structur e and representation s - american mathematical society · 2019. 2. 12. · america n...

43

Upload: others

Post on 15-Mar-2021

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Structur e and Representation s - American Mathematical Society · 2019. 2. 12. · America n Mathematical Society Colloquiu m Publications Volum e 39 Structur e and Representation
Page 2: Structur e and Representation s - American Mathematical Society · 2019. 2. 12. · America n Mathematical Society Colloquiu m Publications Volum e 39 Structur e and Representation

America n Mathematica l Societ y

Colloquiu m Publication s Volum e 39

Structur e an d Representation s of Jorda n Algebra s

Natha n Jacobso n

America n Mathematica l Societ y Providence , Rhod e Islan d

http://dx.doi.org/10.1090/coll/039

Page 3: Structur e and Representation s - American Mathematical Society · 2019. 2. 12. · America n Mathematical Society Colloquiu m Publications Volum e 39 Structur e and Representation

2000 Mathematics Subject Classification. P r i m a r y 16-02 , 17-XX .

Library o f Congres s Cataloging-in-Publicat io n Dat a

Jacobson, Nathan , 1910 -Structure an d representation s o f Jorda n algebras .

p. cm . — (America n Mathematica l Societ y Colloquiu m publications , ISS N 0065-925 8 ; v. 39 ) Providence, America n Mathematica l Society , 1968 . Includes bibliography . ISBN 978-0-8218-4640- 7 (alk . paper ) 1. Jordan algebras . I . Title . II . Colloquiu m publication s (America n Mathematica l Society ) ;

v. 39 .

QA1 .A5225 vol . 3 9 512'.8 6801943 9

Copying an d reprinting . Individua l reader s o f thi s publication , an d nonprofi t librarie s acting fo r them , ar e permitte d t o mak e fai r us e o f th e material , suc h a s t o cop y a chapte r fo r us e in teachin g o r research . Permissio n i s grante d t o quot e brie f passage s fro m thi s publicatio n i n reviews, provide d th e customar y acknowledgmen t o f th e sourc e i s given .

Republication, systemati c copying , o r multipl e reproductio n o f any materia l i n thi s publicatio n is permitte d onl y unde r licens e fro m th e America n Mathematica l Society . Request s fo r suc h permission shoul d b e addresse d t o th e Acquisition s Department , America n Mathematica l Society , 201 Charle s Street , Providence , Rhod e Islan d 02904-2294 , USA . Request s ca n als o b e mad e b y e-mail t o [email protected] .

Copyright 196 8 b y th e America n Mathematica l Society . Reprinted b y th e America n Mathematica l Society , 1991 , 200 8

Printed i n th e Unite d State s o f America .

@ Th e pape r use d i n thi s boo k i s acid-fre e an d fall s withi n th e guideline s established t o ensur e permanenc e an d durability .

Visit th e AM S hom e pag e a t h t t p : //www. ams. org/

10 9 8 7 6 5 4 3 2 1 1 3 1 2 1 1 1 0 0 9 0 8

Page 4: Structur e and Representation s - American Mathematical Society · 2019. 2. 12. · America n Mathematical Society Colloquiu m Publications Volum e 39 Structur e and Representation

Dedicated t o

Adrian Alber t

Page 5: Structur e and Representation s - American Mathematical Society · 2019. 2. 12. · America n Mathematical Society Colloquiu m Publications Volum e 39 Structur e and Representation

This page intentionally left blank

Page 6: Structur e and Representation s - American Mathematical Society · 2019. 2. 12. · America n Mathematical Society Colloquiu m Publications Volum e 39 Structur e and Representation

PREFACE The purpos e o f thi s boo k i s t o giv e a comprehensive accoun t o f th e structur e

and representatio n theor y o f Jorda n algebra s ove r a field o f characteristi c no t two. I t may b e appropriat e a t thi s poin t t o indicat e th e limit s w e hav e se t our -selves an d wha t lie s immediately beyon d these limits . I n the first place, w e not e that a substantial par t of the theory carries over to algebras over a commutativ e ring with 1 containing a n element \ suc h that \ + \ = 1 . A reade r who has nee d of a result of this generality wil l have no difficulty i n ascertaining whether or not the corresponding result in the field case carries over.

A more serious and significant extension of the theory, which can now be made, is th e passag e fro m a linea r theor y t o a quadrati c one . I n th e cas e o f a specia l Jordan algebr a thi s amount s t o th e replacemen t o f th e Jorda n produc t a.b = \{ab +ba), whic h i s bilinear , b y th e produc t aba 9 whic h i s linea r i n b and quadratic in a. A s the Jordan theory has developed it has become increasingly a quadrati c theor y base d o n th e produc t {aba} =bU a =2(fc. a).a — b.a- 2, where a.b is th e give n bilinea r produc t an d a- 2 = a.a. I n a specia l Jorda n al -gebra {aba} coincide s with aba. An important step in the transition to a quadratic theory wa s taken b y th e autho r i n a paper whic h appeare d in 196 6 ([38] i n the Bibliography), i n whic h w e gav e a n Artinian-lik e structur e theor y fo r Jorda n algebras founde d o n axiom s o n quadrati c ideals . Thes e ar e define d b y mean s of th e compositio n {aba}. Thi s theor y i s considere d i n detai l i n Chapte r IV . The author's structure theory has been extended by McCrimmon in [6 ] and [14 ] to quadratic Jordan algebras over an arbitrary commutative ring with 1 . A sketch of McCrimmon' s theor y ca n b e foun d i n ou r note s o n "Furthe r Result s an d Open Questions " a t th e en d o f thi s book .

A par t o f th e Jorda n theor y ca n b e founde d als o o n th e notio n o f inverses . This ha s bee n don e i n th e boo k Jordan Algebras b y Brau n an d Koeche r an d more recentl y b y Springe r i n a n unpublishe d pape r whic h cover s als o th e cas e of algebras of characteristi c two. The connection betwee n inverses and the quad-ratic compositio n aba i n associativ e algebra s i s give n b y Hua' s identit y (p . 2). The drawbac k o f a theor y base d o n inverse s i s tha t on e mus t b e i n a situatio n in whic h on e ha s a n ampl e suppl y o f invertibl e elements . Th e theor y seem s t o work bes t fo r finite-dimensional algebra s wit h 1 ove r a n infinit e field. I n thi s case th e invertibl e element s for m a Zarisk i ope n subse t o f th e algebra . O n th e other hand , th e theor y doe s no t appl y ver y wel l to infinite-dimensiona l algebra s or i n arithmeti c setting s i n whic h invertibl e element s ma y b e scarce . Fo r thi s reason w e hav e preferre d t o bas e th e theor y on a.b an d {aba}.

V

Page 7: Structur e and Representation s - American Mathematical Society · 2019. 2. 12. · America n Mathematical Society Colloquiu m Publications Volum e 39 Structur e and Representation

A numbe r o f importan t application s o f Jorda n algebra s hav e bee n found . The Jorda n theor y ha d it s birt h i n a n attemp t b y P . Jorda n an d subsequentl y by Jordan , vo n Neuman n an d Wigne r t o formulat e th e foundatio n o f quantu m mechanics i n term s o f th e produc t A . B = \{AB + BA) rathe r tha n th e asso -ciative produc t AB. A ver y importan t are a o f application s o f the Jorda n theory, especially o f exceptiona l Jorda n algebras , i s t o exceptiona l Li e group s an d al -gebras an d relate d geometries . Thi s i s discusse d i n par t i n Chapte r IX . Indica -tions o f additiona l result s an d th e origina l paper s containin g thes e ar e give n in th e "Furthe r Result s etc. " Another extremel y interestin g an d promisin g are a of application s i s t o rea l an d comple x analysis , particularl y t o homogeneou s cones, Siege l half-spaces an d automorphic functions . Th e most complete accoun t of thes e extremel y interestin g result s presentl y availabl e i s i n Koecher' s Uni -versity o f Minnesot a mimeographe d note s [4] . Thi s aspec t o f th e theor y ha s been completel y omitte d i n cu r discussion .

In th e cours e o f writin g thi s boo k I hav e ha d invaluabl e hel p fro m Kevi n McCrimmon—first, i n carefull y readin g an d criticisin g severa l version s o f th e manuscript, second, in communicating improved proofs of a number of important results and finally, in carefully readin g the proofs. I am indebted also to Marshal l Osborn fo r readin g th e proof s an d t o Miche l Racin e fo r hel p i n compilin g th e Bibliography. Also I am greatly indebted to Jacques Tits who took tim e off from his ow n importan t researche s o n algebrai c group s t o derive , vi a th e theor y o f algebraic groups , th e elegan t construction s o f exceptiona l Jorda n algebra s which we have given in Chapter IX . I wish to record my sincere appreciation fo r all o f thes e contributions .

The intentio n o f writin g thi s boo k ha d it s inceptio n wit h a n invitatio n b y the Amertean Mathematica l Societ y t o give Colloquium Lecture s at the 1955 summer meeting. Th e subjec t ha s change d enormousl y i n th e intervenin g years . Sinc e there remai n man y natura l ope n question s an d possibilitie s fo r application s i t is likely t o chang e substantiall y als o i n the next decade.

Key West, January 22 , 196 8

VI

Page 8: Structur e and Representation s - American Mathematical Society · 2019. 2. 12. · America n Mathematical Society Colloquiu m Publications Volum e 39 Structur e and Representation

TABLE O F CONTENT S

Chapter I . FOUNDATION S 1

1. Specia l Jordan algebra s an d Jorda n algebra s 3 2. Fre e specia l Jordan algebras . Cohn' s theore m 6 3. Homomorphi c image s o f special Jordan algebra s 1 0 4. Som e constructions o f Jorda n algebra s 1 2 5. Alternativ e algebra s an d Jorda n algebra s 1 5 6. Varietie s o f algebras. Free algebra s 2 3 7. Basi c Jordan identities . Jorda n tripl e produc t 3 3 8. Strongl y associativ e subalgebras . Jorda n tripl e

product identitie s 3 7 9. Macdonald' s theorem. Shirshov' s theorem 4 0

10. ^-identities . Exceptional characte r o f §(D)3 4 9 11. Inverse s and zer o divisor s 5 1 12. Homotop y an d isotop y 5 6

Chapter IT . ELEMENT S O F REPRESENTATIO N THEOR Y 6 3

1. Associativ e specialization s an d universa l envelopes 6 5

2. Specia l universa l envelope s fo r Jorda n algebra s with 1 an d fo r direc t sum s 7 2

3. Example s 7 4 4. Associativ e algebra s wit h involution s an d Jorda n

algebras 7 6 5. Bimodule s fo r algebra s in a variet y rT(I) 7 9 6. Birepresentation s for an algebra in a variet y ^ ( / ) 8 2 7. Multiplicatio n specialization s an d universa l

envelopes 8 6 8. Extensio n o f algebras and facto r set s 9 1 9. Jorda n bimodule s an d universa l multiplicatio n

envelopes 9 5 10. Associativ e specialization s an d multiplicativ e

specializations 9 9 11. Universa l multiplicatio n envelope s fo r Jorda n

algebras wit h identit y element s 10 2

vii

Page 9: Structur e and Representation s - American Mathematical Society · 2019. 2. 12. · America n Mathematical Society Colloquiu m Publications Volum e 39 Structur e and Representation

12. Som e basi c criteria 10 6 13. Example s an d applications 11 0

Chapter III. PEIRC E DECOMPOSITION S AN D JORDA N MATRI X

ALGEBRAS 117

1. Peirc e decomposition s 11 8 2. Jorda n matri x algebra s 12 5 3. Coordinatizatio n theorem s 13 2 4. Perfectio n o f certain classe s o f associative algebra s

with involution s 13 8 5. Unita l bimodule s fo r Jordan matri x algebras 14 4 6. Som e remark s o n the universa l envelope s o f Jordan

matrix algebra s 14 7 7. Liftin g o f idempotent s an d Jordan matri x

algebras 14 8

Chapter IV . JORDA N ALGEBRA S WIT H MINIMU M CONDITION S O N

QUADRATIC IDEAL S 15 2

1. Quadrati c ideal s 15 3 2. Axiom s and first structure theore m 15 7 3. Determinatio n o f a class of alternative algebra s wit h

involution 16 2 4. Simpl e Jorda n algebra s o f capacity tw o 17 1 5. Secon d structur e theore m 17 8 6. Specia l universa l envelopes . Isomorphism s an d

derivations o f specia l simpl e Jorda n algebra s satisfying th e axiom s 18 3

7. Alternativ e set o f axioms 18 7

Chapter V. STRUCTUR E THEOR Y FO R FINITE-DIMENSIONA L JORDA N

ALGEBRAS 18 9

1. Ideal s an d associato r ideal s 19 0 2. Solvabl e ideals 19 2 3. Finite-dimensiona l ni l algebras 19 5 4. Reduce d Jorda n algebra s 19 7 5. Structur e o f finite-dimensional semisimpl e Jorda n

algebras 20 0 6. Reduce d simple Jorda n algebra s 20 2 7. Finite-dimensiona l centra l simple Jordan algebras 20 6

viii

Page 10: Structur e and Representation s - American Mathematical Society · 2019. 2. 12. · America n Mathematical Society Colloquiu m Publications Volum e 39 Structur e and Representation

Chapter VI. GENERI C MINIMUM POLYNOMIALS , TRACES AN D NORM S . . . 21 3

1. Differentiatio n of rational expressions 21 4 2 Differentia l calculu s of rational mapping s 21 5 3 Generi c minimum polynomial of a strictly power

associative algebr a 22 1 4. Som e important example s 22 9 5. Multiplicativ e propertie s o f the generi c nor m 23 4 6. Separabl e algebra s 23 8 7. Nor m similarit y of Jordan algebras . The grou p of

norm preserving linear transformation s 24 1 8. Determinatio n o f M(3 ) fo r 3 specia l centra l simpl e

of degree ^3 24 7 9. Th e Lie algebras 9W(3) , 2R 0(3) an d D e r3 fo r 3

separable 25 3

Chapter VII. REPRESENTATIO N THEOR Y FO R SEPARABL E JORDA N ALGEBRA S 25 9

1. Structur e o f Clifford algebra s 26 0 2. Structur e of meson algebras 26 4 3. Universa l envelope s fo r finite-dimensional specia l

central simpl e Jorda n algebra s o f degre e ^ 3 27 2 4. Bimodule s fo r compositio n algebra s an d reduce d

Jordan algebra s 27 7 5. Separabilit y of 3 an d U(%) 28 6 6. Th e theorem of Albert-Penico-Taft 28 6 7. Derivation s int o bimodule s 29 2 8. Uniquenes s o f the Albert-Penico-Taft decom -

position 30 3

Chapter VIII. CONNECTION S WIT H LI E ALGEBRA S 30 7

1. Associato r structur e o f a Jorda n algebra . Abstrac t Lie tripl e system s 30 7

2. Som e result s o n completel y reducibl e Li e algebras of linea r transformation s wit h application s to Jordan algebras 31 2

3. Operato r commutativity 32 0 4. Derivation s o f semisimpl e Jorda n algebra s o f

characteristic 0 int o bimodule s 32 3 5. Th e Tits-Koeche r constructio n o f a Li e algebr a fro m

a Jorda n algebr a 32 4 6. Subalgebra s and ideal s o f R = &(3) 32 9

ix

Page 11: Structur e and Representation s - American Mathematical Society · 2019. 2. 12. · America n Mathematical Society Colloquiu m Publications Volum e 39 Structur e and Representation

7. Applicatio n t o a proof of the Albert-Penico Theorem 33 3

8. Associativ e bilinea r forms 33 6 9. Examples . Functorial constructions 33 9

10. Associato r nilpotent Jorda n algebra s 34 3 11. Carta n subalgebra s o f Jorda n algebras . Associato r

regular element s 34 9 12. Applicatio n t o generi c trace s 35 2 13. Conjugac y o f Carta n subalgebra s 35 3

Chapter IX . EXCEPTIONA L JORDA N ALGEBRA S 35 6

1. Preliminarie s o n identitie s an d subalgebra s 35 7 2. Element s o f ran k one . Uniquenes s o f th e coefficien t

algebra 36 4 3. Au t 3 /$ e 37 0 4. Condition s for isomorphis m 37 8 5. Mor e o n Au t 3 38 2 6. Invarian t factor theorem for split 3 38 9 7. Moufan g projective planes 39 3 8. Elation s 39 7 9. Harmonicit y 40 2

10. Fundamenta l theore m o f projectiv e geometr y fo r th e planes $ ( 3) 40 4

11. Connection s with exceptional Li e algebras 40 7 12. Exceptiona l Jorda n divisio n algebra s 41 2

FURTHER RESULT S AN D OPE N QUESTION S 42 3

BIBLIOGRAPHY 44 3

SUBJECT INDE X 45 1

X

Page 12: Structur e and Representation s - American Mathematical Society · 2019. 2. 12. · America n Mathematical Society Colloquiu m Publications Volum e 39 Structur e and Representation

FURTHER RESULTS AND OPEN QUESTIONS

CHAPTER I

There ar e a numbe r o f importan t ope n question s concernin g identitie s an d inverses i n Jorda n algebras . W e procee d t o indicat e som e o f these .

First, a s i n th e text , le t FJ ir) denot e th e fre e Jorda n algebr a wit h 1 an d r (free) generator s x l9x29-~9xr (p . 40 ) an d le t FSJ ir) b e th e fre e specia l Jorda n algebra wit h 1 and r (free) generator s u l9u29•••,", (p . 7) . Le t Ji (r) be the kerne l of the homomorphism o f FJ (r) ont o FSJ ir) sendin g 1 -• 1 , x^-m,-, i = 1,2 , - , r . It i s immediate tha t $t{r) i s a T-idea l i n FJ (r), tha t is , an idea l mappe d int o itsel f by ever y homomorphis m o f FJ (r) int o itself . W e kno w tha t St ir) ^ 0 if r ^ 3 . A Jordan algebr a wit h 1 an d r generator s i s a homomorphi c imag e o f a specia l Jordan algebr a i f an d onl y i f i t satisfie s al l th e identitie s i n Jt (r). Th e result s o f Glennie indicated in the text (p. 51) provide nonzer o elements o f 5fc(3). However , a complete determination of R(r) fo r r ^ 3 has not yet been given. I t is not known either i f 5t (r), r ^ 3 , i s finitely generate d a s a T-ideal .

