Reheating

58

Figure reference: Cengel and Boles (2002)

Page 34: Tutorial: Fundamentals of Supercritical CO2sco2symposium.com/papers2016/Tutorials/Industrial.pdf · turbomachinery, materials, and fluid properties of CO. 2. and CO. 2. mixtures,

60 Source: Ludington (2009)

Regeneration vs. Recompression in Brayton Cycle

Page 35: Tutorial: Fundamentals of Supercritical CO2sco2symposium.com/papers2016/Tutorials/Industrial.pdf · turbomachinery, materials, and fluid properties of CO. 2. and CO. 2. mixtures,

Rankine Cycle + Reheating

61

Multi-stage reheat

Figure reference: Cengel and Boles (2002)

Page 36: Tutorial: Fundamentals of Supercritical CO2sco2symposium.com/papers2016/Tutorials/Industrial.pdf · turbomachinery, materials, and fluid properties of CO. 2. and CO. 2. mixtures,

What is a Supercritical Power Cycle?

62

Tem

pera

ture

, T

Entropy, S

Supercritical region

Tcrit

Pcrit

Liquid region

Gas region

Liquid + vapor region

Page 37: Tutorial: Fundamentals of Supercritical CO2sco2symposium.com/papers2016/Tutorials/Industrial.pdf · turbomachinery, materials, and fluid properties of CO. 2. and CO. 2. mixtures,

sCO2 Power Cycles

Page 38: Tutorial: Fundamentals of Supercritical CO2sco2symposium.com/papers2016/Tutorials/Industrial.pdf · turbomachinery, materials, and fluid properties of CO. 2. and CO. 2. mixtures,

Why sCO2 for Power Cycles?

64

Property Effect High density near C.P.

• Reduced compressor work, large Wnet • Allow more-compact turbomachinery to achieve same

power • Less complex – e.g., fewer compressor and turbine stages,

may not need intercooling Near-ambient Tcrit

• Good availability for most temperature sinks and sources

Abundant • Low cost Familiar • Experience with standard materials

Page 39: Tutorial: Fundamentals of Supercritical CO2sco2symposium.com/papers2016/Tutorials/Industrial.pdf · turbomachinery, materials, and fluid properties of CO. 2. and CO. 2. mixtures,

CO2 Critical Point Comparison

65 REFPROP (2007)

Critical Pressure

Critical Temperature

(3626)

(2901)

(2176)

(1450)

(725)

(psi) MPa 25

20

15

10

5

0 0 200 400 600 800 1000

(360) (720) (1080) (1440) (1800)

H2O

SO2

R134a

CO2

Air

He

Ambient

(R)

K

Page 40: Tutorial: Fundamentals of Supercritical CO2sco2symposium.com/papers2016/Tutorials/Industrial.pdf · turbomachinery, materials, and fluid properties of CO. 2. and CO. 2. mixtures,

CO2 Cost Comparison*

66

*Based on market pricing for laboratory-grade substance

Page 41: Tutorial: Fundamentals of Supercritical CO2sco2symposium.com/papers2016/Tutorials/Industrial.pdf · turbomachinery, materials, and fluid properties of CO. 2. and CO. 2. mixtures,

The sCO2 power cycle can provide efficiencies near a steam cycle for less $/kWh

67 Source: Wright (2011) and Dostal (2004)

HeSteam

He

Page 42: Tutorial: Fundamentals of Supercritical CO2sco2symposium.com/papers2016/Tutorials/Industrial.pdf · turbomachinery, materials, and fluid properties of CO. 2. and CO. 2. mixtures,

Relative Size of Components

68

Adapted from Dostal (2004)

5 m Steam turbine: 55 stages / 250 MW

Mitsubishi Heavy Industries (with casing)

Helium turbine: 17 stages / 333 MW (167 MWe) X.L. Yan, L.M. Lidsky (MIT) (without casing)

sCO2 turbine: 4 stages / 450 MW (300 MWe) (without casing)

Note: Compressors are comparable in size

1 m

Source: Wright (2011)

Page 43: Tutorial: Fundamentals of Supercritical CO2sco2symposium.com/papers2016/Tutorials/Industrial.pdf · turbomachinery, materials, and fluid properties of CO. 2. and CO. 2. mixtures,

Example: 10 MWe Turbine Comparison

69 Source: Persichilli et al. (2012)

Page 44: Tutorial: Fundamentals of Supercritical CO2sco2symposium.com/papers2016/Tutorials/Industrial.pdf · turbomachinery, materials, and fluid properties of CO. 2. and CO. 2. mixtures,

sCO2 in Power Cycle Applications

Page 45: Tutorial: Fundamentals of Supercritical CO2sco2symposium.com/papers2016/Tutorials/Industrial.pdf · turbomachinery, materials, and fluid properties of CO. 2. and CO. 2. mixtures,

