clase 3-distribucion fases

Upload: felipe-murillo-arias

Post on 04-Apr-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/31/2019 Clase 3-Distribucion Fases

    1/41

    Clase 3 Distribucin de

    contaminantes entre fases

    1

    Destino y Transporte de Contaminantes II-2012

    Prof. Jorge E. Pachon, Ph.D.

  • 7/31/2019 Clase 3-Distribucion Fases

    2/41

    Properties of Chemicals: Aqueous

    Solubility When a chemical is contacted with water for an extended

    period of time, the chemical will enter the aqueous phase untilthe water is fully saturated with that chemical.

    = Maximum saturation concentration of A in water (mol/Lor g/L)

    For solid chemicals:

    For gaseous chemicals:

    Larger nonpolar organic contaminants have lower aqueoussolubility.

    Inclusion of polar groups (OH-, NH2-)on the benzene ring resultsin higher solubility in water.

    A

    sat,wC

    CT Asat,wenv

    CT Asat,wenv

    Prof. Jorge E. Pachon, Ph.D. 2

    Destino y Transporte de Contaminantes II-2012

  • 7/31/2019 Clase 3-Distribucion Fases

    3/41

    Properties of Chemicals: Vapor Pressure

    Vapor pressure is the analog of aqueous solubility for the airsystem

    Smaller nonpolar compounds are lighter and more readilyescape to the vapor phase

    env

    AA

    satairRT

    MWC

    A

    v,

    P(g/L)airin theAofconc.saturation

    PT Avenv

    Antoine Equation

    aT

    b

    env

    303..2

    PlogA

    v

    Prof. Jorge E. Pachon, Ph.D. 3

    Destino y Transporte de Contaminantes II-2012

  • 7/31/2019 Clase 3-Distribucion Fases

    4/41

    Henrys Law

    4

    Lmol

    atmsHenry

    A

    /CPConstantLaw'KA

    eqw,

    eqair,A

    H

    Para gases inorgnicos

    (O2, CO2)

    Prof. Jorge E. Pachon, Ph.D.

    Destino y Transporte de Contaminantes II-2012

  • 7/31/2019 Clase 3-Distribucion Fases

    5/41

    Impacts of Environmental Factors on Cw,sat, Pv

    and KH

    Environmental Factors Impacts on Cw, sat Impacts on Pvand KH

    Tenv increaseCw, satof solid increase

    Pvand KH increaseCwof gas decrease

    Aqueous salt conc.

    increaseCw, satdecrease Pvand KH increase

    Presence of co-dissolvedchemicals in water

    Solubility increase Varies, depending onvolatility of the co-solvent

    pH increaseWhen pH> pKa, aqueous

    solubility increase

    When pH> pKa, Pv and KHdecrease

    Prof. Jorge E. Pachon, Ph.D. 5

    Destino y Transporte de Contaminantes II-2012

  • 7/31/2019 Clase 3-Distribucion Fases

    6/41

    Intermedia Equalibrium

    5 L Air

    5 L Water

    5 L Benzene

    Container:

    5L air

    5L water

    5L benzene

    Calculate

    benzene

    air

    benzene

    eq,air

    benzene

    water

    benzene

    eq,w

    M,C

    M,C

    Prof. Jorge E. Pachon, Ph.D. 6

    Destino y Transporte de Contaminantes II-2012

  • 7/31/2019 Clase 3-Distribucion Fases

    7/41

    Partition Coefficient

    At equilibrium, the balance in contaminantconcentration Cbetween two media iandjis

    described by a partition coefficient:

    Air-water exchange

    Soil-water exchange

    Octanol-water exchange

    j

    iij

    C

    CK Medium 1

    Medium 2

    iC

    jC

    Prof. Jorge E. Pachon, Ph.D. 7

    Destino y Transporte de Contaminantes II-2012

  • 7/31/2019 Clase 3-Distribucion Fases

    8/41

    Environmental Partitioning

    water)A/Lof(masswaterinAofionconcentratmEquilibriu

    soil)A/kgof(masssoilinAofionconcentratmEquilibriu

    C

    CK

    water)A/Lof(masswaterinAofionconcentratmEquilibriu

    octonal)A/Lof(massoctonalinAofionconcentratmEquilibriu

    C

    CK

    water)A/Lof(masswaterinAofionconcentratmEquilibriu

    air)A/Lof(massairinAofionconcentratmEquilibriu

    C

    CK

    A

    eqw,

    A

    eqsoil,A

    d

    Aeqw,

    A

    eqo,A

    ow

    A

    eqw,

    A

    eqair,A

    aw

    The concept of environmental partitioning wasdeveloped to describe the distribution of a

    contaminant between pairs of media.