Let &{{x l9-"9xr}}' b e th e fre e nonassociative algebr a generated b y x l9-~9x,9

X9 th e idea l i n this algebr a generate d b y al l th e element s o f th e for m ab — ba, (a2b)a — a2(ba)9 a 9 6eO{{xJ} . Assum e tha t <t> i s infinit e an d let /e*{{X|} } be homogeneou s o f degre e n . W e clai m tha t iff i s a n identit y fo r al l finite-di-mensional Jorda n algebras , the n / i s a n identit y fo r al l Jorda n algebras . (Thi s result ha s bee n communicate d t o u s b y Koecher. ) W e hav e t o sho w tha t th e hypothesis implie s that /e 2. Sinc e O is infinite , X i s a homogeneous ideal , that is, if/ ! + / 2 + •• • +fke% wher e deg/ j =j9 the n ever y fjeX. Le t X n+i b e th e ideal generate d b y X an d al l monomial s i n th e x' s o f degre e ^ n + I . The n X„+i i s also a homogeneous idea l an d the homogeneou s par t o f degre e n in this ideal i s containe d i n I . I t i s clea r tha t 0{{x l}}/Ir t+1 i s a Jorda n algebr a an d since ther e ar e onl y a finite numbe r o f distinc t monomial s i n th e x t o f degre e ^ n , ^>{{xi}}IX„ +1 i s finite dimensional . Hence / i s a n identit y fo r thi s Jorda n algebra. The n feXH+l9 whic h implie s t h a t / e X .

Let {3 a | aeA} b e a family o f Jorda n algebra s wit h 1 . W e defin e a. free com-position o f th e 3 « t o b e a Jorda n algebr a ̂ f j wit h 1 togethe r wit h a famil y {^a |aeA} wher e *j a i s a homomorphis m o f 3 « int o ̂ J sending 1 - * 1 such that , if 3 i s any Jorda n algebr a wit h 1 and £ « is a homomorphis m o f 3« i°t o 3 wit h 1 -* 1, the n ther e exist s a uniqu e homomorphis m A o f ̂ J int o 3 satisfyin g 1*= 1 and C « = ^ » a e A . f t i s immediat e tha t an y tw o fre e composition s ar e

423

Page 13: Structur e and Representation s - American Mathematical Society · 2019. 2. 12. · America n Mathematical Society Colloquiu m Publications Volum e 39 Structur e and Representation

424 FURTHER RESULTS AND OPEN QUESTIONS

equivalent i n the obvious categorica l sense . In particular, the algebra ̂ } is deter-mined u p to isomorphism. Also < P i s generated by the subalgebras 32"- It is e a s y to prov e th e existence o f a free compositio n fo r any family o f Jordan algebras . For example , let 3t = FJ ir)jR, 3 2 = FJ (s)/£ wher e R an d 2 ar e ideals. Identif y FJir) an d FJ is) wit h th e subalgebra s o f FJ ir+s) generate d b y x u-~9xr an d xr+l9"-9xr+s respectivel y and let 3JI be the ideal in FJ{r+s) generate d by R and fi. Then it is easily seen that S$ = FJ (r+5)/2ft an d the homomorphisms x + 51 -> x 4-SOI, x e FJ(r) an d >> + £-> y 4- 501, ye FJis) constitut e a fre e compositio n o f 3i an d 32- Thi s procedur e i s easily generalize d (se e Cohn's Universal Algebra, p . 142 for a general argument) . W e shall cal l th e free compositio n {ty,n a} th e free pro-duct o f th e 3 * i f n a i s a monomorphis m fo r ever y a e A . I n thi s case , if A = {l,2,---,w} , then w e writ e S$ = 3 i * 3 2 * •" *3n- I t i s easy t o se e that the free produc t o f associativ e algebra s (sam e definition s a s fo r Jorda n algebras ) exists. Thi s implie s tha t th e fre e produc t o f specia l Jorda n algebra s exist . O n the othe r hand , fre e product s ma y no t exis t fo r exceptiona l Jorda n algebras . For example , le t 3i b e a finite-dimensional simpl e exceptiona l Jorda n algebra . Then i t i s know n tha t i f 3 i s any Jordan algebr a wit h 1 containing 3i a s sub-algebra wit h 1 , the n 3 = 3 i ®^ > wher e ( £ is a n associativ e Jorda n algebr a with 1 (Jacobson [18]) . It follows that 3 satisfie s every multilinear identity which holds for 3 i. No w let 32 = FJ {2) and let ̂ 3 be a free composition of 3i an d 32 • Then * P satisfies al l the multilinear identitie s satisfie d b y 3i • Hence $ canno t contain a subalgebra isomorphi c to 32 (& ex - 4 , p. 363). Thus $ i s not the free product o f 3i an d 32-

Let 3 i an d 3 2 b e associativ e Jorda n algebra s (wit h 1 ) an d 3 3 = W ( 1 )

with generato r z . Sinc e th e 3» a r e specia l th e fre e produc t 3 i * 3 2 * 3 3 exists . Also th e fre e associativ e produc t ^ ' o f th e associativ e algebra s 3 * exists. Le t 3 i * ' 3 2 * ' 3 3 b e the subalgebra o f the special Jorda n algebr a S$'+ generated by the image s o f th e 3 i i n ̂ P '• W e hav e th e canonica l homomorphis m a o f 3 i *3 2 * 35 ont o 3 i * ' 3 2 * ' 33 . Le t R b e the kernel o f a and let 3 b e the sub -space o f 3i *32 *33 spanne d by products o f elements of 3i an d 32 and a single 2 (that is , degree 1 in z). If 3 i = 3 2 = FJ (1\ the n Macdonald' s theorem state s that 5 l n 3 = 0- Th e sam e resul t ha s bee n prove d b y McCrimmo n i n [9 ] i f 3 i = 3 2 i s isomorphic t o the group algebr a o f an infinite cycli c group . I n both of thes e case s th e universa l multiplicatio n envelop e o f 3 * is commutativ e (cf . §2.3 an d §2.13) . W e conjecture tha t thi s conditio n o n the 3u l = 1>2 , is suf-ficient t o insur e tha t & n 3 = 0. * Thi s woul d constitut e a generalizatio n o f Macdonald's an d McCrimmon' s theorems . Anothe r consequenc e o f th e con -jectured resul t woul d be that the free produc t o f two associative Jorda n algebras having commutativ e universa l envelope s i s special . Thi s would constitute a gen-eralization o f Shirshov' s theorem .

* This conjecture was arrived at in a conversation with McCrimmon.

Page 14: Structur e and Representation s - American Mathematical Society · 2019. 2. 12. · America n Mathematical Society Colloquiu m Publications Volum e 39 Structur e and Representation

FURTHER RESULT S AND OPEN QUESTIONS 425

McCrimmon's analogu e o f Macdonald' s theore m ca n b e use d t o establis h identities in x, y9 x- 1 , y'" 1

9 z which are of degree one or zer o i n z b y verifyin g these fo r specia l Jorda n algebras . Example s o f thi s sor t ar e th e identitie s {xyx}.{x'~ 1 y'~1x _ 1 } = 1 , {xyx}' 2.{x'~1y~1x'~1} = {xyx} , whic h follo w di -rectly fro m Theore m 1.13(6) , p . 52. Another exampl e is

{)>{(x•~1 + / ~ 1 ) { x z x } ( r - , +y'- l)}y] = {( x + y) z(x + y)).

On th e othe r hand , McCrimmon' s theore m i s no t adequat e fo r establishin g more genera l rationa l identitie s i n x, y whic h involv e inverse s o f polynomial s in x an d y an d mor e genera l rationa l expressions , e.g . x*" 1 +0>'~1 — x)'" 1

(which occur s in Hua's identity , ex. 3, p. 54). T o handl e suc h identitie s we con-sider th e fre e Jorda n algebr a FJ in+2) generate d b y x 9y9xl9--9xn. Le t p. = P i(x,y9x!,-•-,x,) b e a n elemen t o f th e subalgebr a generate d b y l 9x,y9

*!,—,x£ , / = 0,1 , . . ,n . Let / = /(P 0,---,Pn) b e the ideal i n FJ{n+2) generate d by th e In elements P i^1.xi — 1 9 Pi^1.x:2 — x^. No w let 3 b e a Jordan algebr a with 1 , a 9 b elements o f 3- Assume P 0(a,b) i s invertible i n 3 wit h a x a s its in-verse, Pi(a, b9ax) i s invertible with inverse a2, and, in general, Pf_ x(a9 b,al9 • • •, flf_ x) is invertibl e wit h invers e a t. The n th e homomorphis m o f FJ in+2) int o 3 s u c h that 1 -• 1, x -> a, y^b, x t -+ af maps / int o 0 , so we have the homomorphism of FJ {n+2) 11 int o 3 sendin g 1->1 , x + I-+a, y + I-+b, x i + l^a {. I t i s clear als o tha t P i.i + / i s invertible i n FJ {n+2)jI wit h invers e x , + /. Th e ele-ments o f / ma y be regarded a s rational identitie s i n the two elements x , y. A s an example , le t n = 3 , P 0 = x , P j = y , P 2 = x — x2 . The n Hua' s identit y i s equivalent t o the statement tha t th e following element s ar e contained i n /:

(*i ~ * 3) • (* - {xyx}) - 1 , (x , - x 3)'2. (x - {xyx}) - (x x - x 3).

We conjectur e tha t fo r an y choice o f th e P t th e subalgebr a o f 3 generate d by 1 , a, b 9 al9---9an (a s indicated) is special (assuming that P i-1(a9b9al9---9ai-i) is invertibl e wit h invers e a (). Thi s woul d constitut e a generalization o f th e the -orem of Shirshov-Cohn. If 3 i s algebrai c (that is, every element of 3 i s algebraic) then the subalgebra generate d by 1, a, b 9 al9~-9an i s generated b y l,a,fa . Henc e this i s specia l b y the Shirshov-Coh n theorem . I n general, i f the subalgebra gen-erated b y l 9a9b9al9--'9a„ i s special , s o tha t thi s ca n be identifie d wit h a sub-algebra o f ?l +, 3 1 associative, the n a t- and P l_1(a,b1 ,a1 , •••,<!,•-1 ) ar e inverse s in the associative algebra 91 . Then the verification o f the fact that certain elements of 3 ar e mapped int o 0 unde r th e homomorphis m w e defined ca n be reduce d to th e verification o f certain rationa l identitie s i n associativ e algebras . I n par -ticular, i t is clear that the validity of Hua's identity for algebraic Jordan algebras, hence fo r finite-dimensional Jordan algebras , i s a consequence o f Hua's identit y for associativ e algebras . T n general, i f the conjecture w e have mad e i s true, then

Page 15: Structur e and Representation s - American Mathematical Society · 2019. 2. 12. · America n Mathematical Society Colloquiu m Publications Volum e 39 Structur e and Representation

426 FURTHER RESULTS AND OPEN QUESTIONS

any rationa l identit y i n tw o element s o f a Jorda n algebr a coul d b e establishe d by provin g correspondin g rationa l identitie s i n tw o element s o f a n associativ e algebra.

One ca n als o attemp t t o reduc e identitie s whic h ar e rationa l i n tw o element s and integra l an d o f th e first degre e i n a thir d elemen t t o associativ e rationa l identities i n a simila r manner . Her e le t FJ (n+3) b e th e fre e Jorda n algebr a generated b y l 9x9y9z9xl9--9xn9 Pfcx 9y9z9xl9-~9x^ a n elemen t o f th e subal -gebra generate d b y l,x,y,z 9xU'~,xi9 I th e idea l generate d b y P,-! .*, — 1 , Pi-l.xi-

2 — x t. Le t 0>{u 9v9w9ul9•••,«„} b e th e fre e associativ e algebr a generate d by 1 and the indicated elements, I s th e ideal generated b y Pi-iu t — 1 , uiPi.1 — 1 , where P t = P i{u9v9w,ul9-~,un). The n w e hav e a homomorphis m o f FJ (n+3)

into th e Jorda n algebr a (0{---}// s)+ suc h tha t 1->1 , x-*u + I s9 y-+v + I S9

z-+w + I 59 Xi-^Ui + Is. W e conjectur e tha t i f feFJ{n+3) i s o f degre e 1 i n z and i s mappe d int o 0 unde r th e homomorphis m o f FJ° l+3) int o (<&{•-•} I Id* > then fel. I f thi s wer e th e case , the n w e woul d hav e a reductio n o f identitie s rational i n tw o element s an d integra l o f th e first degre e i n a thir d elemen t t o associative rationa l identities .

There ar e a numbe r o f interestin g question s o n th e embeddabilit y o f Jorda n integral domain s i n divisio n rings . W e recal l first a well-known resul t of Ore' s that an y associativ e rin g withou t zero-divisor s ^ 0 whic h ha s the (left ) commo n multiple propert y ca n b e embedde d i n a divisio n rin g (Jacobson , Theory of Rings, p . 11 8 o r Cohn' s Universal Algebra, p . 275) . Th e commo n multipl e property fo r a n associativ e rin g 2 1 is tha t i f a an d b ar e nonzer o element s o f % then SHa n 2l b ^ 0 for th e left ideal s %a, %b. W e hav e calle d a n elemen t o f a Jordan algebra 3 a zero divisor in 3 if the mapping U a is not injective in 3 > that is, ther e exist s a b j£ 0 suc h tha t bU a = 0 . W e shal l no w sa y tha t th e element s a, b e 3 have a common multiple i f ^U an^Ub 5 * 0 fo r th e quadrati c ideal s 31/*, 3^6 - I n v *ew ° f Ore' s resul t on e i s tempte d t o conjectur e tha t i f 3 i s a Jordan algebr a i n whic h an y tw o nonzer o element s hav e a commo n multipl e then 3 ca n be embedded in a Jordan division algebra .

It i s a well-know n result , du e independentl y t o Malce v an d B . H . Neumann , that th e fre e associativ e algebr a 0{x 1,x2,~-,xn} ca n b e embedde d i n a divisio n algebra (Cohn' s Universal Algebra, p . 276) . I t follow s fro m thi s tha t th e fre e Jordan algebr a FJ (2) ca n b e embedde d i n a divisio n algebra . Henc e thi s i s a n integral domain . I s th e fre e Jorda n algebr a FJ (n\ n ^ 3 , a n integra l domai n and ca n thi s b e embedde d i n a divisio n algebra ? I f th e latte r statemen t i s tru e then i t woul d provid e example s o f Jorda n divisio n algebra s whic h ar e infinit e dimensional ove r thei r centers . O n th e othe r hand , i t i s als o possibl e tha t FJ(n) contain s nonzer o zero-divisor s an d possibl y nonzer o nilpotent elements if n ^ 3 . Thi s i s th e situatio n fo r fre e alternativ e algebra s (se e Hum m an d Klein -feld [7]) .

Page 16: Structur e and Representation s - American Mathematical Society · 2019. 2. 12. · America n Mathematical Society Colloquiu m Publications Volum e 39 Structur e and Representation

FURTHER RESULT S AND OPEN QUESTIONS 427

CHAPTER I I

The notio n o f bimodul e an d universa l multiplicatio n envelop e fo r associativ e and Li e algebra s ar e th e startin g point s o f th e cohomolog y theorie s fo r thes e classes o f algebras . Th e theor y i n th e first case wa s initiate d b y Hochschil d an d in the secon d cas e b y Chevalley an d Eilenberg . W e recal l the basi c foundationa l results i n thes e theorie s (se e Cartan-Eilenber g [1 ] fo r th e details) . Le t 2 1 be a n associative algebr a wit h 1 , 50 i a unita l bimodul e fo r 21 . Th e unita l universa l multiplication envelop e fo r 2 1 i s C/i(2l ) = 21 ® 21° an d 2 1 i s a bimodul e (th e regular bimodule ) fo r 21 . On e define s th e nt h cohomology group of 2 1 with co-efficients in 501 for n = 0,1,2 , b y H"(2l,50t ) = Ext£ l(9r)(2l,50t). Thes e ar e vecto r spaces ove r th e bas e field <J> , //°(2t,50i) i s isomorphi c t o th e subspac e o f 501 of elements u suc h tha t ua = au 9 ae% tf l(2l,50t) s Der(2I,50l)/Inder(2l,50t) , where Inder(2t,50t ) i s th e subspac e o f derivation s o f 2 1 int o 50 1 o f th e for m a -* [a,u], a e 21, u e50i. // 2(2l,50t) i s isomorphi c t o the vector space o f equiv -alence classe s o f nul l ( = singular ) extension s O-»50t->(£->2l-> O wher e th e vector space compositions o n such equivalence classes are the Bae r compositions. Next le t £ b e a Li e algebra , U(£ ) th e universa l multiplicatio n envelop e ( = Birk -hoff-Witt algebra ) an d regar d O a s a trivia l bimodul e fo r £ s o tha t a / = 0 = /a , aeO, Ze£ . I f 50 1 i s a n £-bimodule , on e define s H\2M) = Ext^ fi)(O,50l), n = 0,1,2 , •••. The n #°(£,50i ) i s isomorphi c t o th e subspac e o f 50 1 of u suc h that ul = 0 an d H\2M) £ Der(£,50Z)/lnder(£,50l ) wher e Inder(£,50t ) i s th e set o f derivation s o f th e for m l-*lu (=—«/ ) , Zefl , ue 501 . Also , a s i n th e associative case // 2(fl,50i) i s isomorphic to the vector space o f equivalence classe s of nul l extensions o f £ b y 501.

In bot h th e associativ e an d Li e cases , on e ha s simpl e standar d resolution s of the bimodules 2 1 and 0 respectivel y whic h lead to determinations of//" ( — ,501) by cochains , cocycle s an d coboundaries . Also i n bot h case s on e ha s importan t interpretations o f th e vanishin g o f H n fo r n = 1,2,3 .

A definitio n o f cohomology space s for n ^ 2 in any variety of algebra s has been given b y Gerstenhabe r i n [2 ] a s follows . Le t 2 1 e 1^(1), the variet y of algebra s defined b y a set o f identities J , 501 an /-bimodule fo r 21 . Define a singular exten-sion of length two of 21 by 501 to be a null extension of 21 by 501 as defined on p. 91. If n > 2 , defin e a singular extension of length n to b e a n exact sequenc e o f bi -modules O->50l-»50l n_1 - > •50t 2-*(£->O togethe r wit h a singula r extensio n 0->(£-*(£-*2I—>0. Thes e giv e th e exac t sequenc e

0^501^501^! - > • • -+50t 2-+(£->21-0.

Morphisms, equivalences , additio n an d scala r multiplicatio n o f equivalenc e classes of singular extensions can be defined. Then one defines the nth cohomology group H "(21,501) for n ^ 2 o f 2 1 e iT(I) wit h coefficients i n 501 as the vector space of equivalenc e classe s o f singula r extension s o f lengt h n of 2 1 by 501. These defi -nitions ar e equivalent t o th e classica l one s in the associative an d Li e cases.

