co2 emission comparison wp3 final english

Upload: vijay-kumar

Post on 07-Apr-2018

230 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/4/2019 Co2 Emission Comparison WP3 Final English

    1/30

    Carbon Dioxide Capture from Coal-FiredPower Plants in China

    Summary Report for NZEC Work Package 3September, 2009

    Preparedby:

    DoosanBabcockEnergyLimited JacquelineGIBSONandDiemoSCHALLEHN

    TsinghuaUniversity,

    DepartmentofChemicalEngineeringZHENGQueandCHENJian

    TsinghuaUniversity,

    DepartmentofThermalEngineering, Key

    LaboratoryforThermalScienceandPower

    EngineeringofMinistryofEducation

    WANGShujuan

    GreengenCo.Ltd,Beijing CAOJiang

    ImperialCollegeLondon,

    MechanicalEngineeringDepartment,

    EnergyTechnologyforSustainable

    DevelopmentGroup

    JonGIBBINSandMathieuLUCQUIAUD

    NorthChinaElectricPowerUniversity,KeyLabofConditionMonitoringandControl

    forPowerPlantEquipmentofMinistryof

    Education

    YANGYongping,XUGangandDUANLiqiang

    TsinghuaUniversity,BPCleanEnergy

    Research&EducationCentreXUZhaofeng

    WuhanUniversity HUJicaiandLIJi

    ZhejiangUniversity,StateKeyLaboratoryof

    CleanEnergyUtilization

    FANGMengxiang,YANShuipingandLUO

    Zhongyang

  • 8/4/2019 Co2 Emission Comparison WP3 Final English

    2/30

    ii

    050

    100150200250

    300350400

    Advanced

    supercrit

    800MW

    Oxyfiring Postcom

    MEA

    Postcom

    aqueous

    ammonia

    Precom

    IGCC

    Precom

    polygen

    Existing

    600MW

    supercrit

    Postcom

    MEA

    Postcom

    aqueous

    ammonia

    Existing

    300MW

    subcrit

    Postcom

    MEA

    Postcom

    aqueous

    ammonia

    0

    200

    400

    600

    800

    1000

    Advanced

    supercrit

    800MW

    Oxyfiring Postcom

    MEA

    Postcom

    aqueous

    ammonia

    Precom

    IGCC

    Precom

    polygen

    Existing

    600MW

    supercrit

    Postcom

    MEA

    Postcom

    aqueous

    ammonia

    Existing

    300MW

    subcrit

    Postcom

    MEA

    Postcom

    aqueous

    ammonia

    0

    5000

    10000

    15000

    20000

    Advanced

    supercrit

    800MW

    Oxyfiring Postcom

    MEA

    Postcom

    aqueous

    ammonia

    Precom

    IGCC

    Precom

    polygen

    Existing

    600MW

    supercrit

    Postcom

    MEA

    Postcom

    aqueous

    ammonia

    Existing

    300MW

    subcrit

    Postcom

    MEA

    Postcom

    aqueous

    ammonia

    0

    10

    20

    30

    40

    50

    Advanced

    supercrit

    800MW

    Oxyfiring Postcom

    MEA

    Postcom

    aqueous

    ammonia

    Precom

    IGCC

    Precom

    polygen

    Existing

    600MW

    supercrit

    Postcom

    MEA

    Postcom

    aqueous

    ammonia

    Existing

    300MW

    subcrit

    Postcom

    MEA

    Postcom

    aqueous

    ammonia

    NetEfficiency

    (%L

    HV)

    CostofElectricity

    (RMB/MWh)

    Power plant net efficiencies with and without CO2 capture

    Cost of electricity with and without CO2 capture, 85% load factor, 10% discount rate, tax not includedCoal costs: 16 RMB/GJ / 32 RMB/GJ

    Capital expenditure

    CAPEX = Total Installed Cost + 10% contingency + 7% owners costs, financing costs and taxes not included

    Relativetonewbuildadvancedsupercritical

    pulverisedcoalplant

    Relativeto

    existing600MW

    supercritical coal

    plant

    Relativeto

    existing300MW

    subcritical coal

    plant

    CAPEX(RMB/kW)

    CostofAbat

    ement

    (RMB/tCO2)

    Cost of abatement

    ExecutiveSummary

    ThisreportdrawsonthecaptureplantcasestudiesbyNZECWorkPackage3partnerstopresent,in

    aunifiedandconsistent form,the technicalandeconomicperformanceofpowergenerationwith

    CO2 capture in China. Complementary work on performance calculations by Chinese and UK

    partnershasbeencombinedwhereappropriatetogiveestimatedfinaloverallplantefficienciesand

    CO2emission levels. Estimatedcapitalcostshavebeenusedtoderive levelisedcostsofelectricity

    andemissionabatementcostsonaconsistentbasis.

    Advancednewbuildcapturetechnologiesthathavestilltobedemonstrated,oxyfiring,post

    combustionwithaqueousammoniaandprecombustioncaptureonIGCC,arepredictedtoachieve

    similarpowerplantefficienciesof35.6,35.7and36.8%respectively. CAPEXvaluesfortheseplants

    areapproximately9000to10000RMB/kWnet,withanestimated+/ 30%uncertainty. Levelised

    costsofelectricityfortheseoptionsareestimatedtohavearangeofapproximately370410

    RMB/MWhforacoalcostof16RMB/GJandapproximately40%higherforacoalcostof32RMB/GJ.

    Costsofabatementarecalculatedrelativetothestandardalternativeplantthatwouldbebuilt,an

    advancedsupercriticalplant. Sincethecostofabatementisbasedonthedifferencesbetweenrelativelylargernumbersthereismorevarianceintheresults,fromanestimated140RMB/tCO2for

    oxyfiringto200RMB/tCO2forIGCC+CCS. Thesevaluesare,however,verysensitivetoestimatesfor

    captureplantcosts,particularlytheadditionalcapitalcosts,andshouldberegardedaspreliminary.

    PostcombustioncapturewithanMEAbased solvent,anolder technology, ispredicted tohavea

    generally less favourableperformance.Polygenerationofelectricityandmethanolalsoappears to

    havealowefficiencyandhighcapitalcosts,butthemethanolproductionisnottakenintoaccount.

  • 8/4/2019 Co2 Emission Comparison WP3 Final English

    3/30

    iii

    Table of contents1.Backgroundandsupportingcasestudyreports 1

    1.1Backgroundandscope 1

    1.2Contributingreports 1

    2. PowergenerationfromnewbuildpulverisedcoalplantswithCCS(DB,DCE,DTE,IMP,NCEPU,ZJU) 2

    2.1Advancedsupercriticalbaseplantfornewbuildcasestudieswithandwithoutcapture 2

    2.2CO2captureusingoxyfiring(DB,ZJU) 5

    2.3 Post-combustion CO2 capture (DCE, DTE, IMP, NCEPU, ZJU) 6

    2.3.1 MEApostcombustioncapturesystem(DCE) 6

    2.3.2Aqueousammoniapostcombustioncapturesystem(DTE) 7

    2.3.3Thermalintegrationbetweenthepowerplantsteamcycleandpostcombustioncaptureunitsandcalculationofoverallplantefficiencyandcostwithcapture(DCE,DTE,IMP,NCEPU,ZJU) 8

    3. PostcombustioncapturefromexistingChinesepowerplants(NCEPU) 11

    3.1Chinese600MWsupercriticalunit 11

    3.2Chinese300MWsubcriticalunit 11

    3.3PerformancewithoutandwithCO2capture 11

    4. ElectricpowergenerationwithprecombustionCO2capture(GG,THCEC) 12

    4.1Background 12

    4.2GS1 2400MWIGCCusingTPRIgasifierwithCCS(GG) 14

    4.3GS2 1400MWpolygenerationsystemwithCCS(THCEC) 15

    5. SummaryofCO2captureperformancefordifferentplanttypes 17

    AppendixACasestudybasis 21

    AppendixBTabulatedsummaryoftechnicalandeconomicperformance 23ofcoalfiredpowerplantswithCO2captureunderChineseconditions

    AppendixC CO2captureusingmembranegasabsorptiontechnology 24

    AppendixD LevelisedcostoftransportingCO2asafunctionofmassflowrate 26

  • 8/4/2019 Co2 Emission Comparison WP3 Final English

    4/30

    1

    1.Backgroundandsupportingcasestudyreports

    1.1 Background and scope

    ThisreportdrawsonthefollowingcaptureplantcasestudiesbyNZECWorkPackage3partners.