    We define three equilibrium partition coefficients:

    Prof. Jorge E. Pachon, Ph.D. 8

    Destino y Transporte de Contaminantes II-2012

  • 7/31/2019 Clase 3-Distribucion Fases

    9/41

    Air-Water Partitioning

    Contaminant concentrations in air are represented interms of partial pressure (atmospheres)

    Aqueous concentrations of contaminants are inmass/volume (M L-3) units.

    L/molC

    atmPConstantLaws'HenryKwhere

    RT

    KK

    A

    eqw,

    A

    eqair,A

    H

    env

    A

    HA

    aw

    Prof. Jorge E. Pachon, Ph.D. 9

    Destino y Transporte de Contaminantes II-2012

  • 7/31/2019 Clase 3-Distribucion Fases

    10/41

    Henry's law constants ( KH)

    In general, lighter (smaller)and more nonpolar organic molecules will

    prefer air to water.

    Figure 3.3 Prof. Jorge E. Pachon, Ph.D. 10

    Destino y Transporte de Contaminantes II-2012

  • 7/31/2019 Clase 3-Distribucion Fases

    11/41

    11

  • 7/31/2019 Clase 3-Distribucion Fases

    12/41

    12

  • 7/31/2019 Clase 3-Distribucion Fases

    13/41

    Water Equilibrium

    10L Water 0.1 g

    benzene

    Container: 10L water

    0.1g benzene

    Calculate

    Solution: saturated or insaturated?

    benzene

    satw

    benzene

    eqw CC ,,

    Prof. Jorge E. Pachon, Ph.D. 13

    Destino y Transporte de Contaminantes II-2012

  • 7/31/2019 Clase 3-Distribucion Fases

    14/41

    Air-Water Partitioning Example

    10 L Air

    10L Water 0.1 g

    benzene

    Container: 10L air

    10L water

    0.1g benzene

    Calculate

    Solution: using 1. Mass balance

    2. air-water partitioning coefficient

    benzene

    eq,w

    benzene

    eq,air CandC

    Prof. Jorge E. Pachon, Ph.D. 14

    Destino y Transporte de Contaminantes II-2012

  • 7/31/2019 Clase 3-Distribucion Fases

    15/41

    Container:

    5L air

    5mL water

    5L benzene

    Calculate

    Intermedia Equalibrium

    5 L Air

    5 L Water

    5 mL Benzene

    benzene

    air

    benzene

    eq,air

    benzene

    water

    benzene

    eq,w

    M,CM,C

    Prof. Jorge E. Pachon, Ph.D. 15

    Destino y Transporte de Contaminantes II-2012

  • 7/31/2019 Clase 3-Distribucion Fases

    16/41

    Air-Water Partitioning Excercise

    Un tanque de 0.21 m3 de capacidad contiene

    100 L de una mezcla de solventes

    desengrasantes en agua. La presin parcial del

    tricloroetileno (TCE) en la fase gaseosa arribadel agua es de 0.00301 atm. Cul es la

    concentracin del TCE en el agua? Cul es la

    masa de TCE en las dos fases (aire y agua)?R/ Cw,TCE=0.037 g/L; Mw,TCE=3.70g.; Ma,TCE=1.76g.

    16

    Destino y Transporte de Contaminantes II-2012

    Prof. Jorge E. Pachon, Ph.D.

  • 7/31/2019 Clase 3-Distribucion Fases

    17/41

    Octonal-Water Partitioning

    Large organic and highlynonpolar compounds(hydrophobic) prefer topartition to octanol relative to

    water and hence have acorrespondingly large value ofKow.

    The less soluble a chemical isin water, the more likely is to

    sorb to the surfaces ofsediments (organic material).

    Figure 3.4

    Prof. Jorge E. Pachon, Ph.D. 17

    Destino y Transporte de Contaminantes II-2012

  • 7/31/2019 Clase 3-Distribucion Fases

    18/41

    Octonal-Water Partitioning

    Laboratory procedure for measuring Kow:

    1. Chemical is added to a mixture of pura octanol(non-polar solvent) and pure water (polarsolvent).

    2. Mixture is agitated until equilibrium is reached.

    3. Mixture is centrifugated to separate the twophases.

    4. Kow is the ratio of the chemical concentration inthe octanol phase to chemical concentration inthe water phase.

    18Prof. Jorge E. Pachon, Ph.D.