Page 17: Structur e and Representation s - American Mathematical Society · 2019. 2. 12. · America n Mathematical Society Colloquiu m Publications Volum e 39 Structur e and Representation

428 FURTHE R RESULT S AND OPEN QUESTION S

Gerstenhaber's definition s o f H n(3l,50l) fo r n ^ 2 hav e bee n recentl y supple -mented b y Glassma n i n [1 ] t o giv e definition s o f //°(3l,50i ) an d i/'(31,501) . W e shall now indicat e these . Le t 50^ and 50t2 be 7-bimodules fo r 3 1 e ^(J), rj a homo-morphism o f 50tj int o 50l2. The n an y derivatio n D o f 3 1 into SJlj determines th e derivation Drj of 31 into 5012 so we have the linear mapping fj: D-+Dn o f Der( 31,50 )̂ into Der(3I,50l 2). I n thi s wa y on e obtain s a functor fro m th e category o f 3I-bi -modules t o th e categor y o f vecto r space s s o tha t 9 K -> Der(3t,50t), */-**/ . A n inner derivation functor J: 501- » .7(31,501), /;-•/;|.7(3l,50t ) i s define d t o b e a subfunctor o f th e precedin g whic h respect s epimorphisms . I t ca n b e show n tha t the inne r derivatio n functor s ar e i n 1- 1 correspondenc e wit h submodule s o f Der(31,1/(31)) considere d i n a natura l wa y a s lef t £/(3l)-module . Relativ e t o th e choice o f J on e define s ifj(3l,9W ) = Der(3I,50l)/J(3I,aft) . No w assum e th e inner derivation functo r J i s finitely generated i n th e sens e tha t th e lef t U(3l)-modul e J((7(3l)) i s finitely generated . Le t {d iid2,~'->dk} b e a se t o f generator s fo r thi s module an d le t X i9 1 ^ i ^ k, b e a fre e 3I-bimodul e wit h generato r x t corre -sponding to the generator 1 of (7(31) . Le t d t b e th e derivatio n o f 3 1 into X { cor -responding t o d t an d le t Y be th e submodul e o f £ * © A\ generate d b y th e ele -ments flZ{</„ fle«. Pu t <£{,, } = (Z©JT,)/ y an d defin e 7/° lR}(3l,50t) = Hom^^G^jjJOl) fo r an y bimodul e 501 of 31 . For suitabl e choice s o f J an d {d j in the associativ e an d Li e cases the definitions o f H° an d H l give n b y Glassma n are equivalen t t o th e usua l ones . Also i f 0->50t ' ->50i-»50T ->0 i s a shor t exac t sequence o f 3l-bimodules , the n on e ca n defin e connectin g homomorphism s t o obtain th e usua l lon g exac t sequenc e o f cohomolog y spaces .

All th e result s just indicate d ca n b e develope d fo r algebra s ove r commutativ e rings. Th e notio n o f bimodules , universa l multiplicatio n envelope s an d exten -sions hav e bee n considere d b y Knopfmache r i n [1 ] an d [2 ] i n thi s generality .

CHAPTER 11 1

The Corollar y (p . 138 ) t o th e Coordinatization Theore m ha s bee n generalize d recently b y McCrimmo n i n [1 1 J. I f e x an d e 2 ar e nonzer o orthogona l idempo -tents i n a Jorda n algebr a 3 > the n thes e ar e sai d t o b e interconnected i f ^ 3 ; ? . ^ , / # y = l , 2 , Z u = %U^ r Thi s i s equivalen t to : 3iy-« i = 3« . 3/i = 3^« 4 • I* is cI e a r t n a t connectednes s implies interconnectedness. McCrimmo n has proved that i f 3 i s a Jordan algebra wit h 1 = Z l e, , wher e th e e { are nonzero interconnected orthogona l idempotent s an d n ^ 4 , the n 3 I s special (an d henc e any Jorda n algebr a containing 3 a s subalgebra wit h the sam e identity i s special) . This theore m ha d bee n conjecture d b y the author an d wa s suggeste d b y Martin -dale's theorem . I t i s eas y t o se e tha t an y tw o nonzer o idempotent s o f a simpl e Jordan algebr a ar e interconnected . A s ha s bee n show n b y McCrimmon , a con -sequence o f thi s an d a generalizatio n o f th e foregoin g theore m t o algebra s no t necessarily containin g 1 i s th e followin g strikin g re&ult : I f 3 i s a simpl e Jorda n

Page 18: Structur e and Representation s - American Mathematical Society · 2019. 2. 12. · America n Mathematical Society Colloquiu m Publications Volum e 39 Structur e and Representation

FURTHER RESULT S AND OPEN QUESTIONS 429

algebra (no t necessaril y containin g 1 ) whic h contain s thre e nonzer o orthogona l idempotents whos e su m i s no t a n identit y elemen t fo r 3, the n 3 i s special .

CHAPTR R IV

The structur e theor y o f thi s chapte r reduce s th e stud y o f th e Jorda n algebra s which are nondegenerate an d satisfy th e minimu m conditions o n quadratic ideal s to tha t o f Jorda n divisio n algebras . Thu s th e situatio n i s quit e simila r t o tha t which obtain s fo r Artinian semisimpl e algebras . At th e presen t tim e th e relatio n between Jorda n an d associativ e divisio n algebra s remain s t o b e clarified. A nat -ural questio n her e i s th e following : I s ever y specia l Jorda n divisio n algebr a o f one o f th e followin g types : (1 ) a Jorda n algebr a o f a symmetri c bilinea r form , (2) A+ wher e A is an associative division algebra, (3) £)(A, J) where A is a division algebra wit h involutio n J ? A t th e presen t n o example s o f exceptiona l Jorda n division algebra s whic h ar e infinit e dimensiona l ove r thei r center s ar e known .

There i s n o satisfactor y analysi s a s ye t o f degenerat e Jorda n algebra s satis -fying appropriat e minimu m condition s o n quadrati c ideals . I n particular , i t would b e interestin g t o hav e a definition o f a radica l fo r a Jordan algebr a satis -fying th e minimu m condition s whic h i s analogou s t o on e o f th e definition s o f the radica l o f a n Artinian associativ e algebras .

It woul d b e interestin g t o exten d t o Jorda n algebra s othe r aspect s o f th e as -sociative structur e theory . On e interestin g directio n woul d b e th e developmen t of a theor y o f Jorda n P/-algebras , tha t is , Jorda n algebra s satisfyin g a poly -nomial identity . Sinc e ther e exis t nontrivia l identitie s whic h ar e satisfie d b y al l special Jorda n algebras , th e so-calle d s-identitie s (p . 49 ) i t i s natura l t o defin e a P/-Jorda n algebr a t o b e one whic h satisfies an identity p which is not an s-iden-tity. Fo r example , th e Jorda n algebr a o f a nondegenerat e symmetri c bilinea r form satisfie s th e identit y p = [ [x 1 ,x 2 ,x 3 ] , 2 ,x 4 ,x 5 ] (ex . 6 , p . 364) , an d i t i s easily see n tha t thi s i s no t a n s-identity . Ar e thes e an d simpl e Jorda n algebra s which ar e finite dimensiona l ove r thei r center s th e onl y simpl e Pi-Jorda n al -gebras? The sam e questio n ca n b e aske d fo r Jorda n divisio n algebras .

The structur e theor y o f thi s chapte r ha s bee n extende d b y McCrimmo n ([6 ] and [14] ) to algebras over an arbitrary commutative rin g with 1 . As we indicated in Chapte r I , i n considerin g specia l Jorda n algebras , t o obtai n a genera l theor y one ha s t o replac e th e bilinea r compositio n a.b b y th e compositio n bU a whic h is linea r i n b an d quadrati c i n a, and , i f th e existenc e o f 1 is not assumed, then one mus t conside r als o th e unar y compositio n a' 2. T o simplif y th e discussio n we stic k t o th e cas e o f algebra s wit h 1 . I t i s convenient t o formulat e th e axiom s in term s o f th e mapping s U a. Fo r th e sak e o f compariso n wit h th e Jorda n al -gebras considered i n this book, w e give first an analogous definitio n o f the usual ones i n operato r form . Accordingly, w e define a Jordan algebra with 1 over a field Q> of characteristic not two to be a triple (3, R, 1), where 3 i s a vector space

Page 19: Structur e and Representation s - American Mathematical Society · 2019. 2. 12. · America n Mathematical Society Colloquiu m Publications Volum e 39 Structur e and Representation

430 FURTHER RESULT S AND OPEN QUESTIONS

over O , 1 a particula r elemen t o f 3 , an d R a mappin g of 3 int o H o m ^ ^ S ) satisfying th e followin g conditions :

1. R i s <D-linear . 2. Rt = 1 . 3. [* . ,*•*.]= 0 . 4. R a = L a i f xL a = aR x.

It is clear that this definition i s equivalent to the usua l one and that if P is an ex-tension field of O then 3P > 1 and the extension R o f R t o a linear mappin g o f 3p satisfies condition s 1-4 . Henc e w e obtain the Jordan algebra (3 P , R, 1). The fore-going definitio n ca n als o b e give n fo r lef t unita l <D-module s ove r a n arbitrar y commutative rin g wit h 1 , provide d tha t O contain s a n elemen t \ suc h tha t i + i = 1 . I n thi s case als o 3p> R an d 1 would satisf y th e sam e axiom s fo r any commutative rin g extension P o f O (with th e sam e 1) . A homomorphism n of a Jordan algebr a (3,-R , 1) into a Jordan algebr a (3 ' , /? \ l ') i s a O-homomorphis m of 3 int o 3' suc h that 1 * = 1 ' and (bRa)

n = b nR'a«. We no w giv e McCrimmon' s definitio n o f a quadratic Jordan algebra with 1

over an arbitrary commutative ring <b with 1 as a tripl e (3, U, 1) where 3 i s a unital lef t O-module , 1 a distinguished element of 3> and U is a mapping a-+U a

of 3 int o Hom <I)(3,3) satisfyin g th e followin g axioms : 1. £ 7 is O-quadratic , tha t is , U aa = a 2l/fl, a e O , ae% an d U atb = U a+b- U a

— U b i s O-bilinea r i n a an d b. 2. U x = 1 . 3. £/ f l<W = VbVa. 4. 1^1/ * = £/*K M wher e xV atb = 6U fl>Jc.

If P is a commutative ring extension wit h 1 of O, then U has a unique extensio n to a quadratic mapping o f 3 P = P ® *3 int o HomP(3p,3p)- Her e ^ Pi e P > aie 3 then U 1Piai = Ip?C/ f l i+ L^jPtP/U^j. W e requir e als o

5. Condition s 3 an d 4 hol d i n ever y 3 P-Axiom 5 i s equivalen t t o intrinsi c condition s o n 3 > namely , th e validit y o f

certain linearization s o f 3 and 4 . I t i s easy t o se e tha t i f O is a field wit h mor e than three elements, then these linearizations are consequences o f 3 and 4. Henc e 5 i s superfluou s i n thi s case .

We pu t a' 2 = W a, a o b = (a + b)' 2 -a'2- b 2 = \U mJb9 V a = U aA. The n aob = boa an d aoa = 2a' 2. Als o V x = l/ 1§1 = 2 . W e writ e {afrc } = fc(/ ar, so {aba} = 26l/ fla sinc e l/ fllI = 2l/ a. Also , {abc} = cK a>5.

As a specia l cas e o f th e notio n o f homomorphis m fo r genera l algebra s wit h finitary compositions (cf . Cohn' s Universal Algebra, p . 49), one defines a homo-morphism r\ of (3 , t f , l ) int o th e quadrati c Jorda n algebr a (3\U\V) t o b e a O-homomorphism o f 3 int o 3 ' suc h tha t 1 * = 1 ' an d (bU aY = b nUa«. Th e class o f quadrati c Jordan algebras with 1 over O is a category whos e morphism s are homomorphisms . I f O is a field of characteristi c no t tw o an d 3 i s a Jordan algebra wit h 1 over O then 3 define s a quadratic Jordan algebra with 1 , (3, V, 1)

Page 20: Structur e and Representation s - American Mathematical Society · 2019. 2. 12. · America n Mathematical Society Colloquiu m Publications Volum e 39 Structur e and Representation

FURTHER RESULTS AND OPEN QUESTIONS 431

in whic h 1 = 1 , t/ a = 2R* - R a.2. All the condition s excep t 4 ar e clear an d thi s has bee n prove d o n p . 328 . Conversely , le t (%U 91) b e a quadrati c Jorda n al -gebra wit h 1 over a field o f characteristi c no t two . The n i t ca n b e shown that , if w e put R a = \V a, w e obtain a Jordan algebr a wit h 1 , (%R, 1) . On e can sho w also tha t th e tw o construction s ar e inverse s an d homomorphism s o f (3 , U 91) coincide wit h homomorphism s of (%R,1). On e obtain s i n thi s wa y a categor y isomorphism o f th e categor y o f quadrati c Jorda n algebra s wit h 1 ove r 0 wit h the categor y o f Jorda n algebra s wit h 1 over 0 . Th e sam e resul t hold s fo r an y ring O which contains an element \ suc h that i + i = 1 , i f one defines a Jorda n algebra ove r 0 a s indicate d abov e (tha t is , a s i n th e field case) .

Let S H be a n associativ e algebr a wit h 1 over a commutativ e rin g 0 (wit h 1) . Define xU a = axa . The n xUab = axb + bxa, xV ab = abx + xba. I t is immediate that 1- 5 hold , s o 9 1 with 1 and th e indicate d U i s a quadrati c Jorda n algebr a with 1 , % iq) = (%U,l). I f (3,C/,1 ) i s a quadrati c Jorda n algebr a wit h 1 , a subalgebra R i s a 0-submodule containin g 1 and closed unde r bU a. Subalgebra s of algebra s 2l (q), 9 1 associativ e wit h 1 , ar e calle d special quadratic Jordan algebras with 1 . I f (91 , J) i s a n associativ e algebr a wit h involutio n an d 1 the n §(21, J), th e se t o f J-symmetri c elements , i s a subalgebr a o f 9l (fl). Le t 9 3 b e a vector space over a field of any characteristic,/a quadrati c form. Then it is readily verified tha t th e subspac e 3 = 0 1 + 9 5 of th e Cliffor d algebr a C(93,/ ) i s a sub-algebra o f C(93,/) (q). W e call this the quadratic Jordan algebra off.

We shal l se e i n a momen t tha t th e standar d exceptiona l Jorda n algebra s als o havp analogues i n quadrati c Jorda n algebra s (see als o the note s o n Chapter IX) .

It seem s likel y tha t muc h o f th e usua l Jorda n theor y ca n b e carrie d ove r t o quadratic Jorda n algebras . W e procee d t o indicat e tha t thi s i s indee d th e cas e with th e structur e theor y a s develope d i n thi s chapter . I n th e note s o n th e re -maining chapters, extensions o f som e othe r parts of the theory wil l b e indicated.

We conside r first th e basi c concept s o f th e structur e theory . On e define s a n inner ( = quadratic ) ideal 9 5 o f (3 , U, 1) t o b e a 0-submodul e o f 3 suc h tha t %Ub £ 23 , b e 93. An outer ideal 2 3 is a 0-submodule suc h tha t bU a e 23, b e 23, a e 3- A n ideal i s a subset whic h is bot h an inner and an oute r ideal . I f 93 is an ideal i t i s easily see n that i f beS B an d a,ce3> the n bU atC9 b' 2, b o c, bV aceSB. It follow s tha t th e 0-modul e 3/2 3 i s a quadrati c Jorda n algebr a wit h 1 in th e obvious way . Th e kerne l o f a homomorphis m i s a n ideal . I f be!$ the n 3 ^ i s an inne r idea l calle d th e principal inner ideal generate d b y b. I f O contains i , then an y oute r idea l i s an ideal . Otherwise , thi s may no t b e the case , a s the fol -lowing example s show : (1 ) Le t 3 h e the specia l quadrati c Jorda n algebra §(Z„ ) n x n symmetri c matrice s ove r th e rin g Z o f integers , an d le t 9 3 be th e subse t of integral matrices with even diagonal elements . Then S B is an outer ideal whic h is no t a n ideal . (2 ) Le t O be a field o f characteristi c two , P a n extensio n field such tha t th e subfiel d 0(P 2) ove r Q> generate d b y th e square s o f th e element s of P doe s no t coincid e wit h P . Le t §(P n) b e th e specia l quadrati c 0-algebr a o

Page 21: Structur e and Representation s - American Mathematical Society · 2019. 2. 12. · America n Mathematical Society Colloquiu m Publications Volum e 39 Structur e and Representation

432 FURTHER RESULT S AND OPEN QUESTION S

n x n symmetri c matrice s ove r P . Le t 33 be the subset consistin g of the matrice s with diagona l entrie s i n <J>(P 2). Then 2 3 is an oute r idea l whic h i s not an ideal .

The oute r idea l 3 ' ° f (3» *A 0 generate d b y 1 is a subalgebr a whic h w e shall call th e core o f 3- Any subalgebra o f 3 containin g 3 ' wil l b e called a n ample subalgebra o f 3-

In a n associativ e algebr a wit h ] th e relation s aba = a an d ab 2a = 1 impl y ab = 1 = ba. Thi s suggest s the definition: ae{%U,l) i s invertible wit h b as an inverse i f blla = a, b' 2 Ua = 1. This is equivalent to the usua l notions in a Jordan algebra an d on e has a close analogue of Theorem 1.1 3 (on inverses) . Fo r example , the invers e i s unique an d UaUb = 1 = U hUa for b the inverse a'" 1. A quadrati c Jordan algebr a wit h 1 is a division algebra i f every nonzero element of the algebra is invertible .

If w i s an invertible element of (3, U,l)} then w e put l( t t ) = u'"\ U {au) = UuUa.

Then (3 , U("\ 1 (M)) i s a quadratic Jorda n algebr a calle d the u-isotope o f (3, U, 1). As i n the case of Jordan algebra , isotop y i s an equivalence relation .

An elemen t e of a quadrati c Jorda n algebr a (3 , U, 1) is idempotent i f e'2 = e and th e idempotent s e,f ar e orthogonal i f fU e = eof = eUf = 0. Le t {e.j / = 1,.••,/! } b e orthogonal idempotent s suc h tha t Z " ^ = 1 . Put EH = Ue.9

Eu = U e.te for / ^ y. Then 1 = £ , ^ £ , 7 an d the Eu ar e orthogonal projections . Hence 3 = Z © 3 u - Thi s IS ca^e(^ t ne Peirce decomposition o f 3 relativ e to the ev

The 3it are inner ideals . There are many importan t relation s connecting the Peirce components 3,7 analogous t o those w e derived fo r Jordan algebras . On e defines connectedness and strong connectedness for orthogonal idempotents in a quadratic Jordan algebr a wit h 1 as for Jordan algebras . Th e principal result s carr y over : transitivity hold s an d on e can pas s fro m connecte d idempotent s t o strongl y connected idempotent s in an isotope as in Lemma 5 of §3.1 (p. 123).