    Salientfeaturesofthesestudiesarepresentedinthissummaryreportbutfordetailedinformation

    readersshouldrefertotheoriginalsource(s). Theseareindicatedinthetextbytheappropriate

    partnerabbreviationsshowninbracketsaftersectionheadings.

    Theprincipalpurposeofthisreportistopresentinaunifiedandconsistentformthetechnicaland

    economicperformanceofthemaincapturecasestudies. Complementaryworkonperformance

    calculationsbyChineseandUKpartnershasbeencombinedwhereappropriatetogivefinaloverall

    plantefficienciesandCO2emissionlevels. Estimatedcapitalcostshavebeenusedtoderivelevelised

    costsofelectricityandemissionabatementcostsonaconsistentbasis. Thesearepresentedin

    graphicalandtabulatedforms.

    1.2 Contributing NZEC Work Package 3 Reports

    Partner

    Abbreviation

    FullName ReportTitle

    DB DoosanBabcockEnergyLimited JRGibsonandDSchallehn, ChinaUKNear

    ZeroEmissionsCoal(NZEC)Oxyfiring

    Options

    DCE TsinghuaUniversity, Departmentof

    ChemicalEngineering

    QueZhengandJianChen,Costestimationfor

    CO2CapturewithaMEAabsorptionprocess

    DTE TsinghuaUniversity,Departmentof

    ThermalEngineering, KeyLaboratory

    forThermalScienceandPower

    EngineeringofMinistryofEducation

    WangShujuan,CarbonDioxideCaptureUsing

    MDEAandAmmoniaSolutions

    GG GreengenCo.,Ltd,Beijing CaseStudyforIGCCPowerPlantInChina

    (withCCS)

    IMP ImperialCollegeLondon,Mechanical

    EngineeringDepartment,Energy

    TechnologyforSustainable

    DevelopmentGroup

    MathieuLucquiaud, Steamcyclecalculations

    forcapturereadysteamcycleandretrofits

    withMEA,ammoniaandMDEAsolvents

    NCEPU NorthChinaElectricPowerUniversity,

    KeyLabofConditionMonitoringand

    ControlforPowerPlantEquipmentof

    MinistryofEducation

    YongpingYang,GangXuandLiqiangDuan,

    CarbonDioxideCapturefromExistingCoal

    FiredPowerPlantinChina

    THCEC TsinghuaUniversity,BPCleanEnergy

    Research&EducationCentre

    XUZhaofeng, Polygenerationusingtwo

    stageslurrygasifierwithCCS

    WHU WuhanUniversity HuJicaiandLiJi,CO2Transport

    ZJU ZhejiangUniversity,StateKey

    LaboratoryofCleanEnergyUtilization

    MengxiangFang,ShuipingYanand

    ZhongyangLuo,CarbonDioxideCapturefrom

    aNewbuiltUltraSupercriticalPCPowerPlant

  • 8/4/2019 Co2 Emission Comparison WP3 Final English

    5/30

    2

    UsingHollowFibreMembraneContactors

    2. PowergenerationfromnewbuildpulverisedcoalplantswithCCS(DB,DCE,

    DTE,IMP,NCEPU,ZJU)

    2.1 Advanced supercritical base plant for new build case studies with and withoutcapture (DB)

    Newbuild, pulverised coal (PC) capture studies are based on Advanced Supercritical (ASC) Boiler

    Turbine (BT) technology. Advanced supercritical boilers are already operating in China, with an

    estimated Total Installed Cost of 5000 RMB/kW based on Chinese partners experience. Present

    stateoftheart advanced supercritical boiler/turbine technology is used, with steam turbine inlet

    conditionsof280bar/ finalsuperheat temperatureof600C/ final reheat temperatureof610C,

    givinganefficiencyforthesiteandcoalsspecifiedof43.9%LHVnet. Emissionscontrolsconsistof

    DeNOx,particulateremovalandDeSOxplant. Aunitwithanoutputof824.3MWnetisusedasthe

    base case fornew build pulverised coaloptions with capture. This size ofunit is typical fornew

    advanced supercriticalboilers planned in Europe and alsogives PC capture options with net MW

    outputsthatareclosetothelimitingsizeforIGCC+CCSoptions. LargerPCbaseunits(e.g.10001200

    MW)arefeasibleandarelikelytobebuiltinChina,buttheoutputoftheIGCC+CCSunitislimitedby

    thesizeofthelargestgasturbinesavailable.

    AblockflowdiagramforthebasecaseASCPCplant isshown inFigure21. Abriefdescriptionof

    eachoftheunitsidentifiedintheblockflowdiagramisgivenbelow,withasubsectionaddinghow,if

    atall,itmightneedtobemodifiedforuseinaPCbasedcaptureplant. Thebasecaseunitburnscoal

    inairandsoalsodothepostcombustioncapturecases;thebaseplantdesignremainsessentially

    unmodified for theseapart from theTurbine Island. Foroxyfiringcapture, thecoal isburntusing

    oxygen insteadofair,mixedwith recycledcombustionproductsat theburners tomoderate flame

    temperatures. Foroxyfiringcapturecertainaspectsofsometheunits inthebaseplantdesignwill

    havetobechangedwhileotherswouldbeusedunaltered,asindicated.

    Boiler:Theadvancedsupercriticalboiler isbasedonthestateoftheartDoosanBabcockTwoPass

    single reheat BENSON boiler with Posiflow Technology, Balanced Draught, and Gas Biasing for

    reheatsteamtemperaturecontrol.

    Coalandashhandling:Aconventional system isemployed,withthedesignofthefurnacebottom

    ash and fly ash systems from the boiler and downstream particulate removal systems following

    modern conventional air fired power generation plant practice which aims to minimise tramp air

    ingress.

    PulverisedFuelMillingPlant: Coalwillbemilledusingconventionalpulverisers. Inthiscase,tube

  • 8/4/2019 Co2 Emission Comparison WP3 Final English

    6/30

    3

    mills are selected to pulverise the coal to a suitable fineness (typically >80% passing through

    75microns). Ifthecoalsareinclinedtowardssubbituminouscoalsthenrollerorballmillscouldbe

    substituted.

    Modifications

    for

    capture

    cases: Inanypulverisedfuelcombustionplantwithadirectfiringsystem

    the primary gas supplied to the mill is required to both dry the asfired coal and to convey the

    pulverisedcoalfromthemilltotheburners. Inthecaseofairfiring,hotcombustionairissupplied

    from theair/gasheater,and in the caseofoxyfiring, fluegas is recycled from theFGDoutletand

    passesthroughagas/gasheater. Theabilityoftheprimarygastodrythefuelisdrivenbytwofactors,

    theoveralltemperatureandheatcapacityofthegasenteringthemill,and itsmoisturecontent.In

    bothoxyfiringandair firingthetemperatureoftheprimarygas issimilar,althoughthevolumetric

    heat capacity of recycled flue gas is greater than that of air due to the higher density of CO2

    comparedtonitrogen.Whenoperatinginairfiringmodethemoistureinthecombustionair(i.e.its

    relativehumidity) is low,making thedryingprocesseasierastheairhasahighcapacity toabsorb

    evaporatingmoisture. Foroxyfiringoperationtherawrecycledfluegastypicallyhasasubstantially

    highermoisturecontentwhich limits thedrying capacity.This reduction indrying capacity canbe

    mitigatedbybothincreasingthemilloutlettemperature(althoughtherearepracticallimitstothis)

    andbyreducingthemoisturecontentoftherecycledfluegas.