    Destino y Transporte de Contaminantes II-2012

  • 7/31/2019 Clase 3-Distribucion Fases

    19/41

    Soil Organic Matter/Carbon -Water Partitioning

    Soil = mineral + organics from plants and animals

    The mass fraction of organic material in soil

    - fOM : mass fraction of organic matter (OM) in soil- fOC: mass fraction of organic carbon (OC) in soil

    water)A/Lof(massin waterAofionconcentratmEquilibriu

    OC)A/kgof(massOCsoilinAofionconcentratmEquilibriu

    C

    CK

    water)A/Lof(massin waterAofionconcentratmEquilibriu

    OM)A/kgof(massOMsoilinAofionconcentratmEquilibriu

    C

    CK

    A

    eqw,

    A

    eqOC,A

    OC

    Aeqw,

    A

    eqOM,A

    OM

    Prof. Jorge E. Pachon, Ph.D. 19

    Destino y Transporte de Contaminantes II-2012

  • 7/31/2019 Clase 3-Distribucion Fases

    20/41

    Emipirial determination of KOM and KOC

    Karickhoff log KOC=1.00 log KOW 0.21 Schwarzenbach log KOC=0.72 log KOW + 0.49

    20

    Compounds with larger KOW have larger values of KOM and KOC.

    Prof. Jorge E. Pachon, Ph.D.

    Destino y Transporte de Contaminantes II-2012

  • 7/31/2019 Clase 3-Distribucion Fases

    21/41

    Soil OM-Water Partitioning Example

    5 L Air

    5 L Water

    5 L Benzene

    100g

    OM

    Container:

    5L air

    5L water

    5L benzene

    Add 100 g OM

    Calculate

    Solution:eqwOM

    benzeneeqOM xCKC ,,

    Prof. Jorge E. Pachon, Ph.D. 21

    Destino y Transporte de Contaminantes II-2012

  • 7/31/2019 Clase 3-Distribucion Fases

    22/41

    soilkg

    OCof

    waterLperAofmass

    OCkgperAofK

    waterLperAofmass

    soilkgperAofK

    soilkg

    OMof

    waterLperAofmass

    OMkgperAofK

    waterLperAofmass

    soilkgperAofK

    A

    OC

    A

    d

    A

    OM

    A

    d

    massf

    massmass

    massf

    massmass

    OC

    OM

    Soil -Water Partitioning

    Prof. Jorge E. Pachon, Ph.D. 22

    Destino y Transporte de Contaminantes II-2012

  • 7/31/2019 Clase 3-Distribucion Fases

    23/41

    Soil -Water Partitioning Example

    Container:

    10L air

    10L water

    0.1g benzene Add 10 kg soil (with 1% OM)

    Calculate

    Solution: 1. Mass balance for benzene

    2. using

    10 L Air

    10 L Water

    benzene

    eq,soil

    benzene

    eq,air

    benzene

    eq,w CandC,C

    benzene

    d

    benzene

    aw KandK

    10 kg soil

    Prof. Jorge E. Pachon, Ph.D. 23

    Destino y Transporte de Contaminantes II-2012

  • 7/31/2019 Clase 3-Distribucion Fases

    24/41

    NAPL -Water Partitioning

    A

    sat,w

    A

    eq,w CC

    NAPLs can serve as long-term sources ofcontamination to the surrounding environment.

    Hence, equilibrium transfers of contaminants fromNAPL to water and from NAPL to air are of interest.

    Pure NAPL

    Prof. Jorge E. Pachon, Ph.D. 24

    Destino y Transporte de Contaminantes II-2012

  • 7/31/2019 Clase 3-Distribucion Fases

    25/41

    Multi-component NAPL for Ideal NAPL Mixture

    A

    v

    A

    NAPL

    A

    eq,air

    A

    sat,w

    A

    NAPL

    A

    eq,w

    PXP

    CXC

    Raoults Law (for ideal NAPL mixture)

    NAPLinAcompoundoffractionmoleXANAPL

    Raoults Law: Discovered by Franois-Marie Raoult in 1880s.