We conside r nex t th e definition o f quadratic Jorda n matri x algebras . Fo r th e sake o f simplicity w e stick t o the case of standard involutions ; the more genera l case of canonical involution s is reducible to this via isotopy by a diagonal matrix . First, let (D, j) b e an associative algebra with involution an d 1 . For any n = 1,2,3 , •••we defin e th e standard quadrati c Jorda n matri x algebr a £>(D„) to be the se t of n x n matrice s ove r D whic h ar e symmetric unde r th e standard involutio n X -*X l ( d = dJ) wher e AU B = BAB and 1 and the dMnodule structur e ar e as usual. I n studyin g thes e algebra s i t is convenient t o modify ou r usual definitio n of fl[(/], a e D b y puttin g a\if\ = ae ih a e ^ ( D j ) , a[i/ ] = ae^^-ae^ a e D . Using these on e can develop formulas fo r the U operator analogou s to (18 ,)-(23/) of p . 126 . These an d the formulas whic h on e obtains fro m th e Jordan matri x algebra §(D 3) , wher e (£>J ) i s alternative ove r a field of characteristi c 5 * 2, lead to th e definition o f $(£>3) for (D J) alternative. Here one begins with an alternative algebra wit h involutio n (DJ ) and 1 satisfyin g th e conditio n tha t ddeN($)), the nucleus of D, for every d e D. Then it can be shown that D' = § ( D J) n iV(D ) is a O-submodul e o f D such tha t dd'deT)' fo r all d e D, d ' e D ' . On e defines§(D 3)

Page 22: Structur e and Representation s - American Mathematical Society · 2019. 2. 12. · America n Mathematical Society Colloquiu m Publications Volum e 39 Structur e and Representation

FURTHER RESULT S AND OPE N QUESTIONS 433

to be the set of matrices which are symmetric under the standard involution i n D3

and which have diagonal elements in T>'. (Not e tha t i f J) is associative thi s is the same as our former definition. ) Equivalently , w e let §(D3) b e the 4>-module direct sum o f thre e copie s o f X ) and thre e copie s o f D ' denote d respectivel y a s D [ y ] , i <j, 3y[it] , i,j = 1,2,3 . I f / > y, w e put d\jj~\ = d[ji\, wher e d[ji] i s the image in D [ J J] o f de X> . It is easy to see that there is a unique quadratic mapping a -* Ua

of §(© 3) = ©[12 ] © £[23 ] © Tj[13 ] © £'[11 ] © £'[22 ] © £'[33 ] int o Hom0(fy(T)3),<Q(T)3)) such that the following formulas hold:

(1) b'[ii]U aVQ = a'b'a'lii],

(2) a V'1UaliJi = da 'aiJJ\

(3) b[ij]U a0n = aba\ij\,

(4) K L » M < / K D y ] } = a'bc'[if]>

(5) {aVtylVW*]} = (a'bc + FbTtii],

(6) {aViMUWk]} = a'bc{ikl

(7) {«'[«'/]6'[«]c[y] } = a'b'c[ia

(8) {amb'UjWQ} = ab'c{ikl

(9) {a[«j]bDi]c[/k] } = o(bc)[ik] ,

(10) {a[y]*D*M*fl } = ( f l(^) + «(6c) ) [//],

where {abc} = 6(7 fl c and it is understoo d that all the U formulas not covered b y these an d a\Ji\ = d\ij'] ar e 0 (e.g. a'[ii\U b,ljn = 0 if / 5^ /). W e remark tha t th e condition tha t ddeN($)) implie s tha t dd an d d + de/X)' fo r deT). Henc e th e right-hand side s o f (I)-(IO) ar e contained in£)(T) 3). I t is a formidable task whic h has been carried out by McCrimmon to show that(£(D3), I/ , 1), where 1 = Z ? 1[»] satisfies th e axiom s fo r a quadrati c Jordan . W e shal l no w defin e a standard quadratic Jordan matrix algebra t o be either an algebra of the form(§(X)n), U, 1), where (T),7) is associative with involution and 1, or one of the algebras (§(3)3), U 91) just defined .

Let 3 b e suc h a standar d quadrati c Jorda n matri x algebr a an d le t X) 0 b e th e O-submodule o f I) generated b y the elements dd, deT). The n it is easily seen that if we identify d'\ii\ wit h d'eu, d[ij~\ with deu + de jh i < j , the n the core 3' = §(£>„)' > n ^ 3 i s th e subse t o f matrice s havin g diagona l element s i n 33 0. Th e element s ei = ! [" ] a n d ![(/] > ' <J» a r e containe d i n 3'- The e£ are orthogonal idempotent s such tha t Ze t- = 1 and e> t an d e j9 i ^ j 9 ar e strongl y connecte d b y l[i/J . A s fo r ordinary Jorda n algebras , on e ha s a Stron g Coordinatization Theore m whic h i s a structur e theore m fo r quadrati c Jordan algebras (3, U, 1 ) such that 1 = Z " ei9

where th e e t ar e nonzer o strongl y connecte d orthogona l idempotent s an d n *z 3

Page 23: Structur e and Representation s - American Mathematical Society · 2019. 2. 12. · America n Mathematical Society Colloquiu m Publications Volum e 39 Structur e and Representation

434 FURTHER RESULT S AND OPEN QUESTIONS

The resul t state s tha t unde r thes e condition s on e ha s a homomorphis m rj o f (3, U, 1 ) int o a standar d quadrati c Jorda n matri x algebr a £)(£)„) suc h tha t 3 n

is an ample subalgebra of §(D n) and the kernel of rj is an ideal consisting of absolute zero divisors z (that is , U z = 0 ) such that 2z = 0 .

We ca n no w stat e McCrimmon' s extension s o f ou r structur e theorems . Th e class o f algebra s t o whic h thes e appl y ar e th e quadrati c Jorda n algebra s wit h h (3 > U* 1) whic h contai n n o absolut e zero-divisor s 5*0 , an d whic h satisf y th e minimum condition s for inner ( = quadratic ) ideals (p . 157) . Such an algebra is a direct su m o f simpl e quadrati c Jorda n algebra s satisfyin g th e sam e conditions . A determinatio n o f thes e ca n b e give n b y th e followin g theorem : A quadrati c Jordan algebr a (% (J, 1) i s simpl e wit h minimu m condition s fo r inne r ideal s i f and onl y i f i t i s o f on e o f th e followin g types : I . a quadrati c Jorda n divisio n algebra, TI. an ample subalgebra of a quadratic Jordan algebra of a nondegenerate quadratic form , III . a n ampl e subalgebr a o f a quadrati c Jorda n matri x algebr a £>(03,/y) wher e CD,;" ) i s a n octonio n algebr a wit h standar d involution , IV . a n ample subalgebr a o f a quadratic Jordan algebra £>($! , J), wher e (%,J) i s a simple Artinian associativ e algebra with involution.

We not e finally tha t McCrimmo n ha s succeede d als o i n extendin g th e theor y to quadratic Jordan algebras without 1 by giving axioms in terms of the U operator and a unary composition a -* a2, whic h insure that such a system can be imbedde d in a quadratic Jordan algebra with 1 .

CHAPTER V

Braun an d Koeche r [1 ] hav e define d th e radica l o f finite-dimensional Jordan algebra 3/3 * wit h 1 * 6 b e th e intersectio n o f th e radical s o f al l th e symmetri c bilinear form s / o n 3 int o extensio n fields o f O suc h tha t / (z , 1) = 0 fo r al l nilpotent z . I t i s clea r tha t rad 3 a s define d i n thi s chapte r i s containe d i n th e Braun-Koecher radica l ft. Conversely , le t a$md% s o a ha s a nonzer o imag e a i n some simpl e homomorphic imag e 3 o f 3- Le t P b e the center of 3 s o P is a finite-dimensional extensio n field o f O . Le t i b e th e generi c trac e bilinea r for m on 3/ P s o i i s nondegenerat e (b y Chapte r VI , p . 24 0 o r Chapte r VIII , p . 353) , i ha s values in P and /(£,! ) = 0 for z nilpotent. Sinc e a 5* 0, a i s no t containe d in the radica l o f f. Defin e / b y f(x9y) = i(x,y). The n i t i s immediat e tha t / i s a form of the type considered by Braun and Koecher and a is not contained in the radical of / . Henc e a $ ft. Thu s ft c rad 3 and ft = rad3 .

CHAPTER V I

The author ha s prove d i n [32 ] tha t th e generi c nor m n(x) , x = Z " €itti9 of any finite-dimensional simpl e Jorda n algebr a i s a n irreducibl e polynomia l i n €>[^l5 •••,£„]. Th e metho d o f proo f o f thi s resul t i s a n extensio n o f on e use d b y Dieudonne i n [2 ] t o prov e the sam e resul t for simpl e associative algebras . Sinc e

Page 24: Structur e and Representation s - American Mathematical Society · 2019. 2. 12. · America n Mathematical Society Colloquiu m Publications Volum e 39 Structur e and Representation

FURTHER RESULTS AND OPEN QUESTIONS 435

any simple associative algebra 9 1 over a field of characteristic not tw o determine s the simpl e Jorda n algebr a 9l + wit h th e sam e generi c norm , th e theore m fo r associative algebra s o f characteristi c no t tw o follow s fro m th e Jorda n algebr a result. The Jordan theorem gives the following consequence of Theorem 3 (iv): If ̂ 1 is a simple Jorda n algebra and the remaining hypotheses are as in Theorem 3 (iv) then 2(£i , ••-,£,,) is a power of the generic norm. I t is easy to extend thi s resul t t o the semisimple case.

The classica l theore m o n compositio n o f quadrati c form s (se e Theore m 4.5 , Jacobson [22] , and the references given there) has been generalized b y Schafer in [14]. Hi s results are that if 91 is an algebra which possesses a nondegenerate homo-geneous for m Q(x) o f degre e n permittin g th e compositio n Q(xy) = Q(x)Q(y) and the characteristic i s 0 or p > n, then 9 1 is alternative. Moreover , i f 91 is finite dimensional, the n 9 1 is separable . Nondegenerac y o f Q in Schafer' s sens e mean s that i f Q(x l,x2,-~,x„) i s th e symmetri c multilinea r for m associate d wit h Q a s usual s o tha t Q(x 9 --,x) = Q(x), the n th e onl y z suc h tha t Q(z,x 2, •~,x n) = 0 for al l Xi is z = 0 . Schafer' s result , alon g wit h Theore m 3 , ca n b e use d t o giv e a complet e determinatio n o f th e nondegenerat e Q whic h permi t compositio n o n a finite-dimensional algebra . Schafe r conjecture d tha t hi s conclusion s ar e vali d without th e assumptio n o f finiteness o f dimensionality . I n anothe r pape r [13 ] Schafer considered the problem of characterizing Jordan algebras by commutativity and th e existenc e o f a nondegenerate for m Q satisfyin g th e Jorda n compositio n Q({xyx}) = Q(x) 2Q(y). H e wa s abl e t o trea t thi s proble m onl y fo r deg g = 2 and 3.

An extensiv e generalizatio n o f thes e result s o f Schafer' s ha s bee n give n b y McCrimmon i n [2] . H e consider s finite-dimensional algebra s 91/ 0 an d define s a for m (homogeneou s polynomia l functio n o f degre e > 0 ) Q o n 9 1 t o admit composition i f there exists two rational mappings E annd F of 91 into Hom4)(9l, 91) such that: 1. £(1) = 1 = F(l) , 2 . A" E = <xa L, A\ F = fla R where a, ft are nonzero elements of O and aL and aR are respectively the left and right multiplications by a, 3. Q(aE b) = Q(a)e{b), Q(aF b) = Q{a)j{b) fo r som e rationa l function s e an d / in 91 (whenever the various functions are defined). A form Q is called nondegenerate if th e correspondin g trace form t(a,b) = — A^A^logg i s a nondegenerat e symmetric bilinea r form in a an d b. I f Q admit s compositio n an d th e charac -teristic is 0 or a prime p exceeding the degree of Q, then this condition is equivalent to Schafer' s condition s fo r nondegeneracy . Wit h thes e definitions , McCrimmo n has prove d tha t i f 9 1 is a finite-dimensional algebra wit h 1 over a n infinit e field which possesse s a nondegenerat e for m Q admittin g composition , the n 9 1 i s a separable noncommutative Jorda n algebr a (definitio n i n ex. 8 , p . 33 ) an d 9l + i s a separabl e (commutative) Jordan algebra . The converse i s also valid as is shown by McCrimmon in [2] and Osborn in [7]. McCrimmon's theorem implies Schafer's theorem on composition in the usual sense with the improvement that the condition on the characteristic can be replaced by the assumption that the number of elements

Page 25: Structur e and Representation s - American Mathematical Society · 2019. 2. 12. · America n Mathematical Society Colloquiu m Publications Volum e 39 Structur e and Representation

436 FURTHER RESULT S AND OPEN QUESTIONS

in the bas e field exceeds the degree o f Q. McCrimmon' s theorem yield s als o th e generalization o f Schafer' s result s o n Jorda n compositio n t o form s o f arbitrar y degree.

In [8 ] McCrimmo n generalize d th e foregoin g result s t o algebra s fo r whic h finiteness of dimensionality i s not assumed and has obtained an affirmative answe r to Schafer' s conjectur e note d above . I n [10 ] th e sam e autho r ha s give n a n ex -tension of the theory of the generic minimum polynomial to strictly power associa-tive algebra s wit h 1 which ma y b e infinit e dimensiona l bu t ar e "genericall y al -gebraic" in a certain sense.

The basic tool in these papers of McCrimmon's is that of the differential calculu s of rationa l mappings . Thi s metho d wa s use d systematicall y first b y Koeche r i n applying th e structur e theor y o f Jorda n algebra s ove r th e rea l field to determin e the homogeneou s domain s o f positivit y an d mor e genera l "co-domains " (se e Koecher [4 ] and also Vinberg [1]) .

The following theore m has been proved b y Meyberg i n [3] : Let 3 an d 3 ' ̂ > e

finite-dimensional central simpl e Jordan algebras with the same underlying vecto r space o f characteristi c ^ 3 (and 5 * 2) an d assum e tha t 3 an d 3' hav e th e sam e structure grou p (equivalently , i n vie w o f Theorem s 6. 6 an d 6.7 , i f |4> | i s larg e enough, the same groups o f norm similarities) , then 3 an d 3' ar e isotopes.

CHAPTER VI I

It would b e interesting t o obtai n proo f o f the main result s o f thi s chapter (the separability o f C/(3 ) fo r 3 separable , th e Albert-Penico-Taft theorem , Harris ' theorem) withou t usin g th e classificatio n o f simpl e Jorda n algebras . Fo r charac -teristic 0 , suc h proof s ar e give n i n Chapter VIII . Perhaps i t ma y b e possibl e t o transfer th e result s o f thi s cas e t o characteristi c p b y a metho d o f reductio n modulo p.

It i s unknow n at th e presen t tim e whethe r o r no t anythin g lik e Theore m 6.1 6 is valid i n the characteristi c p case . I n particular, the followin g questio n appear s to b e unsettled: Let 3 = Si ® 5 R wher e Si is separable and 9 t i s the radical. Le t SB be a separabl e subalgebra . The n doe s ther e exis t a n automorphis m rj such tha t 931* £ ft? (Theore m 6.1 5 give s an affirmative answe r in a special case. )

CHAPTER VII I

We shall indicate th e grou p theoretic backgroun d fo r som e o f th e Li e algebras considered in this chapter and the extensions of these notions to quadratic Jordan algebras (cf. Koeche r [8] and McCrimmo n [6]) .

We consider first the structur e group T(3) . W e defined thi s to b e the group o f isotopies o f 3 ont o 3 an d w e saw in §1.1 2 that T(3 ) i s the se t o f bijectiv e linea r mappings a in 3 fo r which there exists a linear mapping /? such that U XOL = /?(/** , x e 3 - The n 1 * i s invertibl e an d p = <x(U x*yl. Henc e th e conditio n is :

Page 26: Structur e and Representation s - American Mathematical Society · 2019. 2. 12. · America n Mathematical Society Colloquiu m Publications Volum e 39 Structur e and Representation

FURTHER RESULT S AND OPEN QUESTIONS 437

Ux* = U^a l U x* or, with a slight change of notation, we can define T(3)t o be the set of bijective linea r mappings W of 3 suc h that

(1) U xW = W*U XW9 W* = U iwW'\ x e 3 .

It follows tha t W e T(3) i f and onl y i f W is a bijective linea r mappin g in 3 suc h that ther e exist s a bijectiv e linea r mappin g W* in 3 satisfyin g U xW = W*UXW. Then necessarily W* — U lw W~l.

These consideration s carr y ove r t o quadratic Jorda n algebra s (3 , U91) with 1 over an arbitrary commutative ring d> wit h 1 . We defirfe the structure group T(3) to b e the group o f bijectiv e O-endomorphism s W of 3 fo r which ther e exist s a bijectiv e O-endormorphis m W* such tha t U xW = W*U X W, x e 3- I t i s clea r from th e axiom 3 for quadratic Jorda n algebra s wit h 1 that i f a i s invertible , then (7 aer(3) . Also , U IW= W*W i s bijective , s o \W i s invertibl e an d W* = U lwW~l e T(3). I t is immediate that W -> W* is an anti-automorphism in T(3) and W** = W. If a is invertible and WeTQ), the n l/ flH, = W*U aW is in -vertible. Henc e a W is invertible i n 3 an d (aW)'1 = (aW)U~w = a'~\W*)~ l. If WeTQ) an d 1W = 1 then W* = W l an d C/XW = WU xW. Thi s state s tha t W is a homomorphism of (3, U, 1) so W is an automorphism. Henc e the group of automorphisms Aut3 £ T(3 ) and Aut3 is the subgroup of T(3) fixing the element 1. The subgroup r\(3) of F(3) generate d b y the invertible U a is called th e inner structure group. Th e elements of 1^(3) n Aut 3 ar e called inner automorphisms.

Let D b e the algebra ove r <t > with basi s (1,0> where t 2 = 1 (cf. the proof of Theorem 2.1(7) on p. 67). Consider (3 ,̂ U, 1) and let (5(3) be the set O of endomor-phisms A o f 3 suc h tha t 1 + At e IXSD). Her e ^ * s ^e D-endomorphis m i n 3$ extendin g th e given A. The condition tha t W = 1 + At e T ^) i s tha t (1 ) holds fo r x e 3- Since W~ l = 1 — At, thi s give s th e condition tha t /4e©(3 ) i f and only if

(2) UX*A=UI.IAU X + LU X9A], X G 3 .