Supercritical CO2 in Power Cycle Applications

119

Nuclear

Fossil Fuel

Ship-board Propulsion

Geothermal [6-1] [6-2]

[6-3]

[6-4]

[6-5]

Concentrated Solar Power

Page 46: Tutorial: Fundamentals of Supercritical CO2sco2symposium.com/papers2016/Tutorials/Industrial.pdf · turbomachinery, materials, and fluid properties of CO. 2. and CO. 2. mixtures,

“Typical” sCO2 Cycle Conditions Application Organization Motivation Size [MWe] Temperature

[C] Pressure

[bar] Nuclear DOE-NE Efficiency, Size 300 - 1000 400 - 800 350

Fossil Fuel DOE-FE Efficiency, Water Reduction

500 - 1000 550 - 1200 150 - 350

Concentrated Solar Power

DOE-EE Efficiency, Size, Water Reduction

10 - 100 500 - 800 350

Shipboard Propulsion

DOE-NNSA Size, Efficiency 10, 100 400 - 800 350

Shipboard House Power

ONR Size, Efficiency < 1, 1, 10 230 - 650 150 - 350

Waste Heat Recovery

DOE-EE ONR

Size, Efficiency, Simple Cycles

1, 10, 100 < 230; 230-650 15 - 350

Geothermal DOE-EERE Efficiency, Working fluid

1, 10, 50 100 - 300 150

Page 47: Tutorial: Fundamentals of Supercritical CO2sco2symposium.com/papers2016/Tutorials/Industrial.pdf · turbomachinery, materials, and fluid properties of CO. 2. and CO. 2. mixtures,

Heat Source Operating Temperature Range & Efficiency

121

Assumptions (Turbomachinery Eff (MC 85%, RC 87%, T 90%), Wright (2011)

Page 48: Tutorial: Fundamentals of Supercritical CO2sco2symposium.com/papers2016/Tutorials/Industrial.pdf · turbomachinery, materials, and fluid properties of CO. 2. and CO. 2. mixtures,

Nuclear

Fossil Fuel

Ship-board Propulsion

Geothermal [6-1] [6-2]

[6-3]

[6-4]

[6-5]

Concentrated Solar Power

Supercritical CO2 in Power Cycle Applications

122

Page 49: Tutorial: Fundamentals of Supercritical CO2sco2symposium.com/papers2016/Tutorials/Industrial.pdf · turbomachinery, materials, and fluid properties of CO. 2. and CO. 2. mixtures,

Concentrated Solar Power (CSP) The Sun-Motor (1903)

• Steam Cycle • Pasadena, CA • Delivered 1400 GPM of water

Solar One (1982) • 10 MWe water-steam solar

power tower facility • Barstow, CA • Achieved 96% availability

during hours of sunshine Solar Two (1995)

• Incorporated a highly efficient (~99%) molten-salt receiver and thermal energy storage system into Solar One.

123

Image source: [6-7]

Image source: [6-6]

Page 50: Tutorial: Fundamentals of Supercritical CO2sco2symposium.com/papers2016/Tutorials/Industrial.pdf · turbomachinery, materials, and fluid properties of CO. 2. and CO. 2. mixtures,

CSP – Improvement Opportunities

124

Advanced power cycles • Supercritical steam

Rankine • High temperature

air Brayton • Supercritical CO2

Cooling • 650 gal H20/MWh • Dry-cooling technology

is needed in most desert venues for CSP

− 43°C Dry bulb • Printed circuit heat

exchangers may provide a solution

• Supercritical CO2

Image source: [6-1]

Page 51: Tutorial: Fundamentals of Supercritical CO2sco2symposium.com/papers2016/Tutorials/Industrial.pdf · turbomachinery, materials, and fluid properties of CO. 2. and CO. 2. mixtures,

sCO2 CSP Process Diagram

125

Dual-shaft, tower receiver sCO2 Brayton Cycle solar thermal power system with thermal energy storage, Zhiwen and Turchi (2011)

Heliostats

Page 52: Tutorial: Fundamentals of Supercritical CO2sco2symposium.com/papers2016/Tutorials/Industrial.pdf · turbomachinery, materials, and fluid properties of CO. 2. and CO. 2. mixtures,

CSP Efficiencies vs. Power Cycle

126

Data from Stekli (2009)

0%

20%

40%

60%

80%

100%

0 250 500 750 1000 1250 1500

Cycle Efficiency

Cycle Temperature [°C]

Commercial Lab/Pilot

Concept Demonstration

Subcritical H2O Air Brayton

Air Brayton CC

Supercritical H2O

Supercritical CO2 Supercritical CO2 CC

Page 53: Tutorial: Fundamentals of Supercritical CO2sco2symposium.com/papers2016/Tutorials/Industrial.pdf · turbomachinery, materials, and fluid properties of CO. 2. and CO. 2. mixtures,