    TurbineIsland: Stateoftheartadvancedsupercriticalturbinetechnologywillbeutilized.

    Modificationsforcapturecases: Thiswillbeusedwithoutmodificationfromtheairfiringdesignfor

    oxyfiring, but with provision for steamextractionafter the intermediatepressure (IP) cylinder for

    postcombustioncapture (see section2.3.3below). Rejectedheat from the captureequipment is

    usedtominimisethesteamextractionforfeedwaterheatingforallcaptureoptions.

    DeNOx: New build plant is required to meetNOx emissions regulations (450mg/Nm3 @ 6%O2).

    TechnologiesbasedonprimaryNOxreductionmeasures,(lowNOxburnersandoverfireair (OFA)),

    andsecondarymeasures,(SelectiveCatalyticReduction(SCR)),canbeused.

    Modificationsforcapturecases: DeNOxplantisnotarequirementwithintheoxyfiringboilerisland

    astheNOxiscapturedinthedownstreamcompressionplant. However,DeNOxplantwillneedtobe

    installedforpostcombustioncapturecaseswithairfiring.

    ESP:Particulateremovalplantisessentialtobothmeetdustemissionlevellimits,asdefinedbythe

    applicable environmental legislation, and to protect downstream flue gas fans and blowers from

    excessiveerosion.ElectrostaticPrecipitators(ESP)areusedintheNZECbasecase.

    Modifications forcapturecases: Whenoperating inoxyfiringmode theparticulateremovalplant

    ensuresthattheFGRstreamsarerelativelydustfree.Theproposedoxyfiringandpostcombustion

  • 8/4/2019 Co2 Emission Comparison WP3 Final English

    7/30

    4

    plants both also utilise an ESP. Previous studies have shown that, as a direct result of the

    performanceoftheairheater/gasgasheatermodule,theoperatingtemperatureoftheelectrostatic

    precipitator (ESP) is increased during oxyfiring operation to typically between 160C and 200C.

    Normally higher temperatures lead to less gas residence time in the ESP with a resulting loss in

    particulatecollectionefficiency. However,oxyfiring fluegashasahigherdensitythanairfired flue

    gasandthismitigatesthelossinefficiencyarisingfromtheincreasedtemperature.

    DeSOx: ForairfiringanFGDisrequiredtomeetemissionslegislation.

    Modificationsforcapturecases: Particularattentionwillbegiventoachievingaveryhighlevelof

    removal(

  • 8/4/2019 Co2 Emission Comparison WP3 Final English

    8/30

    5

    2.2 CO2 capture using oxyfiring (DB, ZJU)

    Overall,thekeyfeaturesofoxyfiring vsairfiringare:

    IncorporationofanairseparationunitforremovalofN2tosupplyanearlypureO2stream

    intotherecycledfluegasforthecombustionprocess.

    Recirculationoffluegasbacktotheboiler(viaanFGDfortheNZECcoals)providinga

    transportmediumforthepfandtomaintaintheradiativeandconvectiveheattransfer

    characteristicsofthefurnaceandboiler.

    Incorporationofgasgasheatersinsteadofconventionalairpreheatingarrangements.

    Incorporationofafluegascoolerandcondensertorecoverheatintothesteamcycle

    condensateandfeedwaterpreheatingsystems.

    CO2compressionandinertsseparationplant,incorporatingadditionalsulphurremoval

    Thisisconsideredalowriskapproachforanoperatorneedingtobeabletomaintainelectrical

    outputbecausetheplantdesignsretainfullairfiringcapability,minimisingcommercialandtechnical

    riskshouldtheoxyfiringcomponentsbeunavailable,byallowingcontinuedgenerationifthe

    oxyfiringplantisoutofservice. Itisenvisagedthatanairfiringcapabilitywillonlybeappliedtothe

    initialdemonstrationplants,however,astherearesignificantcostsassociatedwithretainingthison

    anoxyfiringplant.

  • 8/4/2019 Co2 Emission Comparison WP3 Final English

    9/30

    6

    Thisconfigurationthusoffersanevolutionaryapproachfromwellknownandunderstoodplant:

    Theplantisdesignedwithoperationalandpracticalexperienceofairfiring.

    Similaritiesindesignandoperationtoconventionalairfired,pulverisedcoalpowerplants

    foreachofthemajorplantsystemsandcomponents.

    Newplantsystems(ASU,compressors)andcomponentsarewellprovendesignsand

    commerciallyavailableattherequiredcapacities.

    TheoxyfiringcasestudybyDoosanBabcockhasshownthatforanadvancedsupercriticalpower

    plantdesignedtocaptureCO2thepenaltyintermsofcycleefficiencyis8.3percentagepoints

    comparedwithanairfiredcasewithnoCO2capture,givingafinalefficiencyof35.6%LHVnet.This

    penaltyhasbeenmitigatedbyrecoveringheatwithinthesystemtooffsettheadditionalpower

    consumptionoftheCO2compressionplantandairseparationunit. Anapproximateestimateisthat

    capitalcostsforsuchanoxyfiringplantwillbe48%higheronaRMB/kWbasisthanfora

    conventionalairfiredplant(butbasedonUKexperience,ratherthandirectChinesemarketcosting),

    givingaTotalInstalledCostof7390RMB/kWforanassumedbaseplantTIC(basedonestimates

    fromChinesepartners)of5000RMB/kW. UnlikepostcombustionCO2capturesystems,oxyfiring

    plantsdonotneedtomakeupanyCO2capturesolventlosses,sothisfairlysignificantcontribution

    torunningcostsisavoided.

    2.3 Postcombustion CO2 capture (DCE, DTE, IMP, NCEPU, ZJU)

    PostcombustionCO2capturebasedontheuseofmonethanolamine(MEA)solutionswasstudiedin

    conventional packedabsorbercolumns(DCE)andinmembranecontactors(ZJUalsoseeAppendix

    C). Whilethelatterofferpotentialadvantagesforgasandsolidshandling,theselectedmembrane

    materialswerelimitedtomorediluteMEAsolutions(20%w/w)thanthepackedcolumns(30%w/w).

    Thismeantthattheperformanceofthemembranesystemwasworseandthereforenoresultsare

    reportedinthedetailedcostcomparison;additionalworkisneededonthisnovelapproachifitisto

    havethepotentialofbecomingcompetitivewithotheroptions. Similarly,theuseof

    methyldiethanolamine(MDEA)inaconventionalpackedcolumn,examinedbyDTE,isalsonot

    reportedinthissummarysinceitdidnotappeartoofferanysignificantadvantageoverMEA.

  • 8/4/2019 Co2 Emission Comparison WP3 Final English

    10/30

    7

    TheuseofaqueousammoniaasaCO2solventwasalsostudiedbyDTE. Whilestillrequiringfurther

    developmentworkthisapproachappearstohavethepotentialtooffersignificantadvantagesin

    termsofreducedenergypenaltyandcapitalcosts. Ithasthereforebeenincludedinthecomparative

    analysisasapossibleexampleofthebenefitsthatimprovedpostcombustioncapture,usingthisor

    othersecondgenerationsolvents,maybeabletodeliver,comparedwithplantsusingdesignsbased

    ontheindustrystandardMEAsolvent.

    2.3.1 MEApostcombustioncapturesystem(DCE)

    AschematicflowdiagramfortheMEAcaptureprocessisshowninFigure22.