It follows fro m this , o r directly fro m th e definition, tha t ©(3 ) is a Li e algebra (subalgebra o f Hom 0(3,3)~ ) whic h i s restricte d i f p<b = 0 fo r a prim e p (cf. Serre, Lie Algebras and Lie Groups, Ne w York, 1965 , p. L.A. 1.3). We call ©(3) the structure Lie algebra o f (3, U, 1). It is easily seen that A e ©(3) i f and onl y if there exist s a n ^'eHom^Q , 3) suc h tha t

(3) U x,xA = A'U x+UxA, x e 3 .

Then A' is uniquely determined and in fact, A' = U 1A — A. One can deduce from the axiom s fo r quadrati c Jorda n algebra s wit h 1 the identit y U xVab + V hJUx

=* Ux,xva,b which shows that Vajb e ©(3)- Since UuiA = V x 1A we see that A' e ©(3). Hence A -+A' i s an anti-automorphism of the Lie algebra ©(3) and e: A ->A s — A' is an automorphism satisfyin g e 2 = 1 . Also we have V ab = — V ha.

Page 27: Structur e and Representation s - American Mathematical Society · 2019. 2. 12. · America n Mathematical Society Colloquiu m Publications Volum e 39 Structur e and Representation

438 FURTHER RESULT S AND OPEN QUESTIONS

If Xe(5(3)and Wer(3),the n W'\l + AtWerQJ. Henc e W~ lAWe(5Cs). Thus T(3) acts on (5(3 ) b y means o f A -> W~1AW an d this is an automorphis m of (5(3) - O n e c a n establis h easil y fro m th e definition s tha t (W~ 1AW)' = W*A'(W' 1)*.

The definin g conditio n (3 ) fo r Ae (5(3) give s U xyA + U ytJcA = A'U xy + U xyA which implies that AVX,Z + V xA, = 7 X,2A, + V Xt2A. Hence [T fl>b, A]=VaAib + F fl>w. This implies that the subset fi(3) o f sums of the operators V ab is an ideal in ©(3) -We shal l cal l thi s idea l th e inner structure Lie algebra o f (3, U, 1).

We define a derivation D of (3, U, 1) to be a O-endomorphism suc h that ID = 0 . and [U X,D] = U XjXD, x e 3 . I t i s clear from (3 ) that D e (5(3 ) an d D ' = - D o r D = D. Th e se t o f derivation s De r 3 i s th e subalgebr a o f (5(3 ) o f mapping s satisfying I D = 0 . This i s clear from (2). The elements of £(3) n Der 3 ar e called inner derivations. Amon g these one has the strictly inner derivations V ab — V ba. The inne r derivations an d strictl y inner derivations constitut e ideal s Inde r 3 an d Strinder3 in Der3 .

We consider nex t th e extensio n o f th e Tits-Koeche r constructio n o f th e Li e algebra 51(3 ) t o quadrati c Jorda n algebras . Since V ab = 2a A b if 3 i s a Jordan algebra an d V atb i s define d a s i n (3 , C7,1) with U a = 2R} a — Ra.2, on e i s lea d t o define R(3) = 3 © 3 © #(3)> where 3 i s a copy of 3 an d fi(3) is the inner structure Lie algebra . W e defin e a produc t [ , ] i n 51(3) a s i n (26 ) o n p . 32 5 with th e modification tha t a A 6i s replace d by V ab(ct Koeche r [8]). Asmex. 1,p . 329, w e can i ntroduce the same bilinear product [ , ] in g(3 ) = 3 © 3 © ®(3)> © ( 3 ) t h e

structure Li e algebra. Th e verificatio n give n in the text carrie s over to sho w tha t g(3) an d 51(3) are Lie algebras. W e have the automorphism e in 5 (3 ) : a + b + A -» b + a +A (cf . p . 327) and s2 = 1 .

We now retur n t o Jorda n algebra s wit h 1 (over a field o f characteristi c 5 * 2, though everythin g i s vali d fo r a commutativ e rin g O containing i). Alon g wit h the Jordan algebra 3 w e consider the associated quadratic Jordan algebra (3, U 91), where U a = 2R 2

a - R fl.2. Then Va>b = 2aAb = 2(R ttmb - [R flRj). A linear mapping D is a derivation of the Jordan algebra if and only if it is a derivation of (3, U, 1). Since ©(3 ) include s th e R a = \V a^ i t i s immediat e tha t (5(3 ) = K(3 ) © Der 3 and fi(3) = R(3 ) © [R(3) , *<3>]-"

We shal l no w prov e a recen t theore m o f Koecher' s whic h i s a n importan t addition to the theory of 51(3) given in the text. This states that an y derivatio n D of 51(3 ) i n t o 5(3 ) c a n b e extende d t o a n inne r derivatio n D o f g(3 ) an d every derivation o f g(3 ) i s inner . To be consistent wit h the text , w e use the definitions given in the text rather than the modifications just indicate d fo r quadrati c Jorda n algebras. W e not e first that i f A i s a linea r transformation i n 3 suc h tha t ther e exists a linea r transformatio n A suc h tha t [aAfc,A ] = a A Lb + aAbA, the n A e ©(3) an d A = A. Thi s follow s b y retracin g the step s o f th e argumen t give n above t o sho w tha t S(3 ) i s a n idea l i n ©(3) - No w le t D b e a derivatio n o f th e ideal 51(3 ) i n t o 5(3) - Sinc e [ a + 5 + L,R, ] = a — b w e ca n subtrac t a n inne r

Page 28: Structur e and Representation s - American Mathematical Society · 2019. 2. 12. · America n Mathematical Society Colloquiu m Publications Volum e 39 Structur e and Representation

FURTHER RESULT S AND OPEN QUESTIONS 439

derivation fro m D to obtai n a derivation mappin g R t int o ©(3) - Henc e w e may assume R lDe®Q)- s i n c e [>>Ki]_ = « for " 3 , w e hav e [aD 9Rt] + [>,I^D ] = AD , and ^ since [ a D ^ J e S + 3 an d K i D e © ^ ) , s o [ a ^ D ^ j e S , w e hav e aD e3 + 3 - Henc e w e can write aD = aD t + aD 2, wher e D t an d D2 ar e linea r mappings o f 3 int o 3 an d 3 respectively . The n [fl,/*i ] = a give s aD j + aD 2

= aDij- aD 2 + aiR^D). SmcQ_aR{D e% w e obtain D2 = 0 , so 3D c 3 . Similarly , 3D < = 3 . The n [ 3 3 ] D c [ 3 3 ] , an d sinc e [ 3 3 ] = £ , w e se e that _also £D s f i . Let Dx b e the restriction of D to 3 an d write the restriction of D to 3 a s x -* xD2 , x e 3 - Le t D 3 b e the restrictio n o f D t o £ . I f a e 3 an d L e £ , the n [a,L ] = aL and aLD t = [aD l5 L ] + [a , LD 3] = aD xL + aLD 3. Henc e LD 3 = [ L , ^ ] . If 6 6 3, the n [a A fc, DJ = ( a A b)D 3 = [a , S] D = \aD u B] + [a, M) 2] = aD lAb + aA bD 2. B y the resul t note d a t the beginning , w e have Dx e ©(3 ) and D 2 =D V I t follow s tha t th e derivatio n D coincide s wit h th e restriction s t o ft(3) o f th e inne r derivatio n X-+[X,D X~\ determine d b y D te(5Q). I t follow s easily that every derivation of 5(3) i s inner and that Derg(3) = 5(3 ) = Der5t(3) .

We consider next the automorphisms of 5(3) and 51(3)- We have already defined the automorphism e: a + b + L^>b + a +Lof 5(3 ) andft(3) . Le t W eT(3) th e structure grou p an d A €©(3). The n W~ lAWe(SQ). Th e definitio n o f T(3 ) implies tha t W~\a A b)W = aW A b(W*y\ Henc e A-+W~ XAW i s a n auto -morphism of ©(3) which maps £(3) into itself. Also, a + B + A-+aW + b(W*)~ l

4- W ~ XA W is an automorphism OL W of 5(3) whic h maps R(3) into itself. It can be shown tha t th e OL W ca n b e characterize d a s th e automorphism s o f 5(3 ) (51(3) ) which ma p 3 int o itself. If a e% the n (ad of = 0 i n 5(3 ) (cf . ex . 4 , p . 329) . I t follows tha t T a = exp(a d a) wher e Zexp(a d a)) = 1 + [Xa ] + i [ [Aa]a ] i s a n automorphism i n 5(3 ) mappin g 51(3 ) int o itself . Th e automorphis m e , a^ fo r W e T(3), Ta for a e 3 generat e a subgroup Aut' 5(3) of the group of automorphisms of 5(3) - Relation s betwee n thes e generator s hav e bee n considered b y Koecher. There exis t Jorda n algebra s 3 suc h tha t Aut ' 5(3 ) # Au t 5(3) .

For finite-dimensional Jordan algebras , Koecher ha s defined i n a recent paper [10] a group of rational mappings which is closely related to the foregoing groups . This i s th e grou p E(3 ) generate d b y th e structur e grou p T(3) , th e translation s ta: x -> x + a and the mapping j: x -> — x'"1 define d on the set of invertible elements. In general , th e mapping s o f S ar e rationa l define d o n Zarisk i open subset s o f 3 and the composition is the usual composition o (cf. §6.2) . The Hua identity can be written in operator form as j o ta o j o ta. -1 o j o ta = U a. This shows that the inner structure group I \ (3) i s contained i n the subgroup S t(3) generate d by j an d the translations. I f T denote s th e subgrou p o f translations , the n i t follow s fro m Hua's identity that S = T o TojoTojo T (with obvious meaning). Koecher has given a beautiful characterizatio n o f th e grou p S b y a differential equatio n suc h that a rationa l mappin g i s containe d i n 3 i f and only i f i t satisfie s th e equation. Using this , he ha s proved tha t S i s a n algebraic group (not linear) . Also h e ha s studied the question of the uniqueness of the representation of an element according

Page 29: Structur e and Representation s - American Mathematical Society · 2019. 2. 12. · America n Mathematical Society Colloquiu m Publications Volum e 39 Structur e and Representation

440 FURTHER RESULTS AND OPEN QUESTIONS

to the decomposition of S as T o Toj o To j o T. One obtains a linear representation of S ont o Aut'3(j) sending W -• OLW, t a -• ia, j - » e.

CHAPTER I X

A numbe r o f characterization s o f finite-dimensional exceptional centra l simpl e Jordan algebras based on forms have been given. We have already noted Schafer' s characterization in [13] by means of cubic forms satisfying the Jordan composition (see th e note s o n Chapter VI) . Another importan t characterizatio n i s one du e t o Springer in [1] . In this, one assumes that 3 i s a finite-dimensional algebra with 1 over a field of characteristi c ^ 2 , 3 equipped wit h a quadratic form Q with non-degenerate associated bilinear form (x,y) suc h that (1) Q(x2) = Q(x) 2 i f (x, 1) = 0 , (2) (xy,z) = (x,yz), (3 ) Q(l ) = 3/2 . Then Springe r ha s shown that 3 i s a central simple Jordan algebra o f degree three with Q(x) = %t(x2)(x'2 = x2) and conversely.

Another characterization base d on cubic forms i s one which was first suggested by Freudentha l (cf . [6] ) an d was established b y Springe r in [5 ] fo r finite-dimen-sional algebras over fields of characteristic ^ 2,3 . Recently, this has been extended by McCrimmon in [15 ] to quadrati c Jorda n algebra s ove r arbitrar y fields. Th e Springer-McCrimmon axioms ar e th e following . Le t 3 b e a finite-dimensional vector spac e ove r a n arbitrar y field O equipped wit h a cubi c for m n and a dis -tinguished element / e 3 satisfyin g th e following conditions :

1. n ( l ) = l . 2. t(x,y) = — A^A^lognis a nondegenerat e symmetri c bilinea r form . 3. I f x* i s defined b y t(x*,y) = A y

xn, the n x # # = n(x)x. Now define x x y = (x + y)* — x* — y* an d

(1) yU x = t(x,y)x-x* x y.

Then McCrimmo n ha s shown , usin g the technique s o f the differentia l calculu s o f rational mappings , that (%U,1) i s a quadratic Jorda n algebr a wit h 1 . (Actually, the hypothesi s o f finiteness o f dimensionalit y i s no t essential . On e requires onl y a formulation whic h permits the application of the differential calculus. ) Le t (X>J) be a composition algebr a ove r a n arbitrar y field 0 , § (T>3,J y) the spac e o f 3 x 3 matrices over D whic h are symmetric under the canonical involution X -> y~ lXly, y = diag {Vi,72*73)5 7i 5^ 0 in O. Let n(X) b e defined as usual (equation (50), p. 232) and le t 1 be the usua l identit y matrix . The n i t can b e show n tha t th e condition s 1-3 ar e satisfied , s o i f U i s define d b y (1) , the n (§(D 3,Jy), U,l) i s a quadrati c Jordan algebr a wit h 1 . Th e structur e the n define d i s a n isotop e o f a standar d quadratic Jorda n matri x algebr a a s define d i n th e note s o n Chapte r I V b y a n octonion algebra .

Similarly, on e ca n exten d Tits ' construction s t o quadrati c Jorda n algebras . We indicat e onl y th e first o f these . Henc e le t % be a centra l simpl e associativ e algebra (with 1 ) of degree three. Then the generic norm n on 31 is a cubic form and

Page 30: Structur e and Representation s - American Mathematical Society · 2019. 2. 12. · America n Mathematical Society Colloquiu m Publications Volum e 39 Structur e and Representation

FURTHER RESULTS AND OPEN QUESTIONS 441

t(a, b) = - A * Afc lo g n i s a nondegenerate symmetri c bilinea r for m o n 31 . Let 3 = 2l o ® 21 1 ® 2l 2

a direc t sum of three copies of 91, a -* a,- a linear isomorphism of S 3I onto 91, . Let / ibea nonzer o element o f Q> and defin e

n(x) = n(a) + M^O ) + /*~ ln(c)

for x = a 0 + b± + c 2, a,b,ce s2I. The n i t ca n b e show n tha t thi s an d 1 = 1 0

satisfy th e condition 1- 3 s o (1 ) define s a quadratic Jordan algebra wit h 1 . I f the characteristic i s not two, this coincides with the quadratic Jordan algebra define d by Tits.

There i s a n extensiv e literatur e o n exceptiona l algebrai c groups , Li e algebra s and geometrie s connecte d wit h exceptiona l Jorda n algebras . W e indicat e thi s briefly. Tae-I l Su h i n [1 ] ha s prove d tha t an y isomorphis m betwee n th e littl e projective groups o f Moufan g projectiv e planes i s induced b y an isomorphism o r correlation between the planes. His proof is based on a classification of involutions contained in the little projective group. Another method o f obtaining Suh' s result and an extension of this to the middle projective group has been given by Veldkamp in [2] . An extensiv e stud y of elliptic and hyperbolic Moufan g planes , that is , the geometry o f Moufan g plane s relativ e t o certai n type s o f polarities , ha s bee n made b y Springe r an d Veldkam p i n [1] . Recently , Springe r an d Veldkamp i n [2] an d Veldkam p i n [3] , [4 ] an d [5 ] hav e develope d a geometr y o f spli t Jordan algebras . Thi s i s agai n base d o n th e element s o f ran k one .

Additional result s o n th e group s o f automorphism s an d o f nor m preservin g transformations o f reduce d exceptiona l simpl e Jorda n algebra s ar e give n i n Jacobson [26] and [27], These are algebraic groups of types F4 and E6 respectively. Soda in [1] has studied the groups Aut3 \&, where 3 i s reduced simple exceptional and St i s a cubic subfield . Thes e ar e exceptional simpl e algebrai c group s o f typ e D4, whic h had been studied previously i n a geometric fashion b y Tits [3] . Soda's results are based in part on some given by Springer in [9].

In a series of papers [6]-[14], Freudentha l has studied certain real forms of the Lie algebras E n an d E 8 an d relate d these to symplectic and metasymplectic geom-etries. Certai n form s o f Li e algebra s o f type s D 4 an d E 6 hav e bee n studie d respectively by Allen in [1 ] and by Ferra r in [1].

Page 31: Structur e and Representation s - American Mathematical Society · 2019. 2. 12. · America n Mathematical Society Colloquiu m Publications Volum e 39 Structur e and Representation

This page intentionally left blank

Page 32: Structur e and Representation s - American Mathematical Society · 2019. 2. 12. · America n Mathematical Society Colloquiu m Publications Volum e 39 Structur e and Representation

BIBLIOGRAPHY

Albert, A. A. [1]: On a certain algebra of quantum mechanics, Ann. of Math. (2) 35 (1934), 65-73; [2]: Structure of algebras, Colloq . Publ. , Vol . 24 , Amer. Math . Soc , Providence , R.I . 1939 ; [3]: Quadratic forms permitting composition, Ann . o f Math . 4 3 (1942) , 161-177 ; [4] : The radical of a non-associative algebra, Bull. Amer . Math . Soc . 48 (1942) , 891-897 ; [5] : Non-associative algebras. I, Ann. of Math. (2) 43 (1942), 685-707; [6]: II, Ann. of Math. (2) 43 (1942), 708-723; [7]: On Jordan algebras of linear transformations, Trans. Amer. Math. Soc. 59 (1946), 524-555; [8] : The Wedderbum principal theorem for Jordan algebras, Ann . o f Math . (2 ) 48 (1947), 1-7; [9] : A structure theory for Jordan algebras, Ann. of Math . (2) 48 (1947), 546-567; [10]: On the power-associativity of rings, Summa Brasil . Math . 2 (1948) , 21-32; [11] : Power associative rings, Trans. Amer . Math . Soc . 6 4 (1948) , 552-593 ; [12] : A theory of trace-ad-missible algebras, Proc . Nat. Acad . Sci . U.S.A. 35 (1949), 317-322; [13] : On right alternative algebras, Ann. o f Math . (2 ) 5 0 (1949) , 318-328 ; [14] : Absolute-valued algebraic algebras, Bull. Amer. Math. Soc. 55 (1949), 763-768; [15]: A note of correction, Bull. Amer. Math. Soc . 55 (1949), 1191; [16]: A note on the exceptional Jordan algebra, Proc . Nat. Acad. Sci . U.S.A. 36 (1950) , 372-374 ; [17] : A theory of power-associative commutative algebras, Trans. Amer . Math. Soc . 69 (1950) , 503-527 ; [18] : New simple power-associative algebras, Summa Brasil. Math. 2 (1951) , 183-194 ; [19] : Power-associative algebras, Proc . Internat . Congr . Math. , Cambridge, Mass. , 1950 ; vol . 2 , Amer . Math . Soc , Providence , R.I. , 1952 , pp. 2-32 ; [20] : On simple alternative rings, Canad. J. Math. 4 (1952), 129-135; [21]: On non-associative division algebras, Trans. Amer. Math. Soc. 72 (1952), 296-309; [22]: On commutative power-associative algebras of degree two, Trans. Amer. Math. Soc. 74 (1953), 323-343; [23]: The structure of right alternative algebras, Ann. o f Math . 5 9 (1954) , 408-417 ; [24] : On partially stable algebras, Trans. Amer . Math . Soc . 8 4 (1957) , 430-443 ; [25] : A construction of exceptional Jordan division algebras, Ann. o f Math . 6 7 (1958) , 1-28 ; [26] : Addendum to the paper on partially stable algebras, Trans. Amer . Math . Soc . 8 7 (1958) , 57-62 ; [27] : Finite non-commutative division algebras, Proc. Amer . Math . Soc . 9 (1958) , 928-932 ; [28] : A solvable exceptional Jordan algebra, J. Math . Mech . 8 (1959) , 331-337 ; [29] : Finite division algebras and finite planes, Proc . Sympos. Appl. Math., vol. 10 , Amer. Math . Soc , Providence , R.I. , 1960 , pp . 53-70; [30] : On the nuclei of a simple Jordan algebra, Proc . Nat. Acad. Sci. U.S.A. 50 (1963), 446-447; [31] : The norm form of a rational division algebra, Proc. Nat. Acad. Sci . U.S.A. 43 (1957), 506-509; [32]: (Editor), Studies in modern algebra, Studies in Mathematics, vol. 2, Math. Assoc, of America ; distributor , Prentice-Hall , Englewoo d Cliffs , N.J. , 1963; [33] : On excep-tional Jordan division algebras, Mimeographed notes , Chicago , 1964 .