The transient challenges of a concentrated solar power plant are significant

01020304050

12:00 AM 6:00 AM 12:00 PM 6:00 PM 12:00 AM

Ambient Temperature °C

Page 54: Tutorial: Fundamentals of Supercritical CO2sco2symposium.com/papers2016/Tutorials/Industrial.pdf · turbomachinery, materials, and fluid properties of CO. 2. and CO. 2. mixtures,

Optimal Cycle Configuration with varying Compressor Inlet Temperature

• SAM modeling of typical sites shows an annual average compressor inlet temperature to be 37-38ºC assuming 15ºC approach temperature in the cooler

• Cycle Modeling – Optimal flow split

• 22-33% • Heavily dependent on CIT

– Optimal PR • Varies with use of

intercooling

– Intercooled cycles are more efficient on hot days, and less efficient on cool days

128

35 40 45 50 5545

46

47

48

49

50

51

Cyc

le E

ffici

ency

[%]

Comparison of Recompression Cycles:Flow Split and Pressure Ratio at Best Efficiency Points

35 40 45 50 5520

25

30

35

Flow

Spl

it [%

]

35 40 45 50 55

Compressor Inlet Temp [ ° C]

2.5

3

3.5

Pre

ssur

e R

atio

[-]

A

A

A

B

B

B

Average Annual Inlet Temp/ Design Point

Page 55: Tutorial: Fundamentals of Supercritical CO2sco2symposium.com/papers2016/Tutorials/Industrial.pdf · turbomachinery, materials, and fluid properties of CO. 2. and CO. 2. mixtures,

Wide-Range Impeller Requirements

• Range Requirements at Optimal Efficiency Condition (without using range reduction techniques)

– Compressor > 55% – Recompressor > 37%

• Control Strategies – Alter flow split and pressure ratio to

reduce compressor requirements – Control compressor inlet temperature – Employ inlet guide vanes

129

0102030405060708090

0.0 0.2 0.4

Poly

trop

ic H

ead,

kJ/

kg

Volume Flow, m3/s

Main Compressor - No Intercooling

Recompressor - No Intercooling

Main Compressor - Intercooled

Recompressor - Intercooled

Page 56: Tutorial: Fundamentals of Supercritical CO2sco2symposium.com/papers2016/Tutorials/Industrial.pdf · turbomachinery, materials, and fluid properties of CO. 2. and CO. 2. mixtures,

CSP Compressor Inlet Variation and Turbomachinery Performance

132

Figure 5: Comparison of Operating Range and Pressure Ratio Requirements [Modified from Japikse[5]]

Page 57: Tutorial: Fundamentals of Supercritical CO2sco2symposium.com/papers2016/Tutorials/Industrial.pdf · turbomachinery, materials, and fluid properties of CO. 2. and CO. 2. mixtures,

Conceptual 10 MWe Integrally Geared Compressor Applied to Recuperated Brayton Cycle

Expanders

Compressors

Re-Compressors

Main Oil Pump

Shaft to Generator

Generator

Page 58: Tutorial: Fundamentals of Supercritical CO2sco2symposium.com/papers2016/Tutorials/Industrial.pdf · turbomachinery, materials, and fluid properties of CO. 2. and CO. 2. mixtures,

IGC Offers Compact Configuration for this Application

Generator

Turbine Gea

rbox

R

e-C

ompr

esso

r C

ompr

esso

r

Generator G

earb

ox

Compressor Re-

Compressor G

earb

ox

Turbines

Typical IGC Package

Conventional Turbomachinery Train

• An IGC package incorporates all the key elements of a conventional train in a much more compact package

• Compressor, re-compressor, turbine and gearbox are assembled in a single compact core. • The second gearbox, additional couplings and housings in the conventional train can be eliminated • Simple IGC package can potentially reduce costs by up to 35% • Reduced mechanical complexity improved reliability and reduced maintenance

Page 59: Tutorial: Fundamentals of Supercritical CO2sco2symposium.com/papers2016/Tutorials/Industrial.pdf · turbomachinery, materials, and fluid properties of CO. 2. and CO. 2. mixtures,

Nuclear

Fossil Fuel

Ship-board Propulsion

Geothermal [6-1] [6-2]

[6-3]

[6-4]

[6-5]

Concentrated Solar Power

Supercritical CO2 in Power Cycle Applications

135

Page 60: Tutorial: Fundamentals of Supercritical CO2sco2symposium.com/papers2016/Tutorials/Industrial.pdf · turbomachinery, materials, and fluid properties of CO. 2. and CO. 2. mixtures,

Rankine Cycle Application: Nuclear Power Generation

136

Image source: [6-8]