    Figure22 ProcessflowdiagramforMEAcapture

    TheconventionalMEAprocessisatemperatureswingabsorptionprocess.TheremovalofCO2from

    fluegasisachievedbycontactingthefeedfluegasinanamineabsorberwithanaqueoussolutionof

    analkanolamineatalowtemperature,wherethecarriersolution,anaqueousaminesolution

    absorbsCO2toformcarbamateorbicarbamateionsandbecomeaCO2richsolution.Meanwhile,

    CO2isremovedfromthefluegas.Inasolventregenerator,theCO2richsolutionthenliberatesthe

    dissolvedCO2atanelevatedtemperaturetoreversetheabsorptionreactionandbecomesalean

    solution.AhighpurityCO2streamisreleasedfromthesolventregeneratorandisthencompressed

    to110atmospheres.TheregeneratedCO2leanaminesolutionisthencooledandrecycledtothe

    amineabsorberfromthesolventregeneratorforfurtherCO2removal. Boththermalenergyand

    electricalenergy,thelatterprincipallyforsolventpumping,fluegasblowersandCO2compression,

    arerequiredtoruntheMEAcaptureprocess. Inthisstudyastandardvalueof150kWhpertonneof

    CO2capturedisestimatedtoberequiredfortheelectricalenergyinput.

  • 8/4/2019 Co2 Emission Comparison WP3 Final English

    11/30

    8

    2.3.2Aqueousammoniapostcombustioncapturesystem(DTE)

    AsshowninFigure23asimilarflowdiagramisusedforpostcombustioncaptureusingaqueous

    ammoniasolutionsbut,becauseofthevolatilityoftheammonia,acondensermustbeprovided

    insidethestripper.Theleansolutionfromthestripperiscooledbytherichsolutionandfurtherin

    anexternallycooledheatexchangerinordertoreachthedefinedabsorberinlettemperature.In

    addition,becauseofthevolatilityofammonia,theN2leavingtheabsorptioncolumnandtheCO2

    leavingthedesorptioncolumnwillcontainsomeNH3. Additionalwaterwashingcolumnsareused

    toabsorbthisNH3.

    The CO2 absorber for ammonia capture is similar to SO2 absorbers (i.e. flue gas desulphurisation

    plants FGD)and isdesignedtooperatewithaslurryfeed.Thefluegasflowsupwards incounter

    current to the slurry containing a mix of dissolved and suspended ammonium carbonate and

    ammoniumbicarbonate;90%oftheCO2fromthefluegasiscapturedintheabsorber.TheCO2rich

    slurry from the absorber contains mainly ammonium bicarbonate as the dispersed solids, which

    dissolves as the temperature increases in the heat exchanger to about 80C before it enters the

    stripper.

    Figure23Processflowdiagramforaqueousammoniacapture

  • 8/4/2019 Co2 Emission Comparison WP3 Final English

    12/30

    9

    2.3.3Thermalintegrationbetweenthepowerplantsteamcycleandpostcombustioncaptureunits

    andcalculationofoverallplantefficiencyandcostwithcapture(DCE, DTE, IMP, NCEPU,

    ZJU)

    Effectiveintegrationbetweenthebasepowerplantandthepostcombustioncaptureequipmentis

    essentialtokeeptheefficiencypenaltytoaminimum. AsshowninFigure24,lowpressuresteam

    forsolventregenerationisextractedfromthecrossoverpipebetweentheintermediatepressure(IP)

    andlowpressure(LP)turbinecylindersandheatrecoveredfromthecaptureplant(principallyfrom

    initialCO2cooling)andfromtheCO2compressorintercoolersisrecoveredandusedforcondensate

    heat(avoidingtheneedtoextractsteamfromtheLPturbine).

    Thesteamturbineshavebeendesignedwithanintermediatepressure(IP)turbinecapableof

    operatingwithafloatingoutletpressure,adesignthat(withslightlydifferentmodifications) is

    suitableforbothcapturereadysteamplantsandnewbuildpowerplantsthatarecapableofflexible

    operation. AfloatingIPturbinehastheadvantageofavoidingthethrottlinglossesofacontrolled

    extractionsystemwithavalveattheLPturbinewhentheplantisoperatingwithcapturewhilenot

    affectingtheplantefficiencywithoutcapture.TheIPturbineoutletpressureishigherthanthe

    operatingpressureofthesolventreboilerwhentheplantdoesnotcaptureCO2.WhenCO2is

    capturedsteamisextractedandsenttothesolventreboilertheIPoutletpressuredropstothe

    pressurerequiredtofeedthesolventreboiler.

    LPsteamextractionforfeedwaterheatingisreducedto10%ofthenoncapturevaluebyheating

    boilercondensateusingheatrecoveredfromcoolingtheCO2afterthestripperandcompressor

    stages. CalculatedpowerplantperformancewithoutandwithCO2captureisshowninTable21

    below.

    Tocalculatetheperformanceofthenewbuildpostcombustioncapturecasesthebasecase

    advancedsupercriticalplantwasassumedtobemodifiedslightlytooperatewiththesteamcycle

    showninFigure24. WhenthesteamrequiredforoperatingtheCO2captureplants,determinedby

    modellingthecapturesystemsdescribedin2.3.1and2.3.2(andinmoredetailinDCEandDTEcase

    studyreports)isextractedfromthesteamcycle,andalsotakingintoaccounttheheatrecoveryfrom

    thecaptureandcompressionprocessesforcondensateheating,thepoweroutput(calculatedusing

    gPROMSmodelsasdescribedintheImperialreport),fallstothevaluesshowninTable21below.

    AdditionalelectricalpowertorunthecaptureplantsfansandpumpsandtheCO2compressors,

    calculatedfromthespecificvaluespertonneofCO2captured foundinthecasestudies,hasalsoto

  • 8/4/2019 Co2 Emission Comparison WP3 Final English

    13/30

    10

    besubtractedtogivethereducedcaptureplantnetoutputsandnetefficienciesshowninTable21

    below.

    Table21Performanceofnewbuildadvancedsupercriticalpowerplant

    without/withpostcombustionCO2capture

    andprincipalenergyrequirementassumptions

    Solvent MEA NH3

    WITHOUTCAPTURE

    Netplantpoweroutput(MWe) 824.3 824.3

    Efficiency(%LHVnet) 43.9 43.9

    IPturbineoutletpressure(bara) 9.34 25.53

    WITHCAPTURE

    IPturbineoutletpressure(bara) 4.17 12.57

    Solventreboilersteampressure(bara) 3.67 12.06

    Heatforsolventregeneration(MJ/kgCO2) 3.54 3.23

    Turbineoutputpowerloss(MWe) 116.0 129.1

    Captureandcompressionelectricity

    requirements(kWh/tCO2)

    150 43.4

    Capture/compressionplantpowerconsumption

    (MWe)

    86.1 25.0

    Netplantpoweroutput(MWe) 621.5 670.3

    Efficiency(%LHVnet) 33.1 35.7

  • 8/4/2019 Co2 Emission Comparison WP3 Final English

    14/30

    11

    1

    1

    2

    2 0

    0

    HPIP

    condenser

    LP LP

    Heatrecoveryfrom

    captureprocess

    Solventreboiler

    Desuperheater

    Floatingpressure

    Relocatedeaerator

    steamextraction

    3

    3

    4

    4

    Figure24 Steamturbine/captureplantintegrationwithafloatingintermediatepressureturbine

    Themainadditionalassumptionsandestimatingproceduresforpostcombustioncaptureplant

    capitalcostsareshowninthesummaryoftechnicalandeconomicperformanceinAppendixB. The

    assumedadditionalchargesforthecaptureandcompressionequipmentandthe,relativelyminor,

    modificationstothebaseplantarebasedontheNCEPUcasestudyresults. Aconservative

    assumptionhasbeenmadethatthesecaptureandcompressionequipmentcosts(expressedas

    RMB/kWthermal)willbethesameirrespectiveofthebaseplantsize(acrosstherangecoveredin

    WP3),becauseofuncertaintiesregardingtheactualsizeoftheindividualabsorbersandstrippers

    thatcouldbeused(currentlyconsideredtobelimitedto300400MWelectricaloutputequivalent).

