interacciones lípidos - proteínas

45
Interacciones Lípidos - Proteínas

Upload: ronna

Post on 08-Jan-2016

34 views

Category:

Documents


7 download

DESCRIPTION

Interacciones Lípidos - Proteínas. Serum albumin. Interacciones Lípidos - Proteínas. Serum albumin is the carrier of fatty acids in the blood. Serum albumin is the most plentiful protein in blood plasma. Each protein molecule can carry seven fatty acid molecules . - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Interacciones Lípidos - Proteínas

InteraccionesLípidos - Proteínas

Page 2: Interacciones Lípidos - Proteínas

• Serum albumin is the carrier of fatty acids in the blood.

• Serum albumin is the most plentiful protein in blood plasma.

• Each protein molecule can carry seven fatty acid molecules.

• When our body needs energy or needs building materials, fat cells release fatty acids into the blood. There, they are picked up by serum albumin and delivered to distant parts of the body.

Interacciones Lípidos - Proteínas

Serum albumin

http://www.rcsb.org/pdb

Page 3: Interacciones Lípidos - Proteínas

InteraccionesLípidos - Proteínas

Proteínas de membrana

MEMBRANE PROTEINS OF KNOWN STRUCTURE

http://www.mpibp-frankfurt.mpg.de/michel/public/memprotstruct.html

Page 4: Interacciones Lípidos - Proteínas

Dominios Básicos de Estructura Secundaria en las Proteínas de Membrana

Bacteriorrodopsina(hélices )

Porina(Cadenas )

Page 5: Interacciones Lípidos - Proteínas

H+H+H+

NADH NAD++ H+

succinatefumarate + 2H+

FAD

FeS

2e-

2e- UQ

UQH2

a CuBa3

FMN

Fe-S

FeS

bH

bL

CuA

Mitochondria

Complex INADH:quinoneoxidoreductase

Complex IIsuccinate:quinone

oxidoreductase

Complex IIIquinol:cytochrome c

oxidoreductase

Complex IVcytochrome c: oxygen

oxidoreductase

2O2 + H2 2H2O O2

The mitochondrial respiratory chain

H+H+H+

NADH NAD++ H+

succinatefumarate + 2H+

FAD

FeS

2e-

2e- UQ

UQH2

a CuBa3

FMN

Fe-S

FeS

bH

bL

CuA

Mitochondria

Complex INADH:quinoneoxidoreductase

Complex IIsuccinate:quinone

oxidoreductase

Complex IIIquinol:cytochrome c

oxidoreductase

Complex IVcytochrome c: oxygen

oxidoreductase

2O2 + H2 2H2O

Claudio Gomes - ITQB, Oeiras, Portugal

Page 6: Interacciones Lípidos - Proteínas

Complex INADH:quinone oxidoreductase

Mitochondria• 42/43 subunits / ~ 900 kDa • Cofactors: 1-2 FMN, 7-8 FeS• Covalently bound lipid• ~ 3 bound quinol molecules• Proton translocation

Prokaryotic• 14 subunits / ~500 MDa• ~ 55 TM helices• Cofactors: 1 FMN, up to 9

FeS

Claudio Gomes - ITQB, Oeiras, Portugal

Page 7: Interacciones Lípidos - Proteínas

Complex IIsuccinate:quinone oxidoreductase

Mitochondria• 4 subunits• 1 FAD covalently bound• FeS clusters ([2Fe-2S]; [4Fe-4S], [3Fe-

4S])• 2 TM segments containing heme b

Prokaryotic• Identical to the mitochondrial

complex except at the TM / heme b composition

Claudio Gomes - ITQB, Oeiras, Portugal

Page 8: Interacciones Lípidos - Proteínas

Complex IIIquinol:cytochrome c oxidoreductase

Mitochondria• 11 subunits / dimer / ~240 kDa• Three core subunits • Contains up to 8 additional subunits• Cofactors: 2 cyt b, cyt c1, Rieske

[2Fe-2S]• H+ translocation ( Q-cycle

mechanism)

Prokaryotic • 3 core subunits and cofactors

present

Claudio Gomes - ITQB, Oeiras, Portugal

Page 9: Interacciones Lípidos - Proteínas

Z. Zhang et al (1998) Nature 392, 677-684

The b-c1 complex – Complex III

Page 11: Interacciones Lípidos - Proteínas

Complex IVcytochrome c : oxygen

oxidoreductase

Mitochondria• 13 subunits (3 core) • Binuclear CuA site, heme a,

Heme-copper site CuA-a3

1979 1990 1995

Claudio Gomes - ITQB, Oeiras, Portugal

Page 12: Interacciones Lípidos - Proteínas

Cytochrome c oxidase – Complex IV

Cytochrome Oxidase Home Page

http://www-bioc.rice.edu/~graham/CcO.html

Subunit III (in blue) with an embedded phospholipid. Subunit IV (green, unique to this enzyme) Subunit I (yellow) - Subunit II (purple) Antibody fragment (cyan) used to drive crystallization.