Page 61: Tutorial: Fundamentals of Supercritical CO2sco2symposium.com/papers2016/Tutorials/Industrial.pdf · turbomachinery, materials, and fluid properties of CO. 2. and CO. 2. mixtures,

sCO2 for Nuclear Applications (550°C-700°C, 34 MPa)

137

Image source: [6-4]

Image source: [6-9]

Page 62: Tutorial: Fundamentals of Supercritical CO2sco2symposium.com/papers2016/Tutorials/Industrial.pdf · turbomachinery, materials, and fluid properties of CO. 2. and CO. 2. mixtures,

Proposed Nuclear sCO2 Cycles Direct Cycle

• No primary and secondary Na loops

• Lower Void Reactivity

Indirect Cycle

• Primary Na loop • Smaller core

size

138 Kato et al. (2007)

Page 63: Tutorial: Fundamentals of Supercritical CO2sco2symposium.com/papers2016/Tutorials/Industrial.pdf · turbomachinery, materials, and fluid properties of CO. 2. and CO. 2. mixtures,

Nuclear Plant Efficiency vs. Cycle Prop.

140 Kato et al. (2007)

Page 64: Tutorial: Fundamentals of Supercritical CO2sco2symposium.com/papers2016/Tutorials/Industrial.pdf · turbomachinery, materials, and fluid properties of CO. 2. and CO. 2. mixtures,

Advantages of CO2 Cycle vs. Helium Cycle in Nuclear Applications

Pro Con Smaller turbomachinery than steam or helium

Helium preferred to CO2 as a reactor coolant for cooling capability and inertness

CO2 Brayton cycles are more efficient than helium at medium reactor temperatures

CO2 requires a larger reactor than helium or an indirect cycle

CO2 is 10× cheaper than Helium New technology

141

Page 65: Tutorial: Fundamentals of Supercritical CO2sco2symposium.com/papers2016/Tutorials/Industrial.pdf · turbomachinery, materials, and fluid properties of CO. 2. and CO. 2. mixtures,

Fossil Fuel [6-1] [6-2]

Supercritical CO2 in Power Cycle Applications

142

Nuclear Ship-board Propulsion

Geothermal [6-3]

[6-4]

[6-5]

Concentrated Solar Power

Page 66: Tutorial: Fundamentals of Supercritical CO2sco2symposium.com/papers2016/Tutorials/Industrial.pdf · turbomachinery, materials, and fluid properties of CO. 2. and CO. 2. mixtures,

Oxy-Fuel Combustion

143

Conventional Combustion

Air2 2(78% N , 21% O )

(Solar Turbines 2012)Fuel

Oxy-Fuel Combustion

Fuel 2H O

2O 2CO

Page 67: Tutorial: Fundamentals of Supercritical CO2sco2symposium.com/papers2016/Tutorials/Industrial.pdf · turbomachinery, materials, and fluid properties of CO. 2. and CO. 2. mixtures,

Direct Oxy-Fuel Combustion

144

Power Out

NG

CO2 Compressor

Oxy Combustor

CO2 Turbine

HRSG Steam

Rankine Cycle

Steam Turbine

Generator

Generator

Condenser

Water

Electricity

Electricity

O2

CO2 CO2

CO2

Page 68: Tutorial: Fundamentals of Supercritical CO2sco2symposium.com/papers2016/Tutorials/Industrial.pdf · turbomachinery, materials, and fluid properties of CO. 2. and CO. 2. mixtures,

Indirect Oxy-Fuel Combustion

145

Zero Emission Oxy-Coal Power Plant with Supercritical CO2 Cycle, Johnson et al. (2012)

Page 69: Tutorial: Fundamentals of Supercritical CO2sco2symposium.com/papers2016/Tutorials/Industrial.pdf · turbomachinery, materials, and fluid properties of CO. 2. and CO. 2. mixtures,

Ship-board Propulsion

[6-5]

Nuclear

Fossil Fuel

Geothermal [6-1] [6-2]

[6-3]

[6-4]

Concentrated Solar Power

Supercritical CO2 in Power Cycle Applications

146

Page 70: Tutorial: Fundamentals of Supercritical CO2sco2symposium.com/papers2016/Tutorials/Industrial.pdf · turbomachinery, materials, and fluid properties of CO. 2. and CO. 2. mixtures,

Ship-board Propulsion Nuclear sCO2 cycles? Improved power to weight Rapid startup Bottoming cycles

147 Source: Dostal (2004)

Image source: [6-10]

Page 71: Tutorial: Fundamentals of Supercritical CO2sco2symposium.com/papers2016/Tutorials/Industrial.pdf · turbomachinery, materials, and fluid properties of CO. 2. and CO. 2. mixtures,

Nuclear

Fossil Fuel

Ship-board Propulsion

[6-1] [6-2]

[6-4]

[6-5]

Concentrated Solar Power

Supercritical CO2 in Power Cycle Applications

148

Geothermal [6-3]