Albert, A . A . an d Jacobson , N . [1] : On reduced exceptional simple Jordan algebras, Ann. o f Math. (2 ) 66 (1957), 400-417.

Albert, A . A . an d Paige , L . J . [1] : On a homomorphism property of certain Jordan algebras, Trans. Amer. Math . Soc. 93 (1959), 20-29.

Allen, H . P . [1] : Jordan algebras and Lie algebras of type D 4, J . of Algebr a 5 (1967), 250-265. Ancochea, G. [1] : On semi-automorphisms of division algebras, Ann. of Math. 48 (1947), 147-154. Artin, E. [1] : Geometric algebra, Interscience, New York, 1957 . Askinuze, V. G. [1]: A theorem on the splittability ofJ-algebras, Ukrain. Mat. Z. 3(1951), 381-398. Baily, W. Jr. [1]: A set of generators for a certain arithmetic group (to appear). Barnes, R. T. [1]: On derivation algebras and Lie algebras of prime characteristic, Doctoral Disser-

tation, Yal e Univ. , Ne w Haven , Conn. , 1963 . Behrens, E. A. [1] : Nichtassociative Ringe, Math. Ann. (2) 127 (1954), 441-452. Bergmann, A . [1] : Formen auf Moduln iiber kommutativen Ringen beliebiger Charakteristik, J.

Reine Angew . Math . 21 9 (1965) , 113-156 ; [2] : Hauptnorm und Struktur von Algebren, J . Reine Angew. Math . 222 (1966), 160-194.

Birkhoff, G . and Whitman , P . M. [1] : Representation of Jordan and Lie algebras, Trans . Amer. Math. So c 6 5 (1949) , 116-136 .

Blattner, J. W. [1] : Three variable identities in Jordan Algebras, Doctoral Dissertation, University of California, Lo s Angeles, 1962.

van der Blij , F . and Springer , T. A. [1] : The arithmetics of octaves and of the group G%, Nederl. Akad. Wetensch. Proc Ser . A 62 = Indag . Math. 21 (1959), 406-418; [2]: Octaves and triality, Nieuw. Arch . Wisk . (3 ) 8 (1960) , 158-169 .

443

Page 33: Structur e and Representation s - American Mathematical Society · 2019. 2. 12. · America n Mathematical Society Colloquiu m Publications Volum e 39 Structur e and Representation

444 BIBLIOGRAPHY

Bott, R . an d Milnor , J . [1] : On the parallelizability of the spheres, Bull. Amer . Math . Soc . 64 (1958), 87-89 .

Braun, H. and Koecher, M. [1] : Jordan-algebren, Springer-Verlag , Berlin, 1966. Brown, B. and McCoy, N. H. [1] : Prime ideals in nonassociative rings, Trans. Amer . Math. Soc.

89 (1958) , 245-255. Brown, R. B . [1] : Lie algebras of types E& and En, Doctora l Dissertation , Univ . o f Chicago ,

1963; [2]: A new type of nonassociative algebras, Proc. Nat. Acad. Sci. U.S.A. 50 (1963), 947-949. [3]: On generalized Cay ley-Dickson algebras, Pacifi c J . Math. 20 (1967), 415-422.

Bruck, R. H. and Kleinfeld , E . [1] : The structure of alternative division rings, Proc. Amer. Math . Soc. 2 (1951) , 878-890 .

Campbell, H. E. [1 ] An extension of the "principal theorem" of Wedderburn, Proc . Amer. Math. Soc. 2 (1951), 581-585; [2 ] On the Casimir operator, Pacific J . Math . 7 (1957), 1325-1331.

Cartan, H . and Eilenberg , S . [1] : Homological algebra, Princeton Univ . Press , Princeton, N.J. , 1956.

Chevalley, C . [1] : Theory of Lie groups. I, Princeto n Univ . Press, Princeton, N. J., 1946 . [2] : II, Hermann, Paris , 1951 ; [3] : III, Hermann , Paris , 1955 ; [4] : The algebraic theory of spinors, Columbia Univ . Press, New York, 1954 .

Chevalley, C. and Schafer , R. D . [1] : The exceptional simple Lie algebras F4 and E$, Proc. Nat . Acad. Sci . U.S.A . 3 6 (1950) , 137-141 .

Cohn, P. M. [1] : On homomorphic images of special Jordan algebras, Canad . J. Math . 6 (1954), 253-264; [2] : Two embedding theorems for Jordan algebras, Proc. Londo n Math . Soc , (3 ) 9 (1959), 503-524 ; [3] : Universal algebra, Harper an d Row , Ne w York , 1965 .

Didize, C. E. [1]: Free non-associative sums of algebras with an arbitrary amalgamated subalgebra, Soobsc. Akad. Nauk Gruzin . SSR24 (1960), 519-521 (Russian) ; [2] : Subalgebras of non-asso-ciative free sums of algebras with arbitrary amalgamated subalgebra, Mat . Sb . (N.S. ) (96 ) 54 (1961) , 381-38 4 (Russian) .

Dieudonne, J . [1] : La geometrie des groupes classiques, Springer-Verlag , Berlin , 1955 , 2nd ed. , 1963; [2] : Sur le polynome principal d'une algebre, Arch. Math . 8 (1957), 81-84 .

Dinkines, F . [1] : Semi-automorphisms of symmetric and alternating groups, Proc. Amer. Math . Soc. 2 (1951) , 478-486.

Dorofeev, G . V. [1]: Alternative rings with three generators, Sibirsk. Mat . 2. 4 (1963), 1029-1048; [2]: An example in the theory of alternative rings, Sibirsk. Mat . 2. 4 (1963), 1049-1052.

Dubisch, R . an d Perlis , S . [1] : On the radical of a non-associative algebra, Amer. J . Math. 70 (1948), 540-546 .

Duffin, R . J. [1]: On the characteristic matrices of covariant systems, Phys. Rev. 54 (1938), 1114. Effros, E . G. and St0rmer , E . [1] : Jordan algebras of self-adjoint operators, Trans . Amer. Math .

Soc. 12 7 (1967) , 313-316 . Eilenberg, S . [1] : Extensions of general algebras, Ann. Soc . Polon . Math . 2 1 (1948) , 125-134 . Faulkner, J. R. [1] : The inner derivations of a Jordan algebra, Bull . Amer. Math. Soc . 73 (1967),

208-210. Ferrar, J . C . [1] : On Lie algebras of type E$, Doctoral Dissertation , Yal e Univ. , Ne w Haven ,

Conn., 1966 ; Bull. Amer. Math . Soc . 73 (1967), 151-155 ; [2] : Generic splitting fields of com-position algebras, (to appear) .

Flanders, H. [1] : The norm function of an algebraic field extension. I , Pacifi c J. Math. 3 (1953), 103-112; [2] : II, Pacifi c J . Math . 5 (1955) , 519-528.

Freudenthal, H . [1] : Oktaven, Ausnahmegruppen und Oktavengeometrie, Utrecht , 1951 ; [2] : Sur le groupe exceptionnel E7, Nederl . Akad . Wetensch . Proc . Ser . A 5 6 (1953) , 81-89 ; [3]: Sur des invariants caracteristiques des groupes semisimples, Nederl . Akad . Wetensch. Proc. Ser. A 56 (1953), 90-94; [4] : Sur le groupe exceptionnel E%, Nederl . Akad . Wetensch . Proc . Ser A 5 6 (1953), 95-98; [5] : Zur ebenen Oktavengeometrie, Nederl. Akad . Wetensch . Proc . Ser. A 56 (1953), 195—200 ; [6 ] Beziehungen der E-j und E% zur Oktavenebene. I, Nederl . Akad. Wetensch . Proc . Ser . A 5 7 (1954), 218-230; [7] : II, Nederl . Akad . Wetensch . Proc . Ser. A 5 7 (1954) , 363-368 ; [8] : III , Nederl . Akad . Wetensch . Proc . Ser . A 5 8 (1955) , 151-157; [9] : IV, Nederl . Akad. Wetensch . Proc . Ser. A 5 8 (1955) , 277-285 ; [10] : V , Ne-derl. Akad. Wetensch . Proc. Ser . A 62 (1959), 165-179 ; [11]: VI , Nederl . Akad . Wetensch . Proc. Ser . A 62 (1959), 180-191; [12]: VII, Nederl . Akad . Wetensch . Proc . Ser . A 6 2 (1959) , 192-201; [13] : VIII, Nederl. Akad. Wetensch . Proc . Ser . A 62 (1959) , 447-465 ; [14] : IX, Nederl. Akad. Wetensch. Proc. Ser. A 62 (1959), 466-474.

Frobenius, G. [1]: Vber die Darstellung der endlichen Gruppen durch lineare Substitutionen,S.-B. Berlin. Akad . 1897 , pp . 994-1015 .

Gerstenhaber, M . [1] : On the deformation of rings and algebras, Ann. o f Math . (2 ) 79 (1964), 59-103; [2]: A uniform cohomology theory for algebras, Proc. Nat. Acad. Sci. U.S.A. 51 (1964), 626-629.

Page 34: Structur e and Representation s - American Mathematical Society · 2019. 2. 12. · America n Mathematical Society Colloquiu m Publications Volum e 39 Structur e and Representation

BIBLIOGRAPHY 445

Glassman, N . [1] : Cohomology of non-associative algebras, Doctoral Dissertation , Yal e Univ . New Haven , Conn. , 1963 .

Glennie, C . M . [1] : Some identities valid in special Jordan algebras but not valid in all Jordan algebras, Pacifi c J . Math . 1 6 (1966), 47-59; [2]: Identities in Jordan algebras, Doctoral Dis -sertation, Yal e Univ. , Ne w Haven , Conn. , 1963 .

Hall, M., Jr. [1] : Projective planes and related topics, Calif. Inst, of Tech., Pasadena, Calif., 1954; [2]: An identity in Jordan rings, Proc. Amer. Math . Soc . 7 (1956) , 990-998.

Harper, L . R., Jr . [1] : Proof of an identity on Jordan algebras, Proc. Nat. Acad. Sci . U.S.A. 42 (1956), 137-139; [2]: On differentiability simple algebras, Trans. Amer. Math. Soc. 100 (1961), 63-72.

Harris, B. [1] : Centralizers in Jordan algebras, Pacific J . Math . 8 (1958), 757-790; [2] : Deriva-tions of Jordan algebras, Pacific J . Math . 9 (1959) , 495-512 ; [3] : Cohomology of Lie triple systems and Lie algebras with involution, Trans . Amer . Math . Soc . 98 (1961), 148-162 .

Hasse, H . an d Schilling , O . [1] : Die Normen aus einer normalen Divisionsalgebra iiber einem algebraischen Zahlkorper, J . Rein e Angew . Math . 17 4 (1936) , 248-252 .

Havel, V . [1] : Eine Bemerkung iiber die Semi-Homomorphismen der Alternativringe, Mat.-Fyz. Casopis. Slov . Akad . Vied . 8(1958), 3-6 ; [2]: On the theory of semi-automorphisms of alterna-tive fields, Czechoslovak Math. J. (87) 12 (1962), 110-118.

Helwig, K.-H . [1] : Automorphismengruppen des allgemeinen Kreiskegels und des zugehorigen Halbraumes, Math . Ann., 157 (1964), 1-33; [2] : Zur Koecherschen Reduktionstheorie in Positi-vitatsbereichen. I , Math . Z . 9 1 (1966) , 152-168 ; [3] : II, Math . Z . 91 (1966), 169-178 ; [4J : III, Math . Z . 9 1 (1966) , 355-362 ; [5] : Eine Verallgemeinerung der formal reellen Jordan-Algebren, Invent. Math . 2 (1966) , 18-35 ; [6] : Einige Bemerkungen iiber die Strukturgruppe einer Jordan-Algebra (t o appear) ; [7 ] Vbsr Automorphismen und Derivationen von Jordan-Algebren, Nederl. Akad . Wetensch . Se r A 7 0 = lndag . Math . 2 9 (1967) , 381-394 ; [8]: Halbeinfache Reelle Jordan-Algebren, Habilitationschrift , Universit y o f Munich , 1967 .

Herstein,!. N . [1] : Ore the Lie and Jordan rings of a simple associative ring, Amer . J . Math . 77 (1955), 279-285; [2]:Jordan homomorphisms, Trans. Amer . Math.Soc.81 (1956), 331-341; [3]: Lie and Jordan systems in simple rings with involution, Amer. J . Math . 7 8 (1956) , 629^649; [4]: Lie and Jordan structures in simple, associative rings, Bull. Amer. Math . Soc . 67 (1961), 517-531.

Hertneck, Ch . [1] : Positivitatsbereiche und Jordan-Strukturen, Math . Ann . 14 6 (1962), 433-455. Hijikata, H. [1]: A remark on the groups of type G2 andF4, J. Math. Soc. Japan 1 5 (1963), 159-164. Hirzebruch, U . [1] : Halbrdume undihre holomorphen Automorphismen, Math. Ann . 15 3 (1964),

395-417; [2] : Vber Jordan-Algebren und kompakte Riemannsche symmetrische Raume vom Rang 1, Math. Z. 90 (1965), 339-354; [3]: On Jordan algebras and bounded symmetric domains (to appear) .

Hochschild, G . P . [1] : Representation theory of Lie algebras, Univ. o f Chicag o lectur e notes , 1959; [2] On the algebraic hull of a Lie algebra, Proc. Amer. Math. Soc. 19 (1960), 195-200.

Hoehnke, H.-J. [1] : Vber spurenvertragliche Algebren, Publ. Math. Debrecen. 9 (1962), 122-134; [2]: Vber nichtassoziative Algebren mit assoziativ-symmetrischer Bilinearform, Monats. Deutsch. Akad. Wiss . Berli n 4 (1962) , 173-178 .

Hua, L. K. [1]: On the automorphisms of a sfield, Proc. Nat. Acad. Sci. U.S.A. 35 (1949), 386-389; [2]: Some properties of a sfield,.¥roc. Nat. Acad. Sci. U.S.A. 35 (1949), 533-537; [3]: On semi-homomorphisms of rings and their applications in projective geometry, Uspeh i Mat . Nauk . 8, no. 3(55), (1953), 143-148 (Russian).

Humm, M . H . an d Kleinfeld , E . [1] : On free alternative rings, J . o f Combinatoria l Theory , 2 (1967) , 140-144 .

Jacobson, F . D . an d Jacobson , N . [1] : Classification and representation of semisimple Jordan algebras, Trans . Amer. Math . Soc . 65 (1949), 141-169.

Jacobson, N . [1] : A note on non-associative algebras, Duke Math . J . 3 (1937) , 544-548 ; [2]: Abstract derivation and Lie algebras, Trans. Amer. Math . Soc. 42 (1937), 206-224; [3]: Cayley numbers and normal Lie algebras of type G, Duke Math . J. 5 (1939), 775-783; [4]: The theory of rings, Math . Surveys , no . 2 , Amer . Math . Soc . Providence , R.I. , 1943 ; [5] : The center of a Jordan ring, Bull. Amer . Math . Soc . 5 4 (1948) , 316-322 ; [6] : Isomorphisms of Jordan rings, Amer. J. Math. , 70 (1948), 317-326; [7]: Derivation algebras and multiplication algebras of semi-simple Jordan algebras, Am. o f Math . (2 ) 5 0 (1949) , 866-874 ; [8] : Lie and Jordan triple systems, Amer. J. Math. 71 (1949), 149-170; [9]: General representation theory of Jordan algebras, Trans. Amer. Math. Soc. 70 (1951), 509-530; [10]: Completely reducible Lie algebras of linear transformations, Proc. Amer. Math. Soc. 2 (1951), 105-113; [11]: Lectures in Abstract Algebra, v. I, Van Nostrand, Princeton, N.J., 1951 ; [12] : II , Va n Nostrand, Princeton, N.J., 1953; [13] : III, Va n Nostrand , Princeton , N.J. , 1964 ; [14] : Representation theory for Jordan rings, Proc. Internat . Congr . Math. , Cambridge , Mass. , 1950 , vol . II , Amer . Math . Soc. ,

Page 35: Structur e and Representation s - American Mathematical Society · 2019. 2. 12. · America n Mathematical Society Colloquiu m Publications Volum e 39 Structur e and Representation

446 BIBLIOGRAPHY

Providence, R.I., 1952, pp. 37-43; [15] : Operator commutativity in Jordan algebras, Proc. Amer. Math. Soc . 3 (1952) , 973-976; [16] : Some aspects of the theory of representations of Jordan algebras, Proc. Internat. Congr. Math. , Amsterdam, vol . Ill, 1954 , pp. 28-33; [17] : Structure of alternative and Jordan bimodules, Osaka J . Math . 6 (1954), 1-71; [18]: A Kronecker factor-ization theorem for Cay ley algebras andthe exceptionalsimple Jordan algebras, Amer. J. Math. 76 (1954), 447-452; [19] : A theorem on the structure of Jordan algebras, Proc . Nat. Acad. Sci. U.S.A. 42 (1956), 140-147; [20]: Structure of Rings, Colloq. Publ. Vol. 37, Amer. Math. Soc, Providence, R.I. , 1956 ; rev. ed . 1964 ; [21] : "Jordan algebras" , in Report of a conference on linear algebras, Nat. Acad . Sci. , Nat . Res . Council, Publ . 502 , 1957 , pp. 12-19 ; [22] : Com-position algebras and their automorphisms, Rend. Circ . Mat . Palerm o 7 (1958) , 55-80 ; [23] : Nilpotent elements in semi-simple Jordan algebras, Math. Ann . 13 6 (1958) , 375—386 ; [24] : Exceptional Lie algebras, Mimeographe d notes , Yal e Univ. , Ne w Haven , Conn. , 1958; [251: Some groups of transformations defined by Jordan algebras. I, J. Reine Angew. Math. 201 (1959), 178-195; [26] : II, J. Rein e Angew . Math . 20 4 (1960) , 74-98 ; [27] : III , J . Rein e Angew . Math. 20 7 (1961) , 61-85 ; [28] : Cayley planes, Mimeographe d notes , Yal e Univ. , Ne w Haven, Conn. , 1960 ; [29]: Macdonald's theorem on Jordan algebras, Arch. Math . 1 3 (1962) 241-250; [30] : A coordinatization theorem for Jordan algebras, Proc. Nat. Acad. Sci . U.S.A., , 48 (1962), 1154-1160 ; [31] : Lie algebras, Interscience, Ne w York , 1962 ; [32] : Generic norm of an algebra, Osaka J . Math . 1 5 (1963) , 25-50 ; [33] : Triality and Lie algebras of type Z>4, Rend. Circ . Mat . Palermo 1 3 (1964), 1-25 ; [34] : Lectures on Jordan algebras, Lectur e notes, Univ . o f Chicago , 1964 ; [35]: Carton subalgebras of Jordan algebras, Nagoya Math. J . 27 (1966) , 591-609 ; [36] : Associative algebras with involution and Jordan algebras, Nederl . Akad. Wetensch . Proc . Ser . A 6 9 = Indag . Math . 2 8 (1966), 202-212; [37] : "Forms o f al -gebras", in Some recent advan. basic sciences, vol . 1 , Academic Press, New York, 1966 ; [38]: Structure theory for a class of Jordan algebras, Proc. Nat. Acad. Sci. U.S.A. 55 (1966), 243-251.