    Prof. Jorge E. Pachon, Ph.D. 25

    Destino y Transporte de Contaminantes II-2012

  • 7/31/2019 Clase 3-Distribucion Fases

    26/41

    NAPL-Water and NAPL-Air Partitioning

    5 L Air

    5 L Water

    5 L NAPL

    Container:

    5L air

    5L water

    5L NAPL with 10% Naphthalene

    Calculate

    enaphthalen

    eq,w

    enaphthalen

    v CandP

    Prof. Jorge E. Pachon, Ph.D. 26

    Destino y Transporte de Contaminantes II-2012

  • 7/31/2019 Clase 3-Distribucion Fases

    27/41

    Environmental Intermedia Problems

    - great abundance of pure chemicals

    A

    eq,w

    A

    d

    A

    eqsoil,

    A

    w

    A

    eqair,A

    eqw,

    A

    v

    A

    eqair,

    A

    sa tw,

    A

    eqw,

    CKC

    RT

    MPC

    PP

    CC

    weightmolecularW

    pressurevaporPysolubilitaqueousC

    :propertiescompoundPure

    A

    w

    A

    v

    A

    satw,

    tcoefficienngpartitioniwater-soilK

    :tcoefficienngPartitioni

    d

    Prof. Jorge E. Pachon, Ph.D. 27

    Destino y Transporte de Contaminantes II-2012

    d

  • 7/31/2019 Clase 3-Distribucion Fases

    28/41

    Environmental Intermedia Problems

    - great abundance of chemicals with a

    multicomponent NAPL mixture

    A

    eq,w

    A

    d

    A

    eqsoil,

    A

    w

    A

    eqair,A

    eqw,

    A

    v

    A

    NAPL

    A

    NAPL

    A

    eqair,

    A

    satw,

    A

    NAPL

    A

    NAPL

    A

    eqw,

    CKC

    RT

    MPC

    PXP

    CXC

    NAPLinAoffractionMole

    1NAPLinAofActivity

    :propertiesNAPL

    A

    NAPL

    A

    NAPL

    X

    tcoefficienngpartitioniwater-soilK

    :tcoefficienngPartitioni

    d

    Prof. Jorge E. Pachon, Ph.D. 28

    Destino y Transporte de Contaminantes II-2012

    D i T d C i II 2012

  • 7/31/2019 Clase 3-Distribucion Fases

    29/41

    Environmental Intermedia Problems

    - limited mass of chemicals

    A

    eq,w

    A

    d

    A

    eqsoil,

    A

    eqw,

    A

    aw

    A

    eqair,

    A

    eqw,

    A

    H

    A

    eqair,

    soil

    A

    dairaww

    A

    totalA

    eqw,

    CKC

    CKC

    CKP

    MKVKV

    MC

    pressurevaporV

    airofVolumeV

    :sizetcompartmenMedia

    air

    tcoefficienngpartitioniwater-soilK

    tcoefficienngpartitioniwater-iraK

    ConstantlawsHenry'K

    :tcoefficienngPartitioni

    d

    aw

    H

    Prof. Jorge E. Pachon, Ph.D. 29

    Destino y Transporte de Contaminantes II-2012

    D i T d C i II 2012

  • 7/31/2019 Clase 3-Distribucion Fases

    30/41

    Pregunta del primer examen I-2012

    Se disuelven 0.5 gramos de naftaleno en un

    recipiente hermtico que contiene 40L de

    agua, 60L de aire y 500g de sedimentos (con

    1.5% de carbono orgnico). Estimar lasconcentraciones de naftaleno en los tres

    medios (agua, aire, suelo) en equilibrio.

    Asumir KOC=0.41*KOW. Qu porcentaje de lamasa total se distribuye en cada medio?

    30

    Destino y Transporte de Contaminantes II-2012

    Prof. Jorge E. Pachon, Ph.D.

    D ti T t d C t i t II 2012

  • 7/31/2019 Clase 3-Distribucion Fases

    31/41

    Bioconcentration and Bioaccumulation

    Bioconcentration: the uptake of toxic organicsthrough the gill membrane and epithelial tissuefrom the dissolved phase.

    Bioaccumulation: the total biouptake of toxicorganics by the organism from food items (fishprey, sediment ingestion, etc.)

    Biomagnification: circumstance where

    bioaccumulation causes an increase in total bodyburden as one proceeds up the trophic ladderfrom primary producers to top carnivore.

    31Prof. Jorge E. Pachon, Ph.D.

    Destino y Transporte de Contaminantes II-2012

    D ti T t d C t i t II 2012

  • 7/31/2019 Clase 3-Distribucion Fases

    32/41

    Pollutant Interactions with Fish

    Bioconcentration Factor (BCF)

    Physical exchange between the fish tissue and water.