Page 72: Tutorial: Fundamentals of Supercritical CO2sco2symposium.com/papers2016/Tutorials/Industrial.pdf · turbomachinery, materials, and fluid properties of CO. 2. and CO. 2. mixtures,

Geothermal Low Temperature Heat Source

• T ≈ 210°C, P ≈ 100 bar

149 Pruess (May 19, 2010)

Page 73: Tutorial: Fundamentals of Supercritical CO2sco2symposium.com/papers2016/Tutorials/Industrial.pdf · turbomachinery, materials, and fluid properties of CO. 2. and CO. 2. mixtures,

Other sCO2 Power Cycle Applications

150

Waste Heat Recovery

Non-Concentrated Solar Power

Zhang (2005)

Image source: [6-11] Combined Heat & Power

Page 74: Tutorial: Fundamentals of Supercritical CO2sco2symposium.com/papers2016/Tutorials/Industrial.pdf · turbomachinery, materials, and fluid properties of CO. 2. and CO. 2. mixtures,

Waste Heat Recovery (Bottoming)

Rankine Cycle Description 1. Liquid CO2 is pumped to supercritical pressure 2. sCO2 accepts waste heat at recuperator and

waste heat exchanger 3. High energy sCO2 is expanded at turbo-

alternator producing power 4. Expanded sCO2 is cooled at recuperator and

condensed to a liquid at condenser

151

1

2

3

4

Image source: [6-11]

Image source: [6-12]

Page 75: Tutorial: Fundamentals of Supercritical CO2sco2symposium.com/papers2016/Tutorials/Industrial.pdf · turbomachinery, materials, and fluid properties of CO. 2. and CO. 2. mixtures,

sCO2 Rankine Cycle in Non-Concentrated Solar Power NCSP (Trans-critical Rankine) Tt = 180°C

• ηe,exp = 8.75%-9.45% Photovoltaic

• ηe,exp = 8.2%

152

Zhang (2007)

Zhang (2005)

Page 76: Tutorial: Fundamentals of Supercritical CO2sco2symposium.com/papers2016/Tutorials/Industrial.pdf · turbomachinery, materials, and fluid properties of CO. 2. and CO. 2. mixtures,

sCO2 Rankine Cycle in Combined Heat and Power (CHP) Electrical efficiency

• Higher than ordinary steam CHP • Cascaded s-CO2 plant performed best

153 Moroz (2014)

Page 77: Tutorial: Fundamentals of Supercritical CO2sco2symposium.com/papers2016/Tutorials/Industrial.pdf · turbomachinery, materials, and fluid properties of CO. 2. and CO. 2. mixtures,

sCO2 as a Refrigerant

154

Image source: [6-13] Image source: [6-14]

Page 78: Tutorial: Fundamentals of Supercritical CO2sco2symposium.com/papers2016/Tutorials/Industrial.pdf · turbomachinery, materials, and fluid properties of CO. 2. and CO. 2. mixtures,

sCO2 vs R-22 in Refrigeration

155 Brown (2002)

Employed MCHEs Summary

• CO2 COP vs. R-22 − 42% Lower at 27.8°C − 57% Lower at 40.6°C

• Majority of entropy generation in CO2 cycle was in the expansion device

Page 79: Tutorial: Fundamentals of Supercritical CO2sco2symposium.com/papers2016/Tutorials/Industrial.pdf · turbomachinery, materials, and fluid properties of CO. 2. and CO. 2. mixtures,

sCO2 in Heat Pumps

sCO2 replaced as a refrigerant in domestic heat pump hot water heater in Japan. • COP = 8, 90°C (194°F) • Compared to COPtyp=4-5

156

EcoCute Heat Pump (2007)

h e

e

Q WCOPW

+=

Image source: [6-14]

Page 80: Tutorial: Fundamentals of Supercritical CO2sco2symposium.com/papers2016/Tutorials/Industrial.pdf · turbomachinery, materials, and fluid properties of CO. 2. and CO. 2. mixtures,

157

Page 81: Tutorial: Fundamentals of Supercritical CO2sco2symposium.com/papers2016/Tutorials/Industrial.pdf · turbomachinery, materials, and fluid properties of CO. 2. and CO. 2. mixtures,

sCO2 Power Cycle

Research Efforts

Page 82: Tutorial: Fundamentals of Supercritical CO2sco2symposium.com/papers2016/Tutorials/Industrial.pdf · turbomachinery, materials, and fluid properties of CO. 2. and CO. 2. mixtures,

Development of a High Efficiency Hot Gas Turbo-expander and Low Cost Heat Exchangers for Optimized CSP SCO2 Operation J. Jeffrey Moore, Ph.D. Klaus Brun, Ph.D. Pablo Bueno, Ph.D. Stefan Cich Neal Evans Kevin Hoopes Southwest Research Institute C.J. Kalra, Ph.D., Doug Hofer, Ph.D. Thomas Farineau General Electric John Davis Lalit Chordia Thar Energy Brian Morris Joseph McDonald Ken Kimball Bechtel Marine