Jacobson, N . an d Paige , L . J . [1] : On Jordan algebras with two generators, J. Math . Mech . 6 (1957), 895-906 .

Jacobson, N . an d Rickart , C . E . [1] : Jordan homomorphisms of rings, Trans. Amer . Math . Soc. 69 (1950), 479-502; [2] : Homomorphisms of Jordan rings of self-adjoint elements, Trans. Amer. Math . Soc . 72 (1952), 310-322.

Jenner, W. E. [1]: The radical of a non-associative ring, Proc. Amer. Math. Soc. 1 (1950), 348-351. Jordan, P . [1] : Ober eine Klasse nichtassoziativer hyperkomplexer Algebren, Nachr. Ges . Wiss.

Gottingen, 1932 , pp. 569-575 , [2] : Ober Verallgemeinerungsmoglichkeiten des Formalismus der Quantenmechamik, Nachr . Ges . Wiss . Gottinge n (1933) , 209-214 ; [3 ] Ober eine nicht-desarguesches ebene projektive Geometrie, Abh. Math. Sem. Univ. Hamburg, 16 (1949), 74-76.

Jordan, P. , von Neumann, J . and Wigner , E. [1] : On an algebraic generalization of the quantum mechanical formalism, Ann . o f Math . (2 ) 36 (1934), 29-64.

Kalish, G . K . [1] : On special Jordan algebras, Trans. Amer . Math . Soc . 6 1 (1947) , 482-494. Kantor, I . L . [1] : "Transitive-differential group s an d invarian t connectivit y i n homogeneou s

spaces", in Proceedings of the seminar on vector and tensor analysis, Moscow, 1964,309-39 8 (Russian); [2]: Non linear groups of transformations defined by general norms of Jordan algebras Dokl. Acad . Nauk . SSS R 17 2 (1967), 779-782 = Sovie t Math . Dokl . 8 (1967) , 176-180 .

Kaplansky, I . [1] : Semi-automorphisms of rings, Duke Math . J. , 1 4 (1947), 521-527; [2] : Semi-simple alternative rings, Portugal. Math . 1 0 (1951), 37-50 ; [3] : Infinite-dimensional quadratic form permitting composition, Proc. Amer . Math . Soc . 4 (1953) , 956-960 .

Kemmer, N. [1]: The particle aspect of meson theory, Proc. Roy. Soc. London Ser A 17 3 (1939), 91-116; [2] : The algebra of meson matrices, Proc . Cambridge Phil . Soc. 39 (1943), 189-196.

Kleinfeld, E . [1] : Simple alternative rings, Ann. of Math. 58 (1953), 544-547; [2]: Generalization of a theorem on simple alternative rings, Portugal . Math. 14 (1956), 91-94; [3]: Middle nucleus-center in a simple Jordan ring, J. Algebra 1 (1964), 40-42.

Knebusch, M. [1]: Der Begriffder Ordnung einer Jordanalgebra, Abh. Math. Sem. Univ. Hamburg 28 (1965), 168-184; [2]: Eine Klasse von Ordnungen in Jordanalgebran vom Graded, Abh. Math. Sem. Univ . Hamburg 2 8 (1965) , 185-207 ; [3] : Assozierte Vektoren in maximalen Gittern lokaler quadratischer Raume, Math . Z . 8 9 (1965) , 213-223.

Knopfmacher, J . [1] : Universal envelopes for non-associative algebras, Quart. J . Math . Oxford , Ser. (2 ) 1 3 (1962) , 264-282 ; [2 ] Extensions in varieties of groups and algebras, Acta Math . 115 (1966) , 17-50 .

Koecher, M . [1] : Analysis in reellen Jordan Algebren, Nachr. Akad . Wiss . Gottingen , Math. -Phys., Kl. Ha (1958) , 67-74; [2] : On real Jordan algebras, Bull. Amer. Math . Soc . 68 (1962), 374-377; [3] : Eine Charakterisierung der Jordan-Algebren, Math . Ann . 14 8 (1962) , 244-256; [4]: Jordan algebras and their applications, Lectur e notes , Univ . of Minnesota , Minneapolis , Minn., 1962 ; [5] : Imbedding of Jordan algebras into Lie algebras, I, Mimeographe d notes , Yale Univ. , New Haven, Conn. , 1966 ; [6] : II, Mimeographed notes , Munich Univ. , Munich ,

Page 36: Structur e and Representation s - American Mathematical Society · 2019. 2. 12. · America n Mathematical Society Colloquiu m Publications Volum e 39 Structur e and Representation

BIBLIOGRAPHY 447

1966; [7] : On homogeneous algebras, Bull. Amer . Math . Soc . 7 2 (1966) , 347-357 ; [8] : On Lie algebras defined by Jordan algebras, Mimeographe d notes , Aarhu s Univ. , Aarhus , 1967: [9] Imbedding of Jordan algebras in Lie algebras. I , Amer. J. Math. 89 (1967), 787-815; [10]: Uber eine Gruppe von rationalen Abbildungen, Invent . Math . 3 (1967) , 136-171 .

Kokoris, L . A . [1] : Power-associative commutative algebras of degree two, Proc . Nat . Acad . Sci. U.S.A. 3 8 (1952), 534-537; [2] : New results on power-associative algebras, Trans. Amer . Math. Soc. 77 (1954), 363-373; [3]: Power-associative rings of characteristic two, Proc. Amer. Math. Soc . 6 (1955) , 705-710; [4] : Simple power-associative algebras of degree two, Ann. o f Math. (2 ) 64 (1956), 544-550; [5] : Some nodal noncommutative Jordan algebras, Proc . Amer. Math. Soc. 9 (1958), 164-166; [6]: Simple nodal noncommutative Jordan algebras, Proc . Amer. Math. Soc . 9 (1958), 652-654.

Kosier, F . an d Osborn , J . M . [1] : Nonassociative algebras satisfying identities of degree three, Trans. Amer. Math. Soc . 110 (1964), 484-492.

Kurosh, A. G. [1] : Non-associative free algebras and free products of algebras, Rec . Math. (Mat. Sb.) 2 0 (1947) , 239-262 ; [2] : Lectures on general algebra', Englis h transl . by K . A. Hirsc h Chelsea, New York , 1963.

Leadley, J . D . an d Ritchie , R . W . [1] : Conditions for the power associativity of algebras, Proc. Amer . Math . Soc . 1 1 (1960) , 399-405 .

Lister, W. G. [1] : A structure theory of Lie triple systems, Trans. Amer. Math . Soc. 72 (1952), 217-242.

Loos, O . [1] : Uber eine Beziehung zwischen Malcev-Algebren und Lie-Tripelsystemen, Pacifi c J. Math . 1 8 (1966) , 553-562 .

Lorenzen, H.-P . [1J : Quadratische Darstellungen in Jordan-Algebren, Abh . Math . Sem . Univ . Hamburg 28 (1965), 115-123 ; [2] : Mutationsinvariante Unteralgebren von Jordan-Algebren, Math. Ann . 17 1 (1967) , 54-60 .

Losey, N . [1] : Simple commutative non-associative algebras satisfying a polynomial identity of degree five, Ph.D. Thesis, Univ. o f Wisconsin, Madison , Wis. , 1963.

Macdonald, I. G. [1] : Jordan algebras with three generators, Proc. London Math. Soc. 10 (1960), 395-408.

MacLane, S . [1] : Extensions and obstructions for rings, Illinois J . Math . 2 (1958) , 316-345 . Mars, J. G. M . [1] : Les nombres de Tamagawa de certains groupes exceptionels, Bull . Soc. Math.

France 9 4 (1966) , 97-140 . Martindale, W. S. , III . [1]: Jordan homomorphisms of the symmetric elements of a ring with in-

volution, J . of Algera 5 (1967), 232-249. Mathiak, K . [1] : Zur Theorie nicht endlich-dimensionaler Jordanalgebren uber einem Korper

einer Charakteristik ^ 2 , J. Reine Angew. Math. 224(1966), 185-201. McCrimmon, K. [1 ]: Jordan algebras of degree 1, Bull. Amer. Math. Soc. 70 (1964), 702; [2J: Norms

and noncommutative Jordan algebras, Pacifi c J . Math . 1 5 (1965) , 925-956 ; [3] : Structure and representations of noncommutative Jordan algberas, Trans . Amer. Math . Soc . 121 (1966), 187-199; [4]: Bimodules for composition algebras, Proc . Amer. Math. Soc. 17 (1966), 480-486; [5]: Finite power-associative division rings, Proc. Amer . Math . Soc . 1 7 (1966) , 1173-1177 ; [6]: A general theory of Jordan rings, Proc. Nat . Acad . Sci . U.S.A . 5 6 (1966) , 1072-1079 ; [7]: A note on quasi-associative algebras, Proc . Amer. Math . Soc . 1 7 (1966), 1455-1459 ; [8]: A proof of Schafer's conjecture for infinite-dimensional forms admitting composition, J . of Al -gebra 5 (1967) , 72-83 ; [9] : Macdonald's theorem with inverses, Pacifi c J . Math . 21 (1967), 315-325; [10] : Generically algebraic algebras, Trans . Amer. Math . Soc. 127(1967), 527-551 ; [11]: Jordan algebras with interconnected idempotents (t o appear) ; [12]: ̂ 4 {note on reduced Jordan algebras (to appear) ; [13] : Noncommutative Jordan division algebras (t o appear) ; [14]: The Freudenthal-Springer-Tits constructions of exceptional Jordan algebras (to appear) .

McCrimmon, K. , an d Schafer , R . D . [1] : On a class of noncommutative Jordan algebras, Proc. Nat. Acad . Sci . U.S.A . 5 6 (1966) , 1-4 .

Mendelsohn, N . S . [ 1 ]: Non-disarguesian projective plane geometries which satisfy the harmonic point axiom, Canad . J . Math . 8 (1956) , 532-562 .

Meyberg, K . [1] : Uber die Killing-Form in Jordan-Algebren, Math . Z . 8 9 (1965) , 52-73 ; [2] : Ein Satz uber Mutationen von Jordan-Algebren, Math . Z. 90 (1965), 260-267; [3]: Uber die Lie-Algebren der Derivationen und der links-regularen Darstellungen in zentral-einfachen Jordan-Algebren, Math. Z . 9 3 (1966) , 37-47 .

Mills, W . H . [1] : A theorem on the representation theory of Jordan algebras, Pacific J . Math . 1 (1951) , 255-264 .

Moufang, R . [1] : Alternativkorper und der Satz vom vollstandigen Vierseit (Dg), Abh. Math . Sem. Univ . Hamburg 9 (1933), 207-222; [2]: Zur Struktur von Alternativkorpern, Math . Ann. 110 (1935) , 416-430 .

Page 37: Structur e and Representation s - American Mathematical Society · 2019. 2. 12. · America n Mathematical Society Colloquiu m Publications Volum e 39 Structur e and Representation

448 BIBLIOGRAPHY

Neumann, B . H . [1] : Embedding non-associative rings in division rings, Proc. Londo n Math . Soc. 1 (1951) , 241-256 .

von Neumann, J. [1] : On an algebraic generalization of the quantum mechanical formalism, Mat. Sb. 1 (1936) , 415-482.

Oehmke, R. H . [1] : A class of noncommutative power-associative algebras, Trans. Amer. Math. Soc. 87 (1958) , 226-236; [2] : On commutative algebras of degree two, Trans. Amer . Math . Soc. 10 5 (1962) , 295-313; [3] : Nodal noncommutative Jordan algebras, Trans. Amer . Math . Soc. 11 2 (1964) , 416-431 .

Oehmke, R . H. , an d Sandler , R . [1] : The collineation groups of division ring planes. I, Jordan division algebras, Z. Rein e Angew . Math . 21 6 (1964) , 67-87.

Osborn, J . M . [1] : Quadratic division algebras, Trans . Amer . Math . Soc . 105 (1962), 202-221; [2]: A generalization of power-associativity, Pacific J. Math. 14 (1964), 1367-1379; [3]: Identities of non-associative algebras, Canad . J. Math. 17 (1965), 78-92; On commutative nonassociative algebras, J . Algebra 2 (1965), 48-79; [5]: Commutative algebras satisfying an identity of degree four, Proc . Amer . Math . Soc . 1 6 (1965) , 1114-1120 ; [6] : Jordan algebras of capacity two, Proc. Nat . Acad . Sci . U.S.A . 5 7 (1967), 582-588; [7] : A norm on separable noncommutative Jordan algebras of degree 2 (to appear in Proc. Nat. Acad. Sci., U.S.A.).

Outcalt, D . L . [1] : Power-associative algebras in which every subalgebra is an ideal, Pacific J . Math. 2 0 (1967) , 481-485 .

Paige, L. J . [1] : A note on noncommutative Jordan algebras, Portugal . Math . 1 6 (1957) , 15-18 . Patterson, E. M. [1 ]: Note on non-associative rings with regular automorphisms, J. London Math.

Soc. 34 (1959) , 457-464. [2] : On regular automorphisms of certain classes of rings, Quart. J. Math. Oxfor d Ser . (2 ) 1 2 (1961) , 127-133 .

Penico, A . J . [1] : The Wedderburn principal theorem for Jordan algebras, Trans. Amer . Math . Soc. 7 0 (1951) , 404-420 .

Petersson, H. [1J: Vbereine Verallgemeinerung von Jordan-Algebren, Dissertation, Munich Univ., Munich, 1966 ; [2] : Zur Theorie der Lie-Tripel-Algerben, Math . Z . 97 (1967), 1-15 . [3] : Vber den Wedderburnschen Struktursatz fur Lie-Tripel-Algebren, Math . Z . 9 8 (1967) , 104-118 .

Pickert, G . [1] : Projektive Ebenen, Springer-Verlag , Berlin , 1955 ; [2 ] Bemerkungen iiber die projektive Gruppe einer Moufang-Ebene, Illinoi s J . Math . 3 (1959), 169-173.

Pollak, B. [1]: The equation Tat = bin a composition algebra, Duke Math . J . 29 (1962), 225-230. Price, C . M . [1] : Jordan division algebras and the algebras A(X), Trans. Amer . Math . Soc . 70

(1951), 291-300 . Ritchie, R . W . [1] : A generalization of non-commutative Jordan algebras, Proc. Amer . Math .

Soc. 1 0 (1959) , 926-930 . Romberg, W . Das Hinselsche Lemma in potenzassoziativen Algebren, Math . Nachr. 29 (1965),

375-380. Sagle, A. A. [1] : Malcev algebras, Trans . Amer. Math . Soc . 101 (1961), 426-458; [2] : On deri-

vations of semi-simple Malcev algebras, Portugal. Math . 2 1 (1962) , 107-109 ; [3] : Simple Malcev algebras over fields of characteristic zero, Pacific J . Math . 1 2 (1962), 1057-1078 ; [4]: Simple algebras that generalize the Jordan algebra M8, Canad . J . Math . 1 8 (1966) , 282-290 . [5]: On anti-commutative algebras and homogeneous spaces, J. Math . Mech. , 1 6 (1967) , 1381-1393.

Sasser, D. W. [1] : On Jordan matrix algebras, Doctoral Dissertation , Yale Univ. , New Haven , Conn., 1957 .

Schafer, R . D . [1] : Concerning automorphisms of non-associative algebras, Bull. Amer . Math . Soc. 53 (1947), 573-583; [2]: The exceptional simple Jordan algebras, Amer. J. Math. 70 (1948), 82-94; [3] : The Wedderburn principal theorem for alternative algebras, Bull. Amer . Math . Soc. 55 (1949), 604-614; [4] : Inner derivations of non-associative algebras, Bull . Amer. Math. Soc. 5 5 (1949) , 769-776 ; [5] : A theorem on the derivations of Jordan algebras, Proc. Amer . Math. Soc. 2 (1951), 290-294; [6]: Representations of alternative algebras, Trans. Amer. Math. Soc. 72 (1952) , 1-17 ; [7] : The Casimir operation for alternative algebras, Proc. Amer. Math. Soc. 73 (1953), 444-451; [8]: Noncommutative Jordan algebras of characteristic 0, Proc. Amer. Math. Soc . 6 (1955) , 472-475; [9] : On noncommutative Jordan algebras, Proc. Amer . Math . Soc. 9 (1958) , 110-117 ; [10] : Restricted noncommutative Jordan algebras of characteristic p, Proc. Amer . Math . Soc . 9 (1958) , 141-144 ; [11] : On cubic forms permitting composition, Proc. Amer . Math . Soc . 1 0 (1959) , 917-925 ; [12] : Nodal noncommutative Jordan algebras and simple Lie algebras of characteristic p, Trans . Amer . Math . Soc . 9 4 (1960) , 310-326 ; [13]: Cubic forms permitting a new type of composition, J . Math . Mech . 1 0 (1961) , 159-174 ; [14]: On forms of degree n permitting composition, J . Math . Mech . 12 (1963), 777-792; [15]: On the simplicity of the Lie algebras E7 and E%, Nederl . Akad. Wetensch. Ser A 69 = Indag . Math. 2 8 (1966) , 64-69 ; [16] : An introduction to nonassociative algebras, Academic Press , New York, 1966 ; [17] : Standard algebras (to appear) .