    Iflargercaptureequipmentunitsizesprovetobefeasibleinthefuturethensomeconsequent

    economiesofscalewouldbeexpected,althoughtheeffectonoverallplantcostswouldbelimited

    sincethecaptureequipmentitselfisestimatedtobeonly2025%ofthetotalpowerplantcapital

    costwithCO2capture.

  • 8/4/2019 Co2 Emission Comparison WP3 Final English

    15/30

    12

    3. Post combustioncapturefromexistingChinesepowerplants(NCEPU)

    InordertoevaluatetheimpactofCO2captureonexistingpulverisedcoalfiredChinesepower

    stations,thecostandperformanceof600MWesupercriticaland300MWesubcriticalPCpower

    plantswith90%CO2captureandcompressionusingMEAandaqueousammoniawerealso

    estimated2.

    3.1 Chinese 600MW supercritical unit

    Theexampleplantusedasareference600MWsupercriticalunitforthiscasestudywasNo.1unitof

    GuiGangpowerplant,locatedatGuangxi,PRChina. Thesteamgeneratorintheseplantsisa

    tangentiallycoalfired,supercriticalpressure,controlledcirculation,andradiantreheatwallunit,

    designedtogenerateabout1677.5t/hofsteamatnominalconditionsof24.2MPaand566Cwith

    reheatsteamheatedto566C.Theunitisconfiguredinaconventionaltypedesignandis

    representativeinmanywaysofalargenumberofcoalfiredunitsinusethroughoutbothChinaand

    worldwidetoday.

    3.2 Chinese 300MW subcritical unit

    No.2unitofDaqipowerplantwasusedasareference300MWsubcriticalunit.TheDaqipulverised

    coalpowerplantislocatedinNeimengguprovince,PRChina. Theunitisdesignedtogenerateabout

    935t/hofsteamatnominalconditionsof16.7MPaand537Cwithreheatsteamheatedto537C.

    3.3 Performance without and with CO2 capture

    MEAandaqueousammoniatechnologyidenticaltothatusedfornewbuildcapturecaseswas

    assumedtoberetrofittedtotheexistingplants. CalculatedperformancewithoutandwithCO2

    captureisshowninTable31. Thecaptureefficiencypenaltyforthe600MWsupercriticalplantis

    estimatedtobeslightlyhigherthanthatforthe300MWsubcriticalpowerplantwithasimilarCO2

    captureprocess.Comparedto300MWsubcriticalunitsthe600MWsupercriticalunitshavehigher

    steamtemperaturesandpressuresandhenceasmallersteamflowrateperMWgenerated.When

    theCO2captureprocessisretrofittedthedecreaseinsteamflowwillthereforeberelativelylarger

    forthesupercriticalplant,resultinginworseoperatingconditionsinthelowpressurecylinderofthe

    steamturbine.

    2

    Amorespecialisedcase,inwhichanexistingsubcriticalpowerplantisrebuilttouseadvancedsupercriticalsteamconditionsandalsoconvertedtooxyfiringcaptureatthesametime,isdescribedintheDoosanBabcock

    oxyfiringcasestudyreport.

  • 8/4/2019 Co2 Emission Comparison WP3 Final English

    16/30

    13

    Table31EstimatedperformanceforexistingPCplantswith90%CO2capture

    600MW

    no

    capture

    600MW

    MEA

    capture

    600MW

    ammonia

    capture

    300MW

    no

    capture

    300MW

    MEA

    capture

    300MW

    ammonia

    capture

    Netoutput,MWe 574.09 398.01 435.61 295.13 202.42 225.23

    NetPlantLHV

    Efficiency(%)40.28 27.93 30.56 38.15 26.17 29.12

    Efficiencypenalty

    (%points) 12.35 9.72 11.98 9.03

    4. Electricpowergenerationwithpre combustionCO2capture(GG,THCEC)

    4.1 Background

    Precombustioncapturetechnologyisbasedoncoalgasificationandmaybeimplementedasan

    IntegratedGasifierCombinedCycle(IGCC)plantforelectricityproductiononlyorasapoly

    generationsystem(forexample,hydrogenelectricitycoproduction,methanolelectricity

    coproduction). Inallsuchsystems,thecoalwillfirstreactwithoxygentogeneratesyngaswhich

    mainlyconsistsofCOandH2,andthentheCOinthesyngaswillbeconvertedintoCO2andH2ina

    shiftreactor.ThemixtureofCO2andH2isrelativelyeasytoseparatebecauseitisathighpressure.

    Precombustioncapturetechnologyhasthemeritofimposingalowerenergypenaltyandcapital

    costincreasethanpostcombustioncapturewhencaptureisimplemented,butdoesrequirea

    gasifierbasedpowerplant,whichcurrently,forpurepowergeneration,ismoreexpensivethana

    pulverisedcoalpowerplantinChina.

    InrecentyearsChinahasbuiltmanycoalgasificationprojects,mainlyforcoaltooil,coaltochemical

    andpolygenerationconversionplants.AccordingtoarecentTHCECstudy,thereareapproaching

    100largescalegasiferscurrentlyinoperationinChina. MostofthesearelicensedShellorGE

    gasifiers,but4unitsaredomesticallydesignedslurryfeedgasifiers.In2005,Chinabuiltamethanol

    electricitypolygenerationsysteminShandongprovince.Thepolygenerationprojectproduces

    240,000tonnes/yrmethanoland60MWelectricityandhasbeensupportedbyaMOST863

    programfordemonstratingdomesticslurrygasifiers.IGCCandprecombustionCO2capture

    technology(basedonIGCC)arenowunderdevelopmentinChina.In2004,ChinaHuanengGroup

    (CHNG)announcedtheGreenGenprojectandfoundedtheGreenGenCompanywithsevenother

    ofthelargestenergycompaniesinChina.GreenGensgoalistodevelopanddemonstratean

  • 8/4/2019 Co2 Emission Comparison WP3 Final English

    17/30

    14

    IGCC+CCSprojectinChinaasoneofthekeytechnologyoptionsforChinaselectricityindustrytouse

    totackleclimatechange. Nowtherearemorethan10IGCCpowerplantsproposedinChina,

    includingTianjinIGCCdemonstrationpowerplant,whichisownedbytheGreenGenCompanyand

    receivedapprovalfromNDRCinMay,2009.AsChinasfirstIGCCplant,itwillstartoperationin2011

    andwillbethebasisforafutureIGCC+CCSdemonstrationprojectinChina.

    InWorkPackage3twoprecombustionCO2capturecaseshavebeenstudiedindetail,anIGCCwith

    CCSsystemusingadryfeedChinesegasifierdesignandachemicalelectricitypolygenerationplant

    withCCSusingaslurryfeedChinesegasifierdesign. ParallelfeasibilitystudiesconfirmedthatShell

    gasifiertechnologycouldalsobeappliedsatisfactorilytothecoalsbeingused.

    Table

    2

    1

    Pre

    combustion

    Capture

    Case

    Studies

    Case GS1 GS2

    Configurations 2400MW

    IGCC+CCS

    400MW

    IGCC+0.3Mt/yr

    methanol

    Gasification 2TPRI 3Multinozzle

    Gasturbine 29FA 19FA

    ASU Lowpressure Lowpressure

    Chemical

    product

    Methanol

    Shift Twostage OptimisedforMeOH

    CO2Separation Selexol Rectisol

    CO2Removal

    efficiency

    90%(overallfor

    powerplant)

    86.4%(ofCO2at

    separationpoint)

    4.2 GS1 2400 MW IGCC using TPRI gasifier with CCS (GG)

    TheflowdiagramoftheIGCC+CCSplantisshowninFigure41.TheIGCC+CCSsystemconsistsofa

    coaldryingandmillingsubsystem,gasificationsubsystem,cleanupsubsystem,watergasshift(WGS),

    CO2capturesystem,airseparationunit(ASU), gasturbine(GT), heatrecoverysteamgenerator

    (HRSG)andsteamturbine(ST).