159

Taken from SunShot Subprogram Review: Concentrating Solar Power (Sunshot Grand Challenge Summit Anaheim, CA, May 19-22, 2014)

Page 83: Tutorial: Fundamentals of Supercritical CO2sco2symposium.com/papers2016/Tutorials/Industrial.pdf · turbomachinery, materials, and fluid properties of CO. 2. and CO. 2. mixtures,

Project Objectives To develop a novel, high-efficiency supercritical sCO2 turbo-expander

optimized for the highly transient solar power plant duty cycle profile. – This MW-scale design advances the state-of-the-art of sCO2 turbo-expanders

from TRL3 to TRL6. To optimize compact heat exchangers for sCO2 applications to drastically

reduce their manufacturing costs. The turbo-expander and heat exchanger will be tested in a 1-MWe test

loop fabricated to demonstrate component performance and endurance. Turbine is designed for 10 MW output in order to achieve industrial scale The scalable sCO2 expander design and improved heat exchanger address

and close two critical technology gaps required for an optimized CSP sCO2 power plant

Provide a major stepping stone on the pathway to achieving CSP power at $0.06/kW-hr levelized cost of electricity (LCOE), increasing energy conversion efficiency to greater than 50% and reducing total power block cost to below $1,200/kW installed.

160

Page 84: Tutorial: Fundamentals of Supercritical CO2sco2symposium.com/papers2016/Tutorials/Industrial.pdf · turbomachinery, materials, and fluid properties of CO. 2. and CO. 2. mixtures,

Work has been divided into three phases that emulate development process from TRL3 to TRL6 Phase I – Turbomachinery, HX, and flow loop

design (17 months) Phase II – Component fabrication and test

loop commissioning (12 months) Phase III – Performance and endurance testing

(6 months)

Project Approach

161

Page 85: Tutorial: Fundamentals of Supercritical CO2sco2symposium.com/papers2016/Tutorials/Industrial.pdf · turbomachinery, materials, and fluid properties of CO. 2. and CO. 2. mixtures,

Recuperator Prototypes – 5 and 50 kW

164

DMLS: • Expensive and slow to build • Highly automated • High pressure drop • Tested to 5000 psi

Laser Welded Construction: • Undergoing flow tests • Exceeded design predictions for

HTC • Held 2500 psi @ 600°F

Page 86: Tutorial: Fundamentals of Supercritical CO2sco2symposium.com/papers2016/Tutorials/Industrial.pdf · turbomachinery, materials, and fluid properties of CO. 2. and CO. 2. mixtures,

A novel turboexpander has been designed to meet the requirements of the sCO2 power with these targets:

• ~14MW shaft power • >700C inlet temp • >85% aero efficiency

TURBOEXPANDER DESIGN

CFD Analysis

DGS Face Pressure Distribution from CFD

Multi-stage Axial Turbine

Page 87: Tutorial: Fundamentals of Supercritical CO2sco2symposium.com/papers2016/Tutorials/Industrial.pdf · turbomachinery, materials, and fluid properties of CO. 2. and CO. 2. mixtures,

10 MW SCO2 Turbine Concept

Page 88: Tutorial: Fundamentals of Supercritical CO2sco2symposium.com/papers2016/Tutorials/Industrial.pdf · turbomachinery, materials, and fluid properties of CO. 2. and CO. 2. mixtures,

Test Loop Design

168

SwRI B278

Heater

sCO2 Pump

Compressor

Cooler

Page 89: Tutorial: Fundamentals of Supercritical CO2sco2symposium.com/papers2016/Tutorials/Industrial.pdf · turbomachinery, materials, and fluid properties of CO. 2. and CO. 2. mixtures,

Mechanical Test Configuration

169

Pipe Section Color Pump to heater Dark blue

LT heater to recuperator Yellow Recuperator to HT heater Orange

HT heater to expander Red

Expander to recuperator Dark green

Recuperator to existing Light green

Existing facility piping White Existing facility piping

(unused) Dark gray

Existing piping to pump Light blue

Recuperator

Expander Silencer Air dyno.