Page 13: Interacciones Lípidos - Proteínas

Complex IVcytochrome c : oxygen

oxidoreductase

Mitochondria• 13 subunits (3 core) • Binuclear CuA site, heme a,

Heme-copper site CuA-a3

Prokaryotic • 3-5 subunits (including core sub I-III)• Multiple heme types (e.g. A, As, B, O) • Proton pumps • Superfamily of heme-copper

oxidases

Claudio Gomes - ITQB, Oeiras, Portugal

Page 14: Interacciones Lípidos - Proteínas

Terminal Oxidases Diversity

H+

b CuB

o3

O2

H2O

Quinol oxidases(eg. bo3 Ec)

H+

b CuBb3

O2

H2O

FixN-type oxidases

(eg. cbb3 Pd)

b db

Cytochrome bd(eg. bd Ec)

Fe Fe

Alternative oxidase(eg. plant mitochondria)

Heme-copper oxidases

H+

a CuB

a3

CuA

O2

H2OCytochrome

oxidases(eg. aa3 Pd)

Non heme-copper oxidases

Claudio Gomes - ITQB, Oeiras, Portugal

Page 15: Interacciones Lípidos - Proteínas

Aerobic metabolism

is more efficient

AerobicBacteria

The endosymbiotic theory suggests that eukaryotes acquired respiration capability by the symbiosis with an oxygen respiring bacteria

Ancestral anaerobic eukaryote

Aerobic Eukaryote

Some bacterial genes move to the nucleus and the bacterial endosymbionts become mitochondria

Non-photosynthetic Eukaryote

Endosymbionts become mitochondria

Photosynthetic cyanobacterium

New cell can make ATP from sunlight

Claudio Gomes - ITQB, Oeiras, Portugal

Page 16: Interacciones Lípidos - Proteínas

Mitochondrial oxidative phosphorylation

http://www.life.uiuc.edu/crofts/bioph354/lect8.htmlBiophysics 354, Lecture 8

Complex IComplex II

Complex III Complex IVATPase

Page 17: Interacciones Lípidos - Proteínas

CambridgeUniversity

RobertPoole

F0F0

H+H+

Respiratory chainRespiratory chain

++ --

Inter-Membrane

space

Inter-Membrane

space Inner membraneInner membrane MatrixMatrix

F1F1

H+H+

ADP + PiADP + Pi

ATP + H2OATP + H2O

Page 18: Interacciones Lípidos - Proteínas

CambridgeUniversity

RobertPoole

Page 19: Interacciones Lípidos - Proteínas

CambridgeUniversity

RobertPoole

Page 20: Interacciones Lípidos - Proteínas

CambridgeUniversity

RobertPoole

HOW MUCH ATPDO WE PRODUCE?HOW MUCH ATPDO WE PRODUCE?

AT RESTAdult converts one half body weight equivalent of ATP per day

AT RESTAdult converts one half body weight equivalent of ATP per day

NORMALAdult converts body weight equivalent of ATP per day

NORMALAdult converts body weight equivalent of ATP per day

HARD WORKAdult converts up to 1000 kg ATP per day

HARD WORKAdult converts up to 1000 kg ATP per day

1000 kg

70kg? £1M?70kg? £1M?

Page 21: Interacciones Lípidos - Proteínas

ATP S INTASA

Los Elementos y Moléculas de la VidaLosada, Vargas, Florencio y De la Rosa (1998-9)Editorial Rueda, Madrid

Page 22: Interacciones Lípidos - Proteínas

Schnitzer (2001) Nature 410, 878 - 881

ATP synthase — energy converter.