  • 8/4/2019 Co2 Emission Comparison WP3 Final English

    18/30

    15

    ThedrycoalpowderistransportedintothegasifierbynitrogenfromtheASU. OxygenfromtheASU

    andsteamfromtheHRSGwillalsobeinjectedintothegasifierwheretheywillreactwiththecoal

    powder. Slagproducedinthegasifierfallsdownintotheslagremovalsystemandcanbeusedas

    constructionmaterial.Rawsyngasisquenchedwithdustfreecoldsyngasandentersthesyngas

    cooler(SGC). IntheSGC,thesyngasiscooleddownthroughtwoheatexchangerswhichcan

    producesaturatedsteamattwopressurelevels(highpressureandmediumpressure).Thesaturated

    steamgeneratedintheSGCwillbesenttothesteamcyclesystemofthepowerisland.Thecooled

    syngasisthendedustedinthedrysolidremovalsystem(DSR)andsplitintotwosubstreams.One

    partisrecycledforthesyngasquench,theotherissenttothewetscrubbingsystemwhichremoves

    hydrochloricandhydrofluoricacids.ThereactiontoconvertCOtoCO2happensinthewatergas

    shift(WGS)unit.TheoutletstreamcomponentsoftheWGSreactoraremainlyCO2andH2.Thenthe

    gasentersthesulphurremovalunitandCO2captureunit.SeparatedCO2iscompressedanddried.

    TheremainingH2richgas,dilutedwithN2fromtheASU,entersthegasturbineswithcompressedair

    fromtheGTcompressortogenerateelectricpower.

    TheO2fromtheindependentASUisfedtothegasifier.SomeN2fromtheASUisusedforcoal

    feeding,butthebulkoftheN2isinjectedintotheGTcombustortocontrolNOxemissions.Hotflue

    gasfromthegasturbinepassesthroughtheheatrecoverysteamgenerator(HRSG).TheHRSGhas

    sectionstoraisesteamatthreepressures(HP/IP/LP)andforreheating.Producedsteamissentto

    thesteamturbine.Boththesteamturbineandthegasturbinegenerateelectricpower.

  • 8/4/2019 Co2 Emission Comparison WP3 Final English

    19/30

    16

    TPRI GASIFIER

    ASU

    Wet

    Scrubber

    SulfurRecovery

    (claus-scottunit)

    Gas

    Turbine

    SYNGAS

    COOLER

    WGS

    HT LT

    Acid Gas

    Removal

    CO2

    RemovalHRSG

    Dry Solid

    RemovalCoal

    O2

    N2

    QUENCHGAS

    Air

    N2 N2

    Steam cycle(steam tubien)

    Steam Steam

    Steam

    Water

    Sulfur

    O2

    H2S

    Drying and

    compression

    CO2

    CO2

    Poweroutput

    Stack

    Flue gas

    WN

    Air

    Figure41 DiagramofCaseGS1IGCC+CCSSystem

    The2400MWIGCCplusCCSplanthasagrossoutputof866.6MW,lowerthantheIGCCbasecase

    withoutCO2capture(946.2MW)becausealargequantityofthesteamisusedintheshiftreaction

    insteadofgeneratingelectricityinthesteamturbine.Aftersubtractingpowerusewithintheplantto

    runtheASU,CO2compressorandotherequipment661.7MWisavailabletosupply,withanet

    efficiencyof36.8%. TheTotalInstalledCostfortheIGCC+CCSplantis8589RMB/kW.

    4.3 GS2 1400 MW polygeneration system with CCS (THCEC)

    Thepolygenerationsystemisaseriessystem,i.e.chemicalandpoweraregeneratedsequentially.

    TheflowsheetforcaseGS2isshowninFigure42.Firstwaterandcoalwillbemixedtoproducea

    coalwaterslurry.Thecoalwaterslurryisthenpumpedintothegasifier,whereitreactswithoxygen

    fromtheASUandinjectedsteam.Theamountofoxygeninjectedintothegasifierwillbecontrolled

    carefully,inordertoavoidgeneratingmoltenslaginthefirststageofthegasifierandtoform

    moltenslaginthesecondstage.Slagproducedinthegasifierfallsintotheslagremovalsystemand

    canbeusedasagoodqualityconstructionmaterial.Rawsyngasproducedinthegasifieris

    quenchedwithsteam.Thequenchedsyngasisthendedustedandcleaneduptoremove

    hydrochloricandhydrofluoricacidsinthescrubber.Onepartofthecleanedsyngasissenttothe

    watergasshift,wherealmostallCOinthesyngaswillreactwithsteamandchangeintoCO2,then

    mixedwiththeotherpartofsyngas.Theratioofshiftedsyngaswillbeusedtocontroltheratio

  • 8/4/2019 Co2 Emission Comparison WP3 Final English

    20/30

    17

    betweenCOandH2inthemixedsyngastothedesiredvalueformethanolproduction.Before

    enteringtheRectisolunit(whichusesmethanolproducedintheplant),thesyngaswillbecooled

    downtoabout40Cbyexchangingheatwithwater,becausetheRectisolunitworksatlow

    temperatures.IntheRectisolunit,H2SandCO2willbeselectivelyabsorbedbythemethanolsolvent,

    andsubsequentlyreleasedbyheatingthesolvent.H2Swillbesenttoasulphurrecoveryunitto

    produceelementalsulphur,andCO2willbecompressedfortransportandsequestration(110bar

    assumed).ThesyngasleavingtheRectisolunitentersthemethanolreactorcontainingasynthesis

    catalyst.Thetailgasisburntwithairinagasturbinetogeneratepower.Thehotfluegasleavingthe

    gasturbinethenpassesthroughtheHeatRecoverySteamGenerator(HRSG).TheHRSGiscomposed

    ofseveralheatexchangerswhichcanproducesteaminatwopressurereheatsteamcycle(HP/LP).

    Thesteamissenttothesteamturbine.Electricityproducedbythesteamturbineandgasturbine

    willbesenttothegridnetworkandsuppliedtoelectricityconsumers.Thelowtemperaturefluegas

    isreleasedthroughthestack.

    TheGS2polygenerationcasehasagrossoutputof525.8MWe+0.32Mt/yearmethanol,andthenet

    outputis397.2MWe+0.3Mt/yearmethanol.Theconsumedelectricityisusedforrunningtheplant

    facilities,suchastheASU,CO2compressor,pump,fan,etc. andsomeofthemethanolisconsumed

    astheRectisolCO2absorptionsolvent.Theoutputofsulphur,abyproductofpolygeneration,is

    about13855t/year.TheCO2emissionofthispolygenerationconfigurationis196kg/MWhof

    electricity,assumingthatnoneoftheCO2emissionsareassignedtothemethanolproduction. A

    consistenttreatmentofthebenefitsofproducingthiscoalderivedmethanolalsowithlower

    productionCO2emissionswouldrequireawiderunderstandingofhowthemethanolwasused,

    however,andisbeyondthescopeofthisstudy.