Page 90: Tutorial: Fundamentals of Supercritical CO2sco2symposium.com/papers2016/Tutorials/Industrial.pdf · turbomachinery, materials, and fluid properties of CO. 2. and CO. 2. mixtures,

Test heat exchanger prototypes Heat exchanger design nearing completion Complete Turbomachinery Design Procure long lead items for expander and test

loop Finalize test loop design

Future Work

170

Page 91: Tutorial: Fundamentals of Supercritical CO2sco2symposium.com/papers2016/Tutorials/Industrial.pdf · turbomachinery, materials, and fluid properties of CO. 2. and CO. 2. mixtures,

DOE sCO2 Test Program

Research compression loop • Turbomachinery performance

Brayton cycle loop • Different configurations possible

− Recuperation, Recompression, Reheat • Small-scale proof-of-technology plant • Small-scale components

− Different than hardware for commercial scale

171

Page 92: Tutorial: Fundamentals of Supercritical CO2sco2symposium.com/papers2016/Tutorials/Industrial.pdf · turbomachinery, materials, and fluid properties of CO. 2. and CO. 2. mixtures,

DOE sCO2 Test Program Turbomachinery

172

100 mm

Source: Wright (2011)

Page 93: Tutorial: Fundamentals of Supercritical CO2sco2symposium.com/papers2016/Tutorials/Industrial.pdf · turbomachinery, materials, and fluid properties of CO. 2. and CO. 2. mixtures,

sCO2 Brayton Cycle Test Loop

173 Source: Wright (2011)

Page 94: Tutorial: Fundamentals of Supercritical CO2sco2symposium.com/papers2016/Tutorials/Industrial.pdf · turbomachinery, materials, and fluid properties of CO. 2. and CO. 2. mixtures,

sCO2 Brayton Cycle Test Loop

174 Source: Wright (2011)

Page 95: Tutorial: Fundamentals of Supercritical CO2sco2symposium.com/papers2016/Tutorials/Industrial.pdf · turbomachinery, materials, and fluid properties of CO. 2. and CO. 2. mixtures,

sCO2 Brayton Cycle Performance with Regeneration Config.

178 Source: Conboy et al. (2012)

Maximum Case: Total Turbine Work, 92 kW

Improve with larger scale: • Windage losses • Thermal losses • Seal leakage

Page 96: Tutorial: Fundamentals of Supercritical CO2sco2symposium.com/papers2016/Tutorials/Industrial.pdf · turbomachinery, materials, and fluid properties of CO. 2. and CO. 2. mixtures,

DOE sCO2 Test Program Summary

Major milestones • Test loops operational • Demonstrate process stability/control

Areas for future development • Heat exchanger performance • Larger scale test bed

− Utilize commercial-scale hardware − Demonstrate more-realistic (better) performance

• CO2 mixtures

179

Page 97: Tutorial: Fundamentals of Supercritical CO2sco2symposium.com/papers2016/Tutorials/Industrial.pdf · turbomachinery, materials, and fluid properties of CO. 2. and CO. 2. mixtures,

Printed Circuit Heat Exchanger (PCHE)

180 Heatric PCHE

Le Pierres (2011)

sCO2 test loop used by Sandia/ Barber-Nicholls

Page 98: Tutorial: Fundamentals of Supercritical CO2sco2symposium.com/papers2016/Tutorials/Industrial.pdf · turbomachinery, materials, and fluid properties of CO. 2. and CO. 2. mixtures,

Heat Exchanger Testing (Bechtel) 150 kW 8000 lbm/hr sCO2

2500 psi

181 Nehrbauer (2011)

Page 99: Tutorial: Fundamentals of Supercritical CO2sco2symposium.com/papers2016/Tutorials/Industrial.pdf · turbomachinery, materials, and fluid properties of CO. 2. and CO. 2. mixtures,

Tokyo Institute of Technology (TIT)

182 (Kato et al., 2007)

Page 100: Tutorial: Fundamentals of Supercritical CO2sco2symposium.com/papers2016/Tutorials/Industrial.pdf · turbomachinery, materials, and fluid properties of CO. 2. and CO. 2. mixtures,

Corrosion Loop at Tokyo Institute of Technology

186

316 SS, 12% Cr alloy, 200-600°C, 10 Mpa CO2, Kato et al. (2007)

Page 101: Tutorial: Fundamentals of Supercritical CO2sco2symposium.com/papers2016/Tutorials/Industrial.pdf · turbomachinery, materials, and fluid properties of CO. 2. and CO. 2. mixtures,

Other sCO2 Corrosion Test Facilities

MIT - 650°C, 22 MPa • Steels

UW - 650°C, 27 MPa • Steels

French Alternative Energies and Atomic Energy Commission - 550°C, 25 MPa • Steels

MDO Labs – 54.4°C, 12.4 MPa • Elastomers, engineering plastics, rubbers,

etc.