Page 23: Interacciones Lípidos - Proteínas

W. Junge et al. (1997) TIBS 22, 420-423

Rotational mechanism of ATP synthase

Page 24: Interacciones Lípidos - Proteínas

Abrahams et al. (1994) Nature 370, 621-628.

viewed from the cytoplasmatic side

EE

TP

TP

DP

DP

ADP + Pi

ATP

ADP + Pi ADP + Pi

AD

P + P

i

AD

P + P

i

ATPA

TP

O

O OT T T

L L

L

Energy

Structure of F1 from bovine heart mitochondria

Page 25: Interacciones Lípidos - Proteínas

Animation of ATP synthesis by F0F1 complexes

Page 26: Interacciones Lípidos - Proteínas

Animation of ATP-driven subunit rotation

Page 27: Interacciones Lípidos - Proteínas

http://www.life.uiuc.edu/crofts/bioph354/lect10.html

ATP synthaseAnimation of the complete mechanism

Lecture 10, ATP synthase

Page 28: Interacciones Lípidos - Proteínas

Yasuda et al (2001) Nature 410, 898-904

Observation of F1 rotation

Page 29: Interacciones Lípidos - Proteínas

Bacteriorhodopsin

Page 30: Interacciones Lípidos - Proteínas

Subramaniam & Henderson (2000) Nature 406, 653 - 657

The light-induced all-trans to 13-cis isomerization of the retinal results in deprotonation of the Schiff base followed by alterations in protonatable groups withinbacteriorhodopsin.

Displacement of Schiff base on deprotonation

Observed conformations of

retinal derivatives

Page 31: Interacciones Lípidos - Proteínas

Sass et al. (2000) Nature 406, 649 - 653

Details of the structural differences between the ground state (purple) and the M2 intermediate (yellow).

Extracellular view Cytoplasmic view

Page 32: Interacciones Lípidos - Proteínas

Kühlbrandt (2000) Nature 406, 569 - 570

Molecular mechanism of proton (H+) pumping in bacteriorhodopsin

Page 33: Interacciones Lípidos - Proteínas

Spudich JL (2002) Science 288, 1358-9

The four archaeal rhodopsins in H. salinarum

Page 34: Interacciones Lípidos - Proteínas

Béjà et al. (2000) Science 289, 1902-1906

Phylogenetic analysis of proteorhodopsin with archaeal and Neurospora crassa (NOP1) rhodopsins

Page 35: Interacciones Lípidos - Proteínas

X. Gomis & M. Coll, Diario de Sevilla, 15 Marzo 2001

Conjugación bacteriana: Transferencia de plásmido con resistencia a un determinado antibiótico

Page 36: Interacciones Lípidos - Proteínas

Bacterias resistentes a los antibióticos

A. Vila, Diario de Sevilla, 10 Julio 2001

Page 37: Interacciones Lípidos - Proteínas

A. Vila, Diario de Sevilla, 10 Julio 2001

Bacteria de la tuberculosis. Uno de los muchos microorganismos que ha desarrollado inmunidad frente a los fármacos

Page 38: Interacciones Lípidos - Proteínas

A. Vila, Diario de Sevilla, 10 Julio 2001

El anillo de beta-lactama

Page 39: Interacciones Lípidos - Proteínas

A. Vila, Diario de Sevilla, 10 Julio 2001

Beta-lactamasa. Metaloproteína de cinc que destruye a los antibióticos

Page 40: Interacciones Lípidos - Proteínas

The bacterial conjugation protein TrwB resembles ring helicases and F1-ATPaseGomis et al. (2001) Nature 409, 637-641

Page 41: Interacciones Lípidos - Proteínas

The bacterial conjugation protein TrwB resembles ring helicases and F1-ATPaseGomis et al. (2001) Nature 409, 637-641

Lateral view

View along the 6-fold axis

Page 42: Interacciones Lípidos - Proteínas

S Murakami et al. (2002) Nature 419,587

Bacterial multidrug efflux transporter

Page 43: Interacciones Lípidos - Proteínas

S Murakami et al. (2002) Nature 419,587

Bacterial multidrug efflux transporter

The emergence of bacterial multidrug resistance is an increasing problem in the treatment of infectious diseases. Multidrug resistance often results from the overexpression of a multidrug efflux system.

AcrB is a major multidrug exporter in Escherichia coli. It cooperates with a membrane fusion protein, AcrA, and an outer membrane channel, TolC.

Substrates translocated from the cell interior through the transmembrane region and from the periplasm through the vestibules are collected in the central cavity and then actively transported through the pore into the TolC tunnel.

The AcrB system extrudes cationic, neutral and anionic substances, and pumps out some beta-lactams with multiple charged group. AcrAB catalyses efflux driven by proton motive force.

Page 44: Interacciones Lípidos - Proteínas
Page 45: Interacciones Lípidos - Proteínas

N N NN N H N HH N H N

N H

N H N H

N H3

3 3

3+

+ +

+

C O OC O OC O OC O O --

--

( h i s t i d i n a s p a r a l e l a s ) ( h i s t i d i n a s p e r p e n d i c u l a r e s )

CITO CRO M O -559 TRANS M E M B RANA Lb