  • 8/4/2019 Co2 Emission Comparison WP3 Final English

    21/30

    18

    Figure42 BlockflowdiagramofGS2polygenerationplant

    5. SummaryofCO2captureperformancefordifferentplanttypes

    Figure51summarisesthecalculatedtechnicalandeconomicperformanceofarangeofcoalfired

    powerplanttypeswithCO2captureunderChineseconditions. Acoalcostof16RMB/GJanda

    discountrateof10%overaplantlifeof25yearsareassumed. Theloadfactoristakenas85%

    (67.5%infirst,commissioning,year). Costsdonotincludefinancingcostsandtaxes. Othercase

    studyparametersaretabulatedinAppendixAandnumericalvaluesforthecaptureperformanceare

    presentedinAppendixB. ThecostsofCO2transporttothestoragesiteandstorageandmonitoring

    arenotincluded,butcalculatedcostsforpipelinetransport,fromWHU,arepresentedinAppendixD.

    Advancednewbuildcapturetechnologiesthathavestilltobedemonstrated,oxyfiring,post

    combustionwithaqueousammoniaandprecombustioncaptureonIGCC,arepredictedtoachieve

    similarefficienciesof35.6,35.7and36.8%respectively. CAPEXvaluesfortheseplantsare

    approximately9000to10000RMB/kWnet,withanestimated+/ 30%uncertainty. Levelisedcosts

  • 8/4/2019 Co2 Emission Comparison WP3 Final English

    22/30

    19

    ofelectricityfortheseoptionsareestimatedtohavearangeofapproximately370410RMB/MWh.

    Costsofabatementarecalculatedrelativetothestandardalternativeplantthatwouldbebuilt,an

    advancedsupercriticalplant. Sincethecostofabatementisbasedonthedifferencesbetween

    relativelylargernumbersthereismorevarianceintheresults,fromanestimated140RMB/tCO2for

    oxyfiringto200RMB/tCO2forIGCC+CCS. Thesevaluesare,however,verysensitivetoestimatesfor

    captureplantcosts,particularlytheadditionalcapitalcosts,andshouldberegardedaspreliminary.

    Aqueousammoniapostcombustioncaptureispredictedalsotoworkwellretrofittedtoexisting

    plant. Absoluteefficienciesarelower,duetoacombinationofthelowerefficiencyofthebaseplant

    andhigherpenaltiesduetolesseffectiveintegration,butcalculatedcostsofabatement,ataround

    200RMB/tCO2,wouldstillbecompetitivewithothercaptureoptionsstudied.

    PostcombustioncapturewithanMEAbasedsolvent,alongestablishedtechnologywhichhasbeen

    demonstratedatreasonablescaleforindustrialCO2separationapplicationsalthoughnotyetforfull

    scalecaptureonpowerplants,ispredictedtohaveagenerallylessfavourableperformance,with

    slightlyloweroverallcaptureplantefficiencyandhighercapital,electricityandabatementcosts.

    Thisisinlinewithgeneralexperienceandexplainswhythedevelopmentofalternativepost

    combustioncapturesolvents,suchasaqueousammoniabutalsoincludingadvancedaminesanda

    rangeofothersystems,iscurrentlyreceivingwidespreadattention.

    Polygenerationofelectricityandmethanolappearstohavealowefficiencyandhighcapitalcosts

    butthisisbecausethemethanolproductionisnottakenintoaccount. Similarly,thecalculatedcost

    ofabatementishighforthispolygenerationoptionbutthisdoesnottakeintoaccountthe

    advantagesofproducingcoalderivedmethanolalsowithlowerproductionCO2emissions. A

    consistenttreatmentofthesebenefitswouldrequireawiderunderstandingofhowthemethanol

    wasused,however,andisbeyondthescopeofthisstudy.

    Thesensitivityoflevelisedelectricitycoststovariationsfromthebasecaseparametersisshownin

    Fig.5.2. Predictedelectricitycostsdecreasebyabout15%iftheassumeddiscountrateisreduced

    from10%to5%,andincreasebyslightlymoreifitisincreasedfrom10%to15%,exceptfor

    polygenerationwhichchangesbyabout25%becauseofitshighercapitalcosts. Adecreaseor

    increaseof30%inassumedCAPEXgivesacorrespondingchangeinelectricitycostofapproximately

    12%,exceptforpolygenerationat17%. Adoublingofcoalprice,fromanassumed16RMB/GJto32

    RMB/GJincreasespowerplantgenerationcostsbyaround50%withoutcaptureandby40%with

  • 8/4/2019 Co2 Emission Comparison WP3 Final English

    23/30

    20

    050

    100150200250300350400

    Advanced

    supercrit

    800MW

    Oxyfiring Postcom

    MEA

    Postcom

    aqueous

    ammonia

    Precom

    IGCC

    Precom

    polygen

    Existing

    600MW

    supercrit

    Postcom

    MEA

    Postcom

    aqueous

    ammonia

    Existing

    300MW

    subcrit

    Postcom

    MEA

    Postcom

    aqueous

    ammonia

    0

    200

    400

    600

    800

    1000

    Advanced

    supercrit

    800MW

    Oxyfiring Postcom

    MEA

    Postcom

    aqueous

    ammonia

    Precom

    IGCC

    Precom

    polygen

    Existing

    600MW

    supercrit

    Postcom

    MEA

    Postcom

    aqueous

    ammonia

    Existing

    300MW

    subcrit

    Postcom

    MEA

    Postcom

    aqueous

    ammonia

    0

    5000

    10000

    15000

    20000

    Advanced

    supercrit

    800MW

    Oxyfiring Postcom

    MEA

    Postcom

    aqueous

    ammonia

    Precom

    IGCC

    Precom

    polygen

    Existing

    600MW

    supercrit

    Postcom

    MEA

    Postcom

    aqueous

    ammonia

    Existing

    300MW

    subcrit

    Postcom

    MEA

    Postcom

    aqueous

    ammonia

    0

    10

    20

    30

    40

    50

    Advanced

    supercrit

    800MW

    Oxyfiring Postcom

    MEA

    Postcom

    aqueous

    ammonia

    Precom

    IGCC

    Precom

    polygen

    Existing

    600MW

    supercrit

    Postcom

    MEA

    Postcom

    aqueous

    ammonia

    Existing

    300MW

    subcrit

    Postcom

    MEA

    Postcom

    aqueous

    ammonia

    NetEfficiency

    (%LHV)

    CostofElectricity

    (RMB/MWh)

    Power plant net efficiencies with and without CO2 capture

    Cost of electricity with and without CO2 capture, 85% load factor, 10% discount rate, tax not includedCoal costs: 16 RMB/GJ / 32 RMB/GJ

    Capital expenditure

    CAPEX = Total Installed Cost + 10% contingency + 7% owners costs, financing costs and taxes not included

    Relativetonewbuildadvancedsupercritical pulverisedcoalplant

    Relativetoexisting600MW

    supercriticalcoalplant

    Relativetoexisting300MW

    subcriticalcoalplant

    CAPEX(RMB/kW)

    CostofAbatemen

    t

    (RMB/tCO2)

    Cost of abatement

    capture,whilepolygenerationelectricitycostsincreaseby60%. Anincreaseintheassumedselling

    priceofmethanolfrom2000RMB/tonneto2500RMB/tonnewouldreducepolygeneration

    electricitycostswithcapturebyapproximately10%andbringtheminlinewiththoseforother

    captureoptionsforthebasecasevalues(at16RMB/GJcoalcosts).