187

Guoping (2009)

Page 102: Tutorial: Fundamentals of Supercritical CO2sco2symposium.com/papers2016/Tutorials/Industrial.pdf · turbomachinery, materials, and fluid properties of CO. 2. and CO. 2. mixtures,

Geothermal Research

188

Schematic of EGS with sCO2 Pruess (May 18, 2010)

Explore the feasibility of operating enhanced geothermal systems (EGS) with CO2 as heat transmission fluid

Collaboration between LBNL (Pruess), UC Berkeley (Glaser), Central Research Institute of the Electric Power Industry, Japan (Kaieda) and Kyoto University (Ueda) • UC Berkeley: laboratory testing of CO2 heat extraction • Japan: inject brine-CO2 mixtures into Ogachi HDR site (T ≈ 210°C, P ≈ 100 bar) • LBNL: model reactive chemistry induced by brine-CO2 injection

Ogachi, Japan – HDR Site Pruess (May 19, 2010)

Page 103: Tutorial: Fundamentals of Supercritical CO2sco2symposium.com/papers2016/Tutorials/Industrial.pdf · turbomachinery, materials, and fluid properties of CO. 2. and CO. 2. mixtures,

sCO2 Critical Flow (Univ. Wisconsin)

189

(Anderson, 2009)

Page 104: Tutorial: Fundamentals of Supercritical CO2sco2symposium.com/papers2016/Tutorials/Industrial.pdf · turbomachinery, materials, and fluid properties of CO. 2. and CO. 2. mixtures,

Future Trends for

sCO2 Power Cycles

Page 105: Tutorial: Fundamentals of Supercritical CO2sco2symposium.com/papers2016/Tutorials/Industrial.pdf · turbomachinery, materials, and fluid properties of CO. 2. and CO. 2. mixtures,

Future trends and research needs

Rotordynamics Analysis of rotor-dynamic cross-coupling coefficients for sCO2

Heat Exchangers Improved heat transfer correlations near the critical region for varying geometries Improve resolution of local heat transfer measurements Heat exchanger durability – studying effects of material, fabrication, channel geometry, fouling, corrosion, and maintenance

Materials Long term corrosion testing (10,000 hrs) Corrosion of diffusion-bonded materials (PCHE HX) Coatings to limit/delay corrosion Corrosion tests under stress

Pulsation analysis Development of transient pipe flow analysis models for sCO2

Intermediate-scale is needed to demonstrate commercial viability of full-scale technologies (i.e. 10 Mwe)

Page 106: Tutorial: Fundamentals of Supercritical CO2sco2symposium.com/papers2016/Tutorials/Industrial.pdf · turbomachinery, materials, and fluid properties of CO. 2. and CO. 2. mixtures,

Detailed models of turbo machinery Improved transient analysis – surge, shutdown events

Fluid properties Mixture of sCO2 and other fluids Physical property testing of CO2 mixtures at extreme conditions with significantly reduced uncertainties (i.e. < 1%)

Control System and Simulation

Future trends and research needs

10 MW Scale Pilot Plant

Page 107: Tutorial: Fundamentals of Supercritical CO2sco2symposium.com/papers2016/Tutorials/Industrial.pdf · turbomachinery, materials, and fluid properties of CO. 2. and CO. 2. mixtures,

Summary

Page 108: Tutorial: Fundamentals of Supercritical CO2sco2symposium.com/papers2016/Tutorials/Industrial.pdf · turbomachinery, materials, and fluid properties of CO. 2. and CO. 2. mixtures,

195

Both supercritical power cycles and the use of sCO2 are not new concepts

sCO2 is used in a variety of industries as a solvent

sCO2 is desirable for power cycles because of its near-critical fluid properties

Supercritical region

CO2

Page 109: Tutorial: Fundamentals of Supercritical CO2sco2symposium.com/papers2016/Tutorials/Industrial.pdf · turbomachinery, materials, and fluid properties of CO. 2. and CO. 2. mixtures,

0.00

0.25

0.50

0.75

1.00

1.25

1.50

0 10000 20000 30000

Impeller Dia.[m]

Shaft Speed [rpm] 196

sCO2 power cycles can be applied to many heat sources and have a small footprint

The near ambient critical temperature of CO2 allows it to be matched with a variety of thermal heat sources

The combination of favorable property variation and high fluid density of sCO2 allows small footprint of machinery

Concentrated Solar Power

Nuclear

Fossil Fuel

Ship-board Propulsion

Geothermal

PR = 1.4AirS-CO2

AirS-CO2

PR = 2.0

Page 110: Tutorial: Fundamentals of Supercritical CO2sco2symposium.com/papers2016/Tutorials/Industrial.pdf · turbomachinery, materials, and fluid properties of CO. 2. and CO. 2. mixtures,

197

The near future goal is to improve understanding and develop commercial-scale power

International sCO2 power cycle research is ongoing

More research is needed sCO2 power cycle applications

Power production test loops

Machinery component test loops Fluid property testing

Materials corrosion test facilities

Intermediate scale (10MW) demonstration

Materials testing at high temperature, pressure and stress

Property testing with sCO2 mixtures

Rotordynamics with sCO2

sCO2 heat transfer and heat exchangers

More detailed dynamic simulation and control systems

Questions?