Page 38: Structur e and Representation s - American Mathematical Society · 2019. 2. 12. · America n Mathematical Society Colloquiu m Publications Volum e 39 Structur e and Representation

BIBLIOGRAPHY 449

Seligman, G . B . [1] : On the split exceptional Lie algebra Ej, Mimeographe d notes , Yal e Univ., New Haven , Conn. ; [2 ] On automorphisms of Lie algebras of classical type. Ill, Trans . Amer. Math . Soc . 9 7 (1960) , 286-316 .

Shirshov, A.I . [1] : On special J-rings, Mat . Sb . 3 8 (1956) , 149-166 ; [2] : On some non-associative null-rings and algebraic algebras, Mat. Sb . 4 1 (83 ) (1957) , 381-394 ; [3] : Some questions in the theory of rings close to associative, Uspek i Mat . Nauk . 1 3 no. 6 (84) (1958), 3-20.

Skornyakov, L . A. [1] : Alternative fields, Ukrain. Mat . 2 2 (1950), 70-85; [2] : Projective planes, Uspeki Mat . Nauk 6 (1951), 112-154; English transl. , Amer . Math . Soc . Transl. (1) 1 (1953), 51-107.

Small, L . B . [1] : Mapping theorems in simple rings with involution, Doctoral Dissertation, Yale Univ., Ne w Haven , Conn. , 1967 .

Smiley, M. F. [1] : Application of a radical of Brown and McCoy to non-associative rings, Amer. J. Math . 7 2 (1950) , 93-100 ; [2] : On the ideals and automorphisms of non-associative rings, Proc. Amer . Math . Soc . 2 (1951) , 138-143 ; [3] : Jordan homomorphisms and right alternative rings, Proc . Amer . Math . Soc . 8 (1957) , 668-671 ; [4] : Jordan homomorphisms onto prime rings, Trans. Amer . Math . Soc . 84 (1957), 426-429; [5] : A remark on the definition of Jordan homomorphisms, Portugal. Math . 2 0 (1961) , 147-148 .

Smith, D. A. [1] : Chevalley bases for Lie modules, Trans. Amer. Math. Soc. 115 (1965), 283-299. Soda, D . [1] : Some groups of type D 4 defined by Jordan algebras, J . Rein e Angew . Math . 22 3

(1966), 150-163 . Springer, T . A . [1] : On a class of Jordan algebras, Nederl . Akad . Wetensch . Proc . Ser . A 6 2

(1959), 254-264 ; [2] : The projective octave plane, Nederl . Akad . Wetensch . Proc . Ser . A 6 3 (I960), 74-101 ; [3] : Sur les formes quadratiques d'indice zero, C . R . Acad . Sci . Pari s 234 (1952) , 1517-1519 ; [4] : The classification of reduced exceptional simple Jordan algebras, Nederl. Akad . Wetensch . Proc . Ser . A 63 = Indag . Math . 2 2 (1960) , 414-422; [5 ] Charac-terization of a class of cubic forms, Nederl . Akad. Wetensch. Proc . Ser . A 65 = Indag . Math . 24 (1962), 259-265; [6]: On the geometric algebra of the octave planes, Nederl. Akad. Wetensch. Ser. A 65 = Indag . Math . 2 4 (1962) , 451-468 ; [7] : "Quelques resultat s su r l a cohomologi e galoisienne", i n Colloque sur la theorie des groupes algebriques, Bruxelles , CBRM, 1962 , pp. 129-135; [8]: Note on quadratic forms in characteristic 2, Nieu w Arch . Wisk . (3 ) 1 0 (1962) , 1-10; [9] : Oktaven, Jordan-Algebren und Ausnahmegruppen, Univ . of Gottinge n lectures ,

Utrecht, 1963 . Springer, T. A. and Veldkamp, F. D. [1] : Elliptic and hyperbolic octave planes. I, Nederl . Akad.

Wetensch. Ser . A66 = Indag . Math . 25 (1963), 413-451; [2] : On Hjelmslev-Moufang planes (to appear) .

Stocker, C. [1]: Alternative Divisionsringe beliebiger Charakteristik, Math. Ann. 132 (1956), 17-42. St0rmer, L . [1] : On the Jordan structure of C*-algebras, Trans . Amer . Math . Soc . 120 (1965).

438-447; [2] : Jordan algebras of type I, Acta . Math . 11 5 (1966) , 165-184 ; [3] : Irreducible Jordan algebras of self-adjoint operators, (to appear) .

Suh, T. [1]: On isomorphisms of little projective groups of Cayley planes, Nederl. Akad . Wetensch. Ser. A 6 5 = Indag . Math . 2 4 (1962) , 320-339 .

Svartholm, N. [1] : On the algebras of relativistic quantum theories, Proc. Roy. Phis. Soc. of Lund 12 (1942) , 94-108 .

Taft, E . J. [1] : Invariant Wedderburn factors, Illinoi s J. Math . 1 (1957), 565-573; [2]: The White-head first lemma for alternative algebras, Proc. Amer. Math . Soc. 8 (1957), 950-956; [3] : Cleft algebras with operator groups, Portugal. Math . 20 (1961), 195-198; [4]: Invariant Levi factors, Michigan Math. J. 9 (1962), 65-68; [5]: Orthogonal conjugacies in associative and Lie algebras, Trans. Amer. Math. Soc. 113 (1964), 18-29; [6]: On certain d-groups of algebra automorphisms and antiautomorphisms, J . o f Algebra 3 (1966), 115-121 ; [7] : Cohomology of algebraic groups and invariant splitting of algebras, Bull . Amer. Math. Soc. 73 (1967) , 106-108 . [8] : Invariant splitting in Jordan and alternative algebras, Pacific J . Math . 1 5 (1965) , 1421-1427 .

Thedy, A. [1] : Note zu einer Arbeit von R. H. Oehmke und R. Sandler, J. Rein e Angew. Math . 216 (1964) , 88-90 ; [2] : Mutationen und polarisierte Fundamentalformel (t o appear) .

Tits, J . [1] : Le plan project if des octaves et les groupes de Lie exceptionnels, Acad. Roy . Belg . Bull. CI. Sci. 39 (1953), 309-329; [2] : Le plan projectif des octaves et les groupes exceptionnels E6 et En, Acad . Roy . Belg . Bull . CI. Sci . 40 (1954), 29-40; [3] : Sur la trialite et les algebres d'octaves, Acad . Roy Belg . Bull . CI . Sci . 4 4 (1958) , 332-350 ; [4] : Une classe d'algibres de Lie en relation avec les algebres de Jordan, Nederl. Akad. Wetensch. Proc. Ser. A 65 = Indag . Math. 24 (1962), 530-535; [5]: A theorem on generic norms of strictly power associative algebras, Proc. Amer . Math . Soc . 1 5 (1964) , 35-36 ; [6] : Algebres alternatives, algibres de Jordan et algebres de Lie exceptionnelles. I , Construction, Nederl . Akad. Wetensch. Ser. A 69 =Indag. Math. 2 8 (1966) , 223-237 .

Page 39: Structur e and Representation s - American Mathematical Society · 2019. 2. 12. · America n Mathematical Society Colloquiu m Publications Volum e 39 Structur e and Representation

450 BIBLIOGRAPH Y

Tomber, M . L . [1] : Lie algebras of type F, Proc. Amer. Math . Soc . 4 (1953), 759-768; [2] : Lie algebras of types A, B, C, D, F, Trans. Amer. Math . Soc . 88 (1958), 99-106.

Topping, D. M. [1] : Jordan algebras of self-adjoint operators, Mem. Amer. Math . Soc. 53 (1965), 1-48; [2] : States and ideals in Jordan operator algebras (to appear) .

Tsai, Chester, [1] : Prime radical in Jordan rings (to appear) . Urbanik, K. [1 ]: Absolute-valued algebras with an involution, Fund. Math. 49 (1960/1961), 247-258;

[2]: Reversibility in absolute-valued algebras, Fund . Math. 51 (1962/1963), 131-140 . Urbanik, K. and Wright, F. B. [1]: Absolute-valued algebras, Proc. Amer. Math . Soc. 11 (1960),

861-866. Veldkamp, F . D . [1] : Polar geometry, Ph.D . Thesis , Utrech t Univ. , 1959 ; [2] : Isomorphisms

of little and middle projective groups of octave planes, Nederl. Akad. Wetensch . Ser . A 6 7 = Indag. Math . 2 6 (1964) , 280-289 ; [3 ] Unitary groups in projective ovtave planes (to appea r in Compositi o Math.) . [4 ] Collineation groups in Hjelmslev-Moufang planes (t o appear) ; [51 Unitary groups in Hjelsmlev-Moufang planes (to appear) .

Vinberg, E . B . [1] : Automorphisms of homogeneous convex cones, Dokl. Akad . Nau k USS R 143 (1962) , 265-268 = Sovie t Math . Dokl . 3 (1962) , 371-374 .

Vinberg, E . B. , and Katz , V . G . [1] : Quasi-homogeneous cones, Math. Nat . Acad . Sci . USS R 1 (1967) , 347-354. (Russian).

Walde, Ralph E. [1] : Composition algebras and exceptional Lie algebras, Doctora l Dissertation , Univ. o f California , berkeley , Calif. , 1967 .

Wright, F . B . [1] : Absolute valued algebras, Proc . Nat . Acad . Sci . U.S.A . 3 9 (1953) , 330-332. Yamaguti, K . [lj : On algedras of totally geodesic spaces {Lie triple systems). J. Sci . Hiroshima

Univ. Ser . A 2 1 (1957) , 107-113 . [2] : On the Lie triple system and its generalization, J . Sci . Hiroshima Univ . Ser. A 21 (1958), 155-160; [3] : A note on a theorem of N.Jacobson, J . Sci . Hiroshima Univ. Ser. A 22 (1958), 187-190; [4]: On the cohomology space of Lie triple system, Kumamoto J . Sci . Ser . A 5 (1961) 44-52 ; [5] : On the representations of Jordan algebras, Kumamoto J . Sci . Ser. A 5 (1961), 103-110 ; [6] : On representations of Jordan triple systems, Kumamoto J . Sci . Ser . A 5 (1962) , 171-184 ; [71 : Note on Malcev algebras, Kumamoto J . Sci. Ser . A 5 (1962) , 203-207 .

Zorn, M . [1J : Theorie der alternativen Ringe, Abh . Math . Sem . Hambur g Univ . 8 (1930) , 123-147; [2] : Alternativkorper und quadratische Systeme, Abh . Math . Sem . Hambur g Univ. 9 (1933) , 395-402 ; [2] : The automorphisms of Cay ley non-associative algebras, Proc. Nat. Acad. Sci. U.S.A. 21 (1935), 355-358; [4]: Alternative rings and related questions. I. Exis-tence of the radical, Ann. o f Math . 4 2 (1941) , 676-686 .

Page 40: Structur e and Representation s - American Mathematical Society · 2019. 2. 12. · America n Mathematical Society Colloquiu m Publications Volum e 39 Structur e and Representation

SUBJECT INDE X

Albert-Jacobson theorem, Albert-Jacobson-McCrimmon

theorem, Albert-Paige theorem, Albert-Penico-Taft factor , Albert-Penico-Taft theorem, Albert's theorem

on nil Jordan algebras, on semisimple Jordan algebras, on simple Jordan algebras, on solvable Jordan algebras,

algebra, alternative, alternative division, Cayley, Clifford, composition, degree of an, exterior, free /-Lie, Malcev, meson, nil, of octonions, opposite, simple, strongly special, unramified,

algebra of octonions, algebra with involutions,

center of , central simple, centroid of , degree of , derivation of , homomorphism of an, ideal of , multiplication algebra of , simple Artinian, perfect, subalgebra of ,

algebraic Jordan algebras, alternative algebra, alternative bimodule, alternative division algebra, associates, associative,

algebra with involution, specialization,

associator, ideal, nilpotent element, regular element,

369

198 50

303 287 417,421 196 201 204 195

15 169 17 75

162 222 74 26 4

33 115 195 17 13 60

101 229

17 208 208 208 207 209 144 13

128 207 178 76

128 54 15 80

169 318 199 13 63 15

190 346 351

basic Jordan identities, bimodule, bimodule with involution,

associative, alternative,

birepresentation, regular,

capacity, Cartan subalgebra, Cayley algebra, Cayley bimodule with involution,

center, center of algebra with involution, central,

simple algebra with involution, centroid,

of algebra with involution, chain rule, Clifford algebra, Clifford group,

even (or second), Cohn's theorem, collineation, composition algebra, Coordinization Theorem, correlation,

degree, of an algebra,

degree of the algebra with involution,

derivation, of an algebra with involution,

derivation into bimodule, derived elements, differential, direct limit, directional derivative,

elation, elementary semisimple Jordan

algebra, elements of rank one, Euler's differential equation, exceptional Jordan algebra, exchange automorphism, extension, exterior algebra,

factor set, First Structure Theorem, formally real, free associative algebra,

33 80

145 145 145 84 90

158 350 17

, 279 18

, 208 206 208 206 207 215 75

371 372

8 379 162 137 397

209 223

209 35

144 292 84

217,218 69

214,216

397

318 364 219

6,11 101 91 74

93 161 205 25

451

Page 41: Structur e and Representation s - American Mathematical Society · 2019. 2. 12. · America n Mathematical Society Colloquiu m Publications Volum e 39 Structur e and Representation

452 SUBJECT INDE X

free /-algebra, free Jordan algebra, free monad, free monoid, free nonassociative algebra, free special Jordan algebra,

generic element, generic minimum polynomial, generic norm, generic trace, Glennie's theorem,

Harris' theorem, homogeneous rational mapping, homomorphism of an algebra

with involution, homotope, homotopy, Hua's identity,

ideal of algebra with involution, inner automorphism,

of associative algebra with involution,

inner derivation, into bimodule,

inner norm preserving group, inner structure group, invariant, inverse, invertible, involution,

canonical, of orthogonal type, of symplectic type, of the first kind, of the second kind, standard,

isotope, isotopic, isotopy, Jacobson and Richart theorem, Jacobson's theorem, Jordan algebra,

elementary semisimple, exceptional, free, free special, of a symmetric bilinear form, noncommutative, nondegenerate, purely inseparable, reduced reflexive, regular, special, split,

Jordan, bimodule, division algebra, element, homomorphism,

26 40 24 23,24 25 7

222 223 223 223 51

293,410 219

13 56 57 2,54

128 60

248 35

292 246 59

220 52 52

125 341 285 208 208

19,125 56 57 57 2

369,401 6

318 6,11

40 7

14 33

155 344 197 76 55 3,4,6

204

80 53 7 2

integral domain, matrix algebra, product, triple product,

Jordan, von Neumann and Wigner theorem,

left free cyclic bimodule, Lie,

algebra, element, invariant, product, semi-invariant,

Lie triple system, derivation of ,

inner, of linear transformations, ideal in a, standard Lie envelope o f a, universal Lie envelope of a,

linear property, 1ineari7atinn little projective group,

Macdonald's theorem, main involution, Malcev algebra, Martinaale theorem, meson algebra, monad (monoid), Moufang's identities, multiplication algebra,

of algebra with involution, multiplication specialization,

nil algebra, nilpotent, nonassociative algebra, noncommutative Jordan algebra, nondegenerate Jordan algebra, norm,

class, preserving group, semisimilarity, similarity,

nucleus l i U v l V U i J ^

null extension, octonions, opposite algebra, operator commutativity, orthogonal idempotents,

connected, strongly,

Osborn's theorem,

Peirce decomposition, formulas (PD), of alternative algebras,

Penico sequence, Penico solvable, perfect associative algebra with

involution,

53 127

3 36

205

279

4 9

220 4

220

308 309 35

311 310 310 78 28

398

41 65 33

141 115 23 16

206 207 63,86

195 195

1 33

155

379 241 394 241

18 91

16 13

320

122 122 176

118,120 121 165 192 332

76

Page 42: Structur e and Representation s - American Mathematical Society · 2019. 2. 12. · America n Mathematical Society Colloquiu m Publications Volum e 39 Structur e and Representation

SUBJECT INDEX 453

Pfaffian, 23 1 polynomial functions, 21 5 polynomial mapping, 21 8 power associative, 3 6 power associativity, 5 purely inseparable Jordan algebra, 34 4 primitive idempotents,

absolutely, completely,

projective transformation,

quadratic ideal, maximal, minimal, minimal conditions for, principal,

quasi-inverse,

radical, rational function, rational mappings, reduced,

Jordan algebra, orthogonal groups,

reducing set of idempotents, reflexive Jordan algebra, regular bimodule,

with involution, regular birepresentation, regular Jordan algebra, reversal operation,

Second Structure Theorem, semiderivation, semi-invariant, separable, semisimple, Schafer's theorem, Shirshov's theorem, Shirshov-Cohn theorem,

197 158 397

153 157 154 157 154 55

192 216 217 197 197 372 197 76 81

278 90 55 8

179 185 220 238 192 346 47 48

5-identity, simple algebra, simple components, simple Artinian algebra with

involution, solvable ideals, special Jordan algebra, special universal envelope,

construction of a, squared, unital, unital squared,

special universal functor, spin group, spinorial norm, split Jordan algebra, split null extension, Springer's theorem,

strictly power associative, strongly associative algebra, strongly special algebra, structure group, subalgebra of algebra with

involution,

TafVs theorem, type of an involution,

49 60

162

178 192

3,4,6 65 68

100 73

104 69

372 372 204 80

378, 381,406 222 38

101 59

128

336 209

universal /-multiplication envelope, 88 universal multiplication, 9 5

functor, 9 0 universal unital multiplication

envelope, 10 3 unramined algebra, 22 9

variety, 2 5

zero divisor, 5 3 absolute, 15 4

Page 43: Structur e and Representation s - American Mathematical Society · 2019. 2. 12. · America n Mathematical Society Colloquiu m Publications Volum e 39 Structur e and Representation