    Figure51SummaryoftechnicalandeconomicperformanceofcoalfiredpowerplantswithCO2

    captureunderChineseconditions

  • 8/4/2019 Co2 Emission Comparison WP3 Final English

    24/30

    0

    100

    200

    300

    400

    500

    600

    700

    800

    900

    Advanced

    supercrit

    800MW

    Oxyfiring Postcom

    MEA

    Postcom

    aqueous

    ammonia

    Precom

    IGCC

    Precom

    polygen

    Existing

    600MW

    supercrit

    Postcom

    MEA

    Postcom

    aqueous

    ammonia

    E

    3

    s

    Basevalues 5%discountrate 15%discountrate 30%C AP EX +30%CAPEX Coal32RMB/GJ

    Levelisedcostof

    electricity(RMB/MWh)

    Base values: 10% discount rate, Coal 16 RMB/GJ coal, 85% load factor, Financing costs and taxes not

    included, CAPEX = Total Installed Cost + 10% contingency + 7% owners costs, Methanol 2000RMB/t

    Figure52 Sensitivityoflevelisedelectricitycoststovariationsfrombasecasepara

  • 8/4/2019 Co2 Emission Comparison WP3 Final English

    25/30

    22

    AppendixACasestudybasis

    ThecasestudieswerecarriedoutusingNZECstandardassessmentcriteria,whichwereconsultedon

    byWP3groups.Themaincriteriaare:

    Plantlocation:Tianjin,PRChina

    Shenhuabituminouscoalasdesigncoal,Datongcoalascheckcoal

    Coalprice16RMB/GJ,LHV(lowheatvalue)basis

    63.75%loadfactorforthefirstoperatingyear,and85%loadfactorforotheroperatingyears

    10%nominaldiscountrate(withoutconsideringinflation)

    25operatingyears

    Notconsideringotherthanlocaltaxes.

    90%CO2captureandcompressionto110bar

    Theambientconditions,sitecharacteristicsandcoaldataarepresentedinthefollowingtables.

    TableA1 SiteCharacteristics

    Location Tianjin,PRChina

    Topography Level

    Coaldelivery Unittrain

    Ash/SlagDisposal Offsite

    WaterSupply Riverwater

    Access Trainandroad

    TableA2 SiteAmbientConditions

    Elevation(m) 5

    BarometricPressure(bar) 1.013

    Averageambienttemperature() 15

    Maximumambienttemperature() 35

    Minimumambienttemperature() 0

    AmbientRelativelyHumidity(%) 60

  • 8/4/2019 Co2 Emission Comparison WP3 Final English

    26/30

    23

    TableA3 CharacteristicsofDesignCoals

    Coalspecification UnitDesigncoal

    (Shenhuacoal)

    Checkcoal

    (Datongcoal)

    LHV MJ/kg,ar 22.76 26.71

    HHV MJ/kg,ar 23.92

    Ashcontent

    Moisturecontent

    Aar(%)

    Mar

    11

    14

    9.98

    8.84

    Ultimateanalysis

    Cdaf

    Hdaf

    Odaf

    Ndaf

    Sdaf

    80.44

    4.83

    13.25

    0.93

    0.55

    84.43

    4.89

    8.44

    0.91

    1.33

    Ashcharacteristics

    DTC

    STC

    FTC

    1130

    1160

    1210

  • 8/4/2019 Co2 Emission Comparison WP3 Final English

    27/30

  • 8/4/2019 Co2 Emission Comparison WP3 Final English

    28/30

    25

    AppendixC CO2captureusingmembranegasabsorptiontechnology(ZJU)

    Unlikeconventionalchemicalabsorptiontechnology,themembranegasabsorptiontechnology

    studiedbyZJUforNZECusesaminesolvents(MEAinthiscase)insidehydrophobichollowfibre

    membranecontactorstoabsorbCO2 i.e.itisbasedonacombinationofmembranegasseparation

    andchemicalabsorptiontechnology.Thebasicprincipleofmembranegasabsorptiontechnologyis

    shownschematicallyinFig.C1.Unlikegasmembraneseparationprocesses(i.e.,withoutusing

    solvents)whichdependsonthemembraneselectivity,thehollowfibresadoptedinthemembrane

    contactor,whichhavemanymicroporesintheirwalls(asshowninFig.C2Fig.C2)aregenerallynot

    selective.TheselectivitytoCO2isimplementedbythealkalinesolutioninsidethetubes,which

    meansthatthedrivingforceforCO2absorptionisbasedontheCO2concentrationgradientbetween

    thelumensideandshellsideofmembrane.

    Fig.C1.Principleofmembranegasabsorption. Fig.C2.Microporesinthemembranewall.

    AtypicalmembranecontactorisshowninFig.C3. Inthehollowfibremembranecontactor,

    hydrophobicmicroporousmembranesareusedtoformapermeablebarrierbetweentheliquid

    phaseandgasphase,whichpermitsmasstransferbetweenthetwophaseswithoutdispersingone

    phaseintoanother.Ingeneral,thegasandliquidphasesalwaysflowinparallel(either

    countercurrentlyorconcurrently)toeachotherontheoppositesideofthefibres,andthegas

    preferentiallyfillsthehydrophobicmembraneporesandmeetstheliquidattheoppositesideof

    membrane. Inthisstudy,polypropylene(PP)membranecontactorswereselectedtoactasthe

    absorberinthemembranegasabsorptiontechnologybecauseoftheirlowerpriceandcommercial

    availability.Theinnerdiameter(I.D.)ofthePPfibreisabout30 m,theouterdiameter(O.D.)of

    fibreisabout40 mandtheporosityofthefibreisabout50%.

    InordertopreventmembranewettingproblemsitispreferabletodecreasetheMEAconcentration.

    ButlowerMEAconcentrationswillleadtoanincreaseintheflowrateofthesolventand

  • 8/4/2019 Co2 Emission Comparison WP3 Final English

    29/30

    26

    consequentlyanincreaseinregenerationenergyconsumption.So20%w/wMEAsolutionwas

    selectedinthiscase,asacompromisebetweenrelativelyhighersurfacetensionandrelativelylower

    solventflowrate. Thecalculatedthermalenergyconsumptionforsolventregenerationunderthese

    conditionswas3.98GJ/tCO2. Thiswassignificantlyhigherthanforthe30%w/wMEAsolutionused

    inaconventionalabsorber,whichwasestimatedtorequire3.54GJ/tCO2(DCE),andestimated

    captureplantcapitalcostswerenotsignificantlydifferent. Soamembranegasabsorptionoption

    wasnotincludedindetailedtechnoeconomiccomparisons.

    Iffurtherdevelopmentworkwasabletoleadtoincreasedsolventloadingand/orsignificantly

    reducedcapitalcoststhentheoperationaladvantagesofmembranecontactorscouldmakethemof

    interest. Sincethegasandliquidphasesflowontheoppositesides(i.e.,shellandlumensides)of

    thehollowfibrestheycanbecontrolledindependently.Thisisespeciallyeffectiveinavoiding

    problemssuchasflooding,foaming,channellingandentrainment,whichcanbeencounteredin

    packedortraytowers.

    Fig.33 Typicalstructureofhollowfibermembranecontactor

  • 8/4/2019 Co2 Emission Comparison WP3 Final English

    30/30

    27

    AppendixD LevelisedcostoftransportingCO2asafunctionofmassflowrate

    ThefollowingcostsfordensephasesupercriticalCO2transportbypipelineinChinaaretakenfrom

    thereportfromWuhanUniversity(WHU). Theyarebasedoncontinuousutilisationofthepipeline

    (i.e.365days/year). Forlowerutilisationratesthecostscanbeadjustedreasonablyaccuratelybydividingbytheutilisationfactor.

    Cost(CNY/tCO2)vsTransportDistanceL (km)CO2Mass

    Flowrate

    (tonnes/day) L=50 L=100 L=200 L=300 L=500

    2000 16.1535.34 77.35 128.14 225.02

    4000 10.2922.52 49.29 81.19 143.42

    6000 7.91 17.30 37.87 62.28 110.40

    8000 6.5614.35 31.41 51.63 91.78

    10000 5.6712.42 27.17 44.67 79.58

    12000 5.0411.03 24.14 39.70 70.85

    14000 4.569.98 21.83 35.93 64.25

    16000 4.189.15 20.02 32.97 59.04

    18000 3.87 8.47 18.54 30.57 54.82

    20000 3.627.91 17.32 28.57 51.30