    Bioaccumulation factor (BAF)

    ingestion, respiration, and physical exchange.

    water)ofA/kgof(gwaterinAofionconcentratstateSteady

    tissue)fishA/kgof(gfishinAofionconcentratstateSteady

    C

    CBCF

    A

    ssw,

    A

    ssf,A

    Physical

    exchange

    ingestion,

    respiration

    Prof. Jorge E. Pachon, Ph.D. 32

    Destino y Transporte de Contaminantes II-2012

    Destino y Transporte de Contaminantes II 2012

  • 7/31/2019 Clase 3-Distribucion Fases

    33/41

    Relationships between BCF in Fish and

    Chemical Kow

    Table 3.3Prof. Jorge E. Pachon, Ph.D. 33

    Destino y Transporte de Contaminantes II-2012

    Destino y Transporte de Contaminantes II 2012

  • 7/31/2019 Clase 3-Distribucion Fases

    34/41

    BCF Example

    Ideal NAPL with 10% molefraction benzene

    Estimate the equilibrium benzene

    concentration in the fish:

    Prof. Jorge E. Pachon, Ph.D. 34

    Destino y Transporte de Contaminantes II-2012

    Destino y Transporte de Contaminantes II 2012

  • 7/31/2019 Clase 3-Distribucion Fases

    35/41

    Pollutant Interactions with Plants

    Plants can serve as important living links between air,

    water, and soil, and transfer pollutants between the

    different media.

    Interaction between air pollutants and vegetation occurson a regional scale, with pollutant concentrations in leaves

    often being monitored to determine the level of air

    pollution.

    Plant uptake of pollutants from soil and water occurs on a

    more local scale and has been studied for application in

    phytoremediation, that is, plant-assisted remediation at

    contaminated land sites.

    Prof. Jorge E. Pachon, Ph.D. 35

    Destino y Transporte de Contaminantes II-2012

    Destino y Transporte de Contaminantes II 2012

  • 7/31/2019 Clase 3-Distribucion Fases

    36/41

    Interaction between Atmospheric PAHs

    and Plants Polycyclic aromatic hydrocarbons (PAHs) reach pine

    needles via atmospheric transport and depositionprocesses.

    Atmospheric PAH concentrations are calculated throughBCF based on octanol-air partition coefficients (Koa).

    Tremolada, ES&T, 1996

    Prof. Jorge E. Pachon, Ph.D. 36

    Destino y Transporte de Contaminantes II-2012

    Destino y Transporte de Contaminantes II 2012

  • 7/31/2019 Clase 3-Distribucion Fases

    37/41

    Phytoremediation of Organic

    and Nutrient Contaminants

    Schnoor, ES&T, 1995Prof. Jorge E. Pachon, Ph.D. 37

    Destino y Transporte de Contaminantes II-2012

    Destino y Transporte de Contaminantes II-2012

  • 7/31/2019 Clase 3-Distribucion Fases

    38/41

    Pollutant Interactions with Plants

    Root Concentration Factor (RCF)

    rootBCF

    C

    CRCF

    water)ofA/kgof(gwater-soilinAofononcentrati

    tissue)A/kgof(grootsplantin wetAofononcentrati

    The RCF addresses sorption of organic pollutants

    from soil to plant root tissues, as well as pollutant

    uptake by the root xylem-water that flows through

    the plant during transpiration.

    Prof. Jorge E. Pachon, Ph.D. 38

    Destino y Transporte de Contaminantes II-2012

    Destino y Transporte de Contaminantes II-2012

  • 7/31/2019 Clase 3-Distribucion Fases

    39/41

    Pollutant Interactions with Plants

    Transfer of pollutant from soil-water to the transpiration

    Stream within the plant (TSCF)

    (mg/L)water-soilinAofononcentratiC

    (g/L)streamiontranspiratplantinAofononcentratiCTSCF

    RUBIN & RAMASWAMI, Water Research, 2001

    100

    V

    dV

    %dMTSCF initial

    transp

    Slope

    Prof. Jorge E. Pachon, Ph.D. 39

    Destino y Transporte de Contaminantes II 2012

    Destino y Transporte de Contaminantes II-2012

  • 7/31/2019 Clase 3-Distribucion Fases

    40/41

    RCF

    TSCF

    Kleaf-air

    BCFplant-soil

    BCFplant-waterTable3.4

    Prof. Jorge E. Pachon, Ph.D. 40

    Destino y Transporte de Contaminantes II 2012

    Destino y Transporte de Contaminantes II-2012

  • 7/31/2019 Clase 3-Distribucion Fases

    41/41

    Impacts of Kow on TSCF

    Kow =100Kow =10

    Largest

    TSCF

    How to find the Kow for the

    largest TSCF if only theequation is known?

    f h h

    Destino y Transporte de Contaminantes